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Abstract: The paper proposes an extension of stability analysis methods for a class of impulsive
reaction-diffusion Cohen-Grossberg delayed neural networks by addressing a challenge namely
stability of sets. Such extended concept is of considerable interest to numerous systems capable
of approaching not only one equilibrium state. Results on uniform global asymptotic stability
and uniform global exponential stability with respect to sets for the model under consideration
are established. The main tools are expansions of the Lyapunov method and the comparison
principle. In addition, the obtained results for the uncertain case contributed to the development of
the stability theory of uncertain reaction-diffusion Cohen-Grossberg delayed neural networks and
their applications. Moreover, examples are given to demonstrate the feasibility of our results.
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1. Introduction

The well known Cohen-Grosberg type neural networks (CGNNs) introduced in 1983 [1] have
been widely investigated due mainly to their numerous applications in science and engineering [2–4].
It is also well known that some powerful from the applied point of view neural network models,
such as cellular neural networks, bidirectional neural networks, Hopfield neural networks, can
be considered as special cases of CGNNs. Later on, the investigations on delayed CGNNs with
constants and time-varying delays also had increased rapidly [5–7] including some recent results [8–10].
In addition, the subject of reaction-diffusion delayed CGNNs has been studied in [11–14]. Indeed,
considering the effect of reaction-diffusion terms on the neural network dynamics is essential [15–19].
As it is mentioned in [11] “... the whole structure and dynamic behavior of neural networks not
merely dependent on the evolution time of each variables but also intensively dependent on its
position (space).”

On the other hand, considering impulsive perturbations in CGNNs is a very hot topic of
interest [20–24]. It has been found that, because of some instantaneous perturbations, the behaviors
of many real-word systems are not continuous processes, and such processes can be modelled by
impulsive differential equations [25–29]. Therefore, it is crucial to study the dynamic properties of
impulsive reaction-diffusion CGNNs, and numerous excellent qualitative results have been published.
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See, for example, [30–35] and the references therein. In addition, the impulsive control is found to be
very efficient control approach in numerous applied problems [36–44].

Asymptotic stability of equilibrium states is one of the most important qualitative properties that
has to be guaranteed in most of the applications of neural network models designed. This is why most
of the existing results on neural network systems are related to asymptotic or exponential stability of
equilibrium states [2–4,8–10,12,16,17,22–24,30,33,35,37,45].

However, even in the pioneering work of Cohen and Grossberg [1], systems capable of
approaching not only one, but infinitely many equilibrium points in response to arbitrary initial data,
have been considered. For such systems, researchers proposed the concept of stable (asymptotically
stable) sets (or manifolds) [46]. This extended stability concept is also of a significant importance in
numerous applications, when the authors investigate the global asymptotic behavior of invariant sets,
invariant manifolds, or of sets of a general nature [47–53]. We note that the notion of stability of sets
includes as a special case stability of an equilibrium, stability of zero solution, stability of moving
manifolds, etc. Thus, stability of sets is one of the most important notions in the stability theory.
However, besides the great possibilities for applications, the topic of stable sets has not been studied
for impulsive reaction-diffusion CGNNS and this is the main objective of the paper.

On the other hand, the effect of some uncertain parameters on the qualitative behavior of CGNNs
has been studied by several authors. See [5,7,21] and the references therein. In this paper, we will
further extend the existing robust stability results to the stability of sets case. Indeed, uncertainty
associated with concrete systems parameters arises from modeling assumptions, the lack of knowledge
or information of the real-world situations, noise factors, etc. Hence, finding efficient conditions
that will guarantee the stability behavior of a uncertain system is a question of a great importance.
Therefore, the dynamics of uncertain systems has long been and will continue to be one of the dominant
themes in mathematics and mathematics applications [54–58].

The paper is organized as follows. In Section 2, the impulsive reaction-diffusion CGNN model in
addition to the basic notations and preliminaries are introduced. The notion of stability of sets with
respect to the model under consideration is defined. Section 3 offers our main stability of sets results.
In Section 4, the effect of some uncertain parameters is considered, and a robust stability analysis is
also conducted. In Section 5, to show the effectiveness of the obtained results, two examples are given.
Finally, some conclusion remarks are drawn in Section 6.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space with norm ||x|| =

(
n

∑
k=1

x2
k

)1/2

of x =

(x1, x2, . . . , xn)T ∈ Rn, Ω be an open and bounded set in Rn that contains the origin has a smooth
boundary ∂Ω and the measure expressed by mes Ω > 0, and let R+ = [0, ∞). For u(t, x) =

(u1(t, x), u2(t, x), . . . , um(t, x))T ∈ Rm, we also consider the following norm:

||u(t, x)||2 =

[ ∫
Ω

m

∑
i=1

u2
i (t, x)dx

]1/2

.

We note that the space L2(Ω) of all real functions on Ω, which are L2 for the Lebesgue measure,
is a Banach space with respect to the above norm [13,16,31,32,34].

In this research, we will investigate some qualitative characteristics of the processes determined by
the following delayed reaction-diffusion CGNN that is subject to short-term impulsive perturbations
at fixed moments of time

∂u(t, x)
∂t

−∇(D(t, x) ◦ ∇u(t, x))− F(t, u(t, x), u(t− τ, x)) = η(t, x), (1)
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where t ∈ R, x ∈ Ω, u = u(t, x) and:
(i) D(t, x) = (Diq(t, x))m×n is an m × n matrix with entries the functions Diq(t, x), i =

1, 2, . . . , m, q = 1, 2, . . . , n, ∇ is the gradient operator, ∇ = ( ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

), ∇ui =

( ∂ui
∂x1

, ∂ui
∂x2

, . . . , ∂ui
∂xn

), i = 1, 2, . . . , m and ∇u = (∇u1,∇u2, . . . ,∇um)T , “.” is the inner product, "◦"
denotes the Hadmard product [58] of the matrices D and ∇u;

(ii) F(t, u(t, x), u(t − τ, x)) = −A(u(t, x))
[
B(u(t, x)) − I(t, x) − C(t) f (u(t, x)) −W(t)g(u(t −

τ, x))
]
, A(u(t, x)) = diag(a1(t, x), a2(t, x), . . . , am(t, x)) is a diagonal matrix with entries ai ∈

C[R × Rn,R+], i = 1, 2, . . . , m, B(u(t, x)) = diag(b1(t, x), b2(t, x), . . . , bm(t, x)), bi ∈ C[R ×
Rn,R], i = 1, 2, . . . , m, I(t, x) = (I1(t, x), I2(t, x), . . . , Im(t, x))T , Ii ∈ C[R × Rn,R], i = 1, 2, . . . , m,
C(t) = (cij(t))m×m, cij ∈ C[R,R], W(t) = (wij(t))m×m, wij ∈ C[R,R], f (u(t, x)) =

( f1(u1(t, x)), f2(u2(t, x)), . . . , fm(um(t, x)))T , f j ∈ [R,R], j = 1, . . . , m, g(u(t − τ, x)) = (g1(u1(t −
τ1(t), x)), g2(u2(t − τ2(t), x)), . . . , gm(um(t − τm(t), x)))T , gi ∈ C[R,R], i = 1, . . . , m, τj ∈

C[R,R+], t > τj, j = 1, . . . , m, 0 ≤ τj(t) ≤ τ,
dτj(t)

dt
< δj (τ > 0, δj < 1);

(iii) η(t, x) = ∑
k=1,2,...,

Jk(u(t, x))δ(t − tk), Jk = diag
(

J1k, J2k, . . . , Jmk
)
, Jik ∈ R, i = 1, . . . , m, k =

1, 2, . . . , δ(t) is the impulsive Dirac-type function with impulsive points tk, k = 1, 2, . . . , 0 < t1 < t2 <

· · · < tk < tk+1 < . . . , limk→∞ tk = ∞.
From the presentation of the term η(t, x), it follows that, for x ∈ Ω and t 6= tk, k = 1, 2, . . . ,

we have η(t, x) = 0. Hence, we obtain (see [34,42])

u(t+k , x)− u(tk, x) = Jk(u(tk, x)),

where u(t+k , x) = lim
h→0+

u(tk + h, x), x ∈ Ω.

Using the above notations, the matrix impulsive delayed reaction-diffusion CGNN model (1) can
be represented as 

∂ui(t, x)
∂t

=
n

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)
− ai(ui(t, x))

[
bi(ui(t, x))

−Ii(t, x)−
m

∑
j=1

cij(t) f j
(
uj(t, x)

)

−
m

∑
j=1

wij(t)gj
(
uj(t− τj(t), x)

)]
t 6= tk,

ui(t+k , x)− ui(tk, x) = Jik(ui(tk, x)),

(2)

where i = 1, 2, . . . , m, m ≥ 2, k = 1, 2, . . . , t > 0, x = (x1, x2, . . . , xn)T ∈ Ω, ui(t, x) denotes the
state of the i-th neural unit, τj(t) is the transmission time-varying delay of the i-th unit, ai(ui(t, x)) is
an amplification function, bi(ui(t, x)) is an appropriately behaved function, cij(t) and wij(t) are the
connection weight matrices, Ii(t, x) is the external input of the i-th neural unit, f j(uj(t, x)) and gj

(
uj(t−

τj(t), x)
)

are the activation functions of the j-th neuron, the smooth functions Diq = Diq(t, x) ≥ 0
are the transmission diffusion coefficients along the i-th neuron. The points {tk}, k = 1, 2, . . . are
the impulsive moments at which abrupt changes of the state ui(t, x) from positions ui(tk, x) into the
positions ui(t+k , x) are observed and Jik(ui(t, x)) are the impulsive functions that measure the impulsive
control effects on the node ui(t, x) at the instants tk if we consider the function η(t, x) as a control
impulsive function.

Let J ⊂ R+ be an interval. Furthermore, we will use classes of functions of the following types:
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PC[J ×Ω,Rm] = {σ̄ : J ×Ω→ Rm : σ̄(t, x) is continuous everywhere on the domain except at
points of the type (tk, x) ∈ J ×Ω wherever σ̄(t−k , x) and σ̄(t+k , x) exist and σ̄(t−k , x) = σ̄(tk, x)

}
;

PC is the set of all piecewise continuous functions ϕ = (ϕ1, ϕ2, . . . , ϕm)T from [−τ, 0]×Ω to Rm,
such that ϕi(ξ

+, x) and ϕi(ξ
−, x) exist and ϕi(ξ

−, x) = ϕi(ξ, x), i = 1, 2 . . . , m, for all points ξ ∈ [−τ, 0]
which must be a finite number;

PCB is the set of all functions ϕ ∈ PC that are bounded.
Let ϕ0 = (ϕ01, ϕ02, . . . , ϕ0m)

T ∈ PCB. We will consider the following boundary and initial
conditions associated with (2):

ui(t, x) = 0, t ∈ [−τ, ∞), x ∈ ∂Ω, i = 1, 2, . . . , m, (3)

ui(ξ, x) = ϕ0i(ξ, x), ξ ∈ [−τ, 0], x ∈ Ω, i = 1, 2, . . . , m. (4)

We denote by u(t, x) = u(t, x; ϕ0) the solution of the Initial Boundary Problem (IBP) (2), (3), (4).
Note that, according to the theory of impulsive neural networks [20–22,29–44], the solutions

u(t, x) = (u1(t, x), u2(t, x), . . . , um(t, x))T

of IBPs (2), (3), (4) are piecewise continuous functions that have jump discontinuities at the moments
tk, k = 1, 2, . . . , and

ui(t−k , x) = ui(tk, x), ui(t+k , x) = ui(tk, x) + Jik(ui(tk, x)), x ∈ Ω, k = 1, 2, . . . .

For more details about the theory of reaction-diffusion CGNN systems with impulsive
perturbations, we refer to [30–35].

Throughout this paper, we assume that the following conditions are satisfied:

Hypothesis 1 (H1). The functions ai, i = 1, 2, . . . , m, are positive, continuous and bounded, i.e., there exist
constants ai and ai such that 1 < ai ≤ ai(χ) ≤ ai for χ ∈ R.

Hypothesis 2 (H2). The functions bi, i = 1, 2, . . . , m, are continuous and there exist positive constants Bi with

bi(χ1)− bi(χ2)

χ1 − χ2
≥ Bi > 0

for χ1, χ2 ∈ R, χ1 6= χ2.

Hypothesis 3 (H3). The activation functions f j and gj are continuous and Lipschitz, i.e., there exist positive
constants Lj, Mj, j = 1, 2, . . . , m, with

| f j(χ1)− f j(χ2)| ≤ Lj|χ1 − χ2|,

|gj(χ1)− gj(χ2)| ≤ Mj|χ1 − χ2|

for all χ1, χ2 ∈ R, χ1 6= χ2.

Hypothesis 4 (H4). The activation functions f j and gj, j = 1, 2, . . . , m, are bounded in R, and
f j(0) = gj(0) = 0, j = 1, 2, . . . , m.

Hypothesis 5 (H5). The functions cij, wij and Ii, i, j = 1, 2, . . . , m are continuous on their domains.

Hypothesis 6 (H6). For any i = 1, 2, . . . , m and q = 1, 2, . . . , n there exist constants diq ≥ 0 such that

Diq(t, x) ≥ diq, t > 0, x ∈ Ω.
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Hypothesis 7 (H7). The impulsive functions Jik are continuous on R for any i = 1, . . . , m, k = 1, 2, . . . .

Hypothesis 8 (H8). 0 < t1 < t2 < · · · < tk < tk+1 < . . . , and limk→∞ tk = ∞.

Remark 1. Conditions H1–H8 guarantee the existence, uniqueness and continuability of the solutions
u(t, x) = (u1(t, x), u2(t, x), . . . , um(t, x))T of the IBP (2), (3), (4) on [0, ∞) ×Ω for any initial function
ϕ0 ∈ PCB [30–35].

We will list the definitions for the stability of sets notion for impulsive reaction-diffusion delayed
CGNNs. For this reason, we will need the new notations. Let M ⊂ [−τ, ∞)×Ω×Rm.

Then, we introduce the next:
M(t, x) = {u ∈ Rm : (t, x, u) ∈ M, (t, x) ∈ R+ ×Ω};
M0(t, x) = {z ∈ Rm : (t, x, z) ∈ M, (t, x) ∈ [−τ, 0]×Ω};
d(u, M(t, x)) = inf

v∈M(t,x)
||u− v||2 is the distance between u ∈ Rm and M(t, x);

M(t, x)(ε) = {u ∈ Rm : d(u, M(t, x)) < ε} (ε > 0) is an ε- neighborhood of M(t, x);
d0(ϕ, M0(t, x)) = sup

ξ∈[−τ,0]
d(ϕ(ξ, x), M0(ξ, x)), ϕ ∈ PC;

M0(t, x)(ε) = {ϕ ∈ PC : d0(ϕ, M0(t, x)) < ε} is an ε- neighborhood of M0(t, x);
M(t, x)(ε) = {u ∈ Rm : d(u, M(t, x)) ≤ ε};
M0(t, x)(ε) = {ϕ ∈ PC : d0(ϕ, M0(t, x)) ≤ ε};
Sα = {u ∈ Rm : ||u||2 ≤ α}; Sα(PC) = {ϕ ∈ PC : ||ϕ||τ ≤ α}, where ||ϕ||τ =

sup
−τ≤ξ≤0

||ϕ(ξ, x)||2.

We assume also that:

Hypothesis 9 (H9). For any (t, x) ∈ R+ ×Ω the set M(t, x) is not empty, and for any (t, x) ∈ [−τ, 0)×Ω,
the set M0(t, x) is not empty.

In our analysis, we will use the following boundedness and stability of sets definitions with
respect to the impulsive control system (2).

Definition 1. The solutions of system (2) are:
(a) equi-M-bounded, if for any positive constants η > 0 and α > 0 there exists a constant β = β(η, α) > 0

such that x ∈ Ω and ϕ0 ∈ Sα(PC) ∩M0(t, x)(η) imply

u(t, x; ϕ0) ∈ M(t, x)(β), t ≥ 0;

(b) uniformly M-bounded, if the number β from (a) depends only on η.

Definition 2. The set M is said to be:
(a) uniformly stable with respect to system (2), if for any positive constants α > 0 and ε > 0 there exists a

constant δ = δ(α, ε) > 0 such that x ∈ Ω and ϕ0 ∈ Sα(PC) ∩M0(t, x)(δ) imply

u(t, x; ϕ0) ∈ M(t, x)(ε), t ≥ 0;

(b) uniformly globally attractive with respect to system (2), if for any positive constants η > 0, ε > 0 and
α > 0 there exists a constant σ = σ(η, ε) > 0 such that x ∈ Ω and ϕ0 ∈ Sα(PC) ∩M0(t, x)(η) imply

u(t, x; ϕ0) ∈ M(t, x)(ε), t ≥ σ;
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(c) uniformly globally asymptotically stable with respect to system (2), if M is a uniformly stable and
uniformly globally attractive set of system (2), and if the solutions of system (2) are uniformly M-bounded;

(d) uniformly globally exponentially stable with respect to system (2), if there exist strictly positive constants
k and λ such that

d(u(t, x; ϕ0), M(t, x)) ≤ kd0(ϕ0, M0(t, x))e−λt, ϕ0 ∈ PCB, x ∈ Ω, t ≥ 0.

Remark 2. Definition 2 is a generalization of the stability of sets definitions [48,49,53] to the
reaction-diffusion case.

Remark 3. Definition 2 also extends the notion of stability of a state (zero state, equilibrium state) to the
stability of sets concept. For a particular choice of the set M it is reduced to the existing Lyapunov-like stability
definitions in the literature. For example, if 0 = (0, 0, . . . , 0)T is the zero equilibrium of (2) and the set
M = [−τ, ∞)×Ω× {u ∈ Rm : u = 0}, then Definition 2 is reduced to the definition of the Lyapunov-like
stability of the zero equilibrium of type (2) impulsive reaction-diffusion CGNNs .

Analogously, if u∗ = (u∗1 , u∗2 , . . . , u∗m)T is a non-zero equilibrium of (2), and the set M = {[−τ, ∞)×
Ω×Rm : u = u∗}, then Definition 2 is reduced to the definition of the Lyapunov-like stability of the non-zero
equilibrium of the impulsive reaction-diffusion CGNNs (2) [30–35].

What follows are definitions and a comparison lemma from the Lyapunov-Razumikhin
method [15,19,28,29,42,46].

The main results will be proven using Lyapunov’s like piecewise functions from the class V0.
For this reason, we need the sets

Gk = {(t, u) : t ∈ (tk−1, tk), u ∈ Rm}, k = 1, 2, . . . , t0 = 0, G =
∞⋃

k=1

Gk.

Definition 3. A function V : [0, ∞) × Rm → R+, belongs to the class V0 if the following conditions
are fulfilled:

1. V(t, u) is continuous in G, locally Lipschitz continuous with respect to its second argument on
each of the sets Gk, and V(t, u(t, .)) = 0 for (t, x, u) ∈ M, t ≥ 0 and V(t, u(t, .)) > 0 for (t, x, u) ∈
{R+ ×Ω×Rm} \M.

2. For each k ∈ N and u ∈ Rm, there exist the finite limits

V(t−k , u) = lim
t→tk
t<tk

V(t, u), V(t+k , u) = lim
t→tk
t>tk

V(t, u),

and V(t−k , u) = V(tk, u).

For a function V ∈ V0 let t ∈ [0, ∞), t 6= tk, k = 1, 2, . . . and ϕ̄ ∈ PC. Then, the upper right-hand
derivative of V ∈ V0 with respect to the system

du(t, .)
dt

= H̄(t, u(t− τ, .)), t > 0, t 6= tk,

u(t+k , .) = u(tk, .) + Jk(u(tk, .)), k = 1, 2, . . .

(5)

is defined by

D+V(t, ϕ̄(0, .)) = lim
χ→0+

sup
1
χ

[
V(t, ϕ̄(0, .))−V(t− χ, ϕ̄(0, .)− χH̄(t, ϕ̄))

]
,
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where H̄ : [0, ∞)×PC → Rm, Jk : Rm → Rm, k = 1, 2, . . . , m,

H̄(t, ϕ̄) = (H̄1(t, ϕ̄), H̄2(t, ϕ̄), . . . , H̄m(t, ϕ̄))T

is continuous with respect to (t, ϕ̄) and is locally Lipschitz continuous with respect to ϕ̄ ∈ PC and Jk
are continuous with respect to u ∈ Rn.

The following comparison lemma can be proved by the same arguments used for the comparison
results in [15,28,29].

Lemma 1. Assume that the function V ∈ V0 is such that for t ∈ R+ and ϕ ∈ PC

V(t+, ϕ(0, .) + Jk(ϕ), ) ≤ V(t, ϕ(0, .)), t = tk, k = 1, 2, . . . ,

and the inequality
D+V(t, ϕ(0, .)) ≤ µV(t, ϕ(0, .)), t 6= tk, µ ∈ R

is valid whenever
V(t + ξ, ϕ(ξ, .), ) ≤ V(t, ϕ(0, .)), −τ ≤ ξ ≤ 0.

Then,
V(t, u(t, .)) ≤ sup

−τ≤ξ≤0
V(0, ϕ0(ξ, .))eµt, t > 0.

For the set Ω = {x ∈ Rn : |xq| < lq}, lq = const > 0, q = 1, 2, . . . , n, we will also need the
following lemma.

Lemma 2 ([16]). Let Ω be a cube |xq| < lq (q = 1, 2, . . . , n) and let v(x) be a real-valued function belonging
to C1(Ω), which vanishes on the boundary ∂Ω of Ω, i.e., v(x)|Ω = 0. Then,

∫
Ω

v2(x)dx ≤ l2
q

∫
Ω

∣∣∣∣∣∂v(x)
∂xq

∣∣∣∣∣
2

dx.

3. Stability of Sets

In our main theorems, we will use the Hahn class of functions K = {w ∈ C[R+,R+] :
w is strictly increasing and w(0) = 0}.

First, we will prove a stability result for a set M of a general nature.

Theorem 1. Assume that:
1. Conditions H1–H9 hold.
2. There exists a function V ∈ V0 such that the inequalities

w1(d(u, M(t, x))) ≤ V(t, u) ≤ w2(d(u, M(t, x))),

hold, where w1(s)→ ∞ as s→ ∞, (t, x) ∈ R+ ×Ω, u ∈ Rm, w1, w2 ∈ K.
3. For t ∈ R+ and ϕ ∈ PC

V(t+, ϕ(0, .) + Jk(ϕ), ) ≤ V(t, ϕ(0, .)), t = tk, k = 1, 2, . . . ,

and the inequality
D+V(t, ϕ(0, .)) ≤ −w3(d(ϕ(0, .), M(t, x))), t 6= tk, x ∈ Ω

is valid whenever
V(t + ξ, ϕ(ξ, .), ) ≤ V(t, ϕ(0, .)), −τ ≤ ξ ≤ 0,
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where w3(s) > 0 for s > 0.
Then, the set M is uniformly globally asymptotically stable with respect to system (2).

Proof. Let for arbitrary ε > 0 we choose δ = δ(ε) > 0, δ < ε so that w−1
1 (w2(δ)) < ε.

For any fixed α > 0 let ϕ0 ∈ Sα(PC) ∩M0(t, x)(δ), x ∈ Ω and u(t, x) = u(t, x; ϕ0) be the solution
of (2), (3), (4).

Then, from Lemma 1 for µ = 0, we get

V(t, u(t, .)) ≤ sup
−τ≤ξ≤0

V(0, ϕ0(ξ, .)), t > 0 (6)

and from condition 2 of Theorem 1, consequently we obtain

d(u(t, x; ϕ0), M(t, x)) ≤ w−1
1 (V(t, u(t, x)) ≤ w−1

1 ( sup
−τ≤ξ≤0

V(0, ϕ0(ξ, x)))

≤ w−1
1 (w2(d0(ϕ0, M0(t, x)))) < w−1

1 (w2(δ)) < ε

or, u(t, x; ϕ0) ∈ M(t, x)(ε) for all t ≥ 0 showing that the set M is uniformly stable with respect to the
impulsive reaction-diffusion CGNN (2).

Next, we will prove that u(t, x; ϕ0) ∈ M(t, x)(ε) for t ≥ σ and ϕ0 ∈ Sα(PC) ∩M0(t, x)(η), η > 0.
First, we will show that there exists t∗ ∈ [0, σ] such that, for any solution u(t, x) = u(t, x; ϕ0) of

(2) with ϕ0 ∈ Sα(PC) ∩M0(t, x)(η), we have

d(u(t∗, x), M(t∗, x)) < δ(ε), x ∈ Ω. (7)

If we suppose that this is not true, then, for any σ > 0, there exists a solution u(t, x) = u(t, x; ϕ0)

of (2) for which ϕ0 ∈ Sα(PC) ∩M0(t, x)(η), such that

d(u(t, x), M(t, x)) ≥ δ(ε), t ∈ [0, σ], x ∈ Ω. (8)

For t ≥ 0 and from condition 3 of Theorem 1, we get

V(t, u(t, .))−V(0, u(0, .)) ≤
∫ t

0
D+V(ϑ, u(ϑ, .))dϑ ≤ −

∫ t

0
w3(d(u(ϑ, .), M(ϑ, .)))dϑ. (9)

From the other side, the properties of the function V(t, u(t, .)) on R+ imply that it is non-increasing
on the interval [σ, ∞). Thus, the finite limit

lim
t→∞

V(t, u(t, .)) = v0 ≥ 0 (10)

exists.
It follows then from (9), (10) and conditions 2 of Theorem 1 that∫ ∞

0
w3(d(u(t, .), M(t, .)))dt ≤ w2(η)− v0.

From the fact that the function w3 is strictly positive, we can conclude that the number σ can be
chosen so that

σ >
w2(η)− v0 + 1

w3(δ(ε))
.

Then, we get

w2(η)− v0 ≥
∫

0

∞
w3(d(u(t, .), M(t, .)))dt
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≥
∫

0

σ
w3(d(u(t, .), M(t, .)))dt ≥ w3(δ(ε))σ > w2(η)− v0 + 1,

which is a contradiction.
Thus, there exist a positive constant σ = σ(ε, η) and a t∗ ∈ [0, σ] such that, for any solution

u(t, x) = u(t, x; ϕ0) of the impulsive reaction-diffusion CGNN (2) such that ϕ0 ∈ Sα(PC)∩M0(t, x)(η),
the inequality (7) holds.

Therefore, for t ≥ t∗ (hence for any t ≥ σ as well) and x ∈ Ω, we have

d(u(t, x), M(t, x)) ≤ w−1
1 (V(t, u(t, x))) ≤ w−1

1 (V(t∗, u(t∗, x)))

≤ w−1
1 (w2(d(u(t∗, x), M(t∗, x)))) < w−1

1 (w2(δ)) < ε,

which proves that the set M is uniformly globally attractive with respect to the impulsive
reaction-diffusion CGNN (2).

Finally, we will prove that the solutions of (2) are uniformly M-bounded. Let η > 0 and choose
the number β = β(η) > 0 so that w−1

1 (w2(η)) < β, β > η.
For any fixed number α > 0 and for ϕ0 ∈ Sα(PC) ∩ M0(t, x)(η), by (6) and condition 2 of

Theorem 1, we obtain

d(u(t, x; ϕ0), M(t, x)) ≤ w−1
1 (V(t, u(t, x)) ≤ w−1

1 ( sup
−τ≤ξ≤0

V(0, ϕ0(ξ, x)))

≤ w−1
1 (w2(d0(ϕ0, M0(t, x)))) < w−1

1 (w2(η)) < β

for t ∈ R+. Hence, u(t, x; ϕ0) ∈ M(t, x)(β) for t ≥ 0.
The proof of Theorem 1 is complete.

Theorem 2. If, in Theorem 1, wi = cidr(u, M(t, x)) for (t, x) ∈ R+ ×Ω, u ∈ Rm, i = 1, 2, and w3 =

c3dr(ϕ(0, .), M(t, x))) for t 6= tk, x ∈ Ω, ϕ ∈ PC, where ci > 0 are constants i = 1, 2, 3, r ≥ 1, then the set
M is uniformly globally exponentially stable with respect to system (2).

Proof. Let ϕ0 ∈ PCB and u(t, x) = u(t, x; ϕ0) be the solution of (2), (3), (4).
For wi = cidr(u, M(t, x)) for (t, x) ∈ R+ ×Ω, u ∈ Rm, i = 1, 2, and w3 = c3dr(ϕ(0, .), M(t, x)))

for t 6= tk, x ∈ Ω, ϕ ∈ PC, where ci > 0 are constants i = 1, 2, 3, r ≥ 1, we have that the inequality

D+V(t, ϕ(0, .)) ≤ − c3

c2
V(t, ϕ(0, .)), t 6= tk (11)

is valid whenever
V(t + ξ, ϕ(ξ, .), ) ≤ V(t, ϕ(0, .)), −τ ≤ ξ ≤ 0, ϕ ∈ PC.

Hence, in view of Lemma 1, we have

V(t, u(t, .)) ≤ sup
−τ≤ξ≤0

V(0, ϕ0(ξ, .))e−
c3
c2

t, t > 0

and, therefore,

d(u(t, x), M(t, x)) ≤
(

1
c1

V(t, u(t, x))

)1/r

≤
(

1
c1

sup
−τ≤ξ≤0

V(0, ϕ0(ξ, .))e−
c3
c2

t
)1/r

≤
(

c2

c1

)1/r

d0(ϕ0, M0(t, x))−
c3
rc2

t, t ≥ 0,

which proves that the set M is uniformly globally exponentially stable with respect to system (2).
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Remark 4. Theorems 1 and 2 offer sufficient conditions for the more general concept of stability of sets for the
impulsive reaction-diffusion CGCN model (2). The set M considered in the theorems is of a very general nature.
The obtained results are important in the case when the corresponding sets are attractors of type (2) models.
For a particular choice of the set M, they include results for the following specific cases:

(i) If M = {[−τ, ∞)×Ω×Rm : u = u∗}, where u∗ is an equilibrium state of (2), then d(u, M) =

inf{||u− v||2 : v = u∗} = ||u− v||2;
(ii) If M = MR = {u ∈ Rm : ||u||2 ≤ R}, then d(u, M) = max{0, ||u||2 − R}.
Thus, our set-stability results are extensions to the existing stability theory for impulsive reaction-diffusion

CGNNs [30–35].

In the next result, we will consider a specific attractor set M. Let the set Ω of points x, x =

(x1, x2, ..., xn)T is such that |xq| < lq, where lq, q = 1, 2 . . . , n, are positive constants.

Set d̃i =
n

∑
q=1

diq

l2
q

, i = 1, 2, . . . , m, c+ij = sup
t∈R+

cij(t), w+
ij = sup

t∈R+

wij(t).

Let u∗ = (u∗1 , u∗2 , . . . , u∗m)T ∈ Rm
+ and u∗ = (u∗1 , u∗2 , .., u∗m)T ∈ Rm

+, where u∗i = {u∗ik}, u∗i =

{u∗ik}, i = 1, 2, . . . , m, k = 1, 2, . . . be two constant solutions of the reaction-diffusion CGNN (2), i.e.,

0 = −ai(u∗i (t, x))
[
bi(u∗i (t, x))− Ii(t, x)−

m

∑
j=1

cij(t) f j
(
u∗j (t, x)

)
−

m

∑
j=1

wij(t)gj
(
u∗j (t− τj(t), x)

)]
, t 6= tk,

u∗i (t
+
k , x) = u∗i (tk, x),

and 

0 = −ai(u∗i (t, x))
[
bi(u∗i (t, x))− Ii(t, x)−

m

∑
j=1

cij(t) f j
(
u∗j (t, x)

)

−
m

∑
j=1

wij(t)gj
(
u∗j (t− τj(t), x)

)]
, t 6= tk,

u∗i (t
+
k , x) = u∗i (tk, x).

Theorem 3. Assume that:
1. Conditions H1–H9 hold.
2. The following condition met

min
1≤i≤m

[
2
(
d̃i + aiBi

)
− ai

m

∑
j=1

(
Ljc+ij + Mjw+

ij + Lic+ji
)]

> max
1≤i≤m

(
Mi

m

∑
j=1

ajw+
ji

)
> 0.

3. The functions Jik are such that

Jik(ui(tk, x)) = −γikui(tk, x), 0 < γik < 2,

i = 1, 2, . . . , m, k = 1, 2, . . . .
Then, the set M = [−τ, ∞) × Ω × {Rm : u∗i ≤ ui ≤ u∗i , i = 1, 2, . . . , m} is uniformly globally

exponentially stable with respect to the impulsive reaction-diffusion CGNN (2).
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Proof. Let ϕ0 ∈ PCB, ϕ0 = (ϕ01, ϕ02, . . . , ϕ0m)
T and u(t, x) = u(t, x; ϕ0), u(t, x) =

(u1(t, x), u2(t, x), . . . , um(t, x))T be the solution of the CGNN (2) with initial function ϕ0.
For v ∈ M(t, x), v = v(t, x) = (v1(t, x), v2(t, x), . . . , vm(t, x))T , (t, x) ∈ [−τ, ∞)×Ω, we consider

the Lyapunov candidate function

V(u(t, .), v(t, .)) =
1
2

(
inf

v∈M(t,x)
||u− v||2

)2

=
1
2

d2(u, M(t, x)).

For t ≥ 0 and t = tk, k = 1, 2, . . . , from condition 3 of the theorem, we obtain

1
2

∫
Ω

m

∑
i=1

(1− γik)
2(ui(tk, x)− vi(t, x)

)2dx <
1
2

∫
Ω

m

∑
i=1

(
ui(tk, x)− vi(t, x)

)2dx,

and hence
V(u(t+k , .), v(t+k , .)) < V(u(tk, .), vk(t, .)). (12)

In addition, for t ≥ t0 and t ∈ (tk−1, tk], k = 1, 2, . . . , we have that

1
2

d
dt
||u(t, .)− v(t, .||22 ≤

∫
Ω

m

∑
i=1

∣∣ui(t, x)− vi(t, x)
∣∣∂(ui(t, x)− vi(t, x)

)
∂t

dx. (13)

First, we will consider the case, when ui(t, x) ≥ vi(t, x) for any i = 1, 2, . . . , m and (t, x) ∈
[−τ, ∞)×Ω.

From the choice of the set M, we get

1
2

d
dt
||u(t, .)− v(t, .)||22 ≤

m

∑
i=1

∫
Ω

(
ui(t, x)− u∗i

)∂
(
ui(t, x)− u∗i

)
∂t

dx. (14)

Since u∗ = (u∗1 , u∗2 , . . . , u∗m)T is a constant solution of (2), then, by H1, we obtain

(ui(t, x)− u∗i )
∂(ui(t, x)− u∗i )

∂t
≤ (ui(t, x)− u∗i )

(
n

∑
q=1

∂

∂xq

(
Diq

∂(ui(t, x)− u∗i )
∂xq

)

− ai[bi(ui(t, x))− bi(u∗i )] + ai

m

∑
j=1

c+ij
∣∣ f j
(
uj(t, x)

)
− f j(u∗j )

∣∣
+ ai

m

∑
j=1

w+
ij

∣∣gj
(
uj(t− τj(t), x)

)
− gj(u∗j )

∣∣).

(15)

Then, we integrate (15) over Ω and obtain

∫
Ω
(ui(t, x)− u∗i )

∂(ui(t, x)− u∗i )
∂t

≤
∫

Ω

n

∑
q=1

∂

∂xq

(
Diq

∂(ui(t, x)− u∗i )
∂xq

)
(ui(t, x)− u∗i )dx

−
∫

Ω
ai(ui(t, x)− u∗i )[bi(ui(t, x))− bi(u∗i )]dx

+ ai

∫
Ω
(ui(t, x)− u∗i )

m

∑
j=1

c+ij
∣∣ f j
(
uj(t, x)

)
− f j(u∗j )

∣∣dx

+ ai

∫
Ω
(ui(t, x)− u∗i )

m

∑
j=1

w+
ij

∣∣gj
(
uj(t− τj(t), x)

)
− gj(u∗j )

∣∣dx.

(16)
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Next, from the Dirichlet-type boundary conditions, H6 and Lemma 2, by the Green’s theorem,
we have

∫
Ω

n

∑
q=1

∂

∂xq

(
Diq

∂(ui(t, x)− u∗i )
∂xq

)
(ui(t, x)− u∗i )dx

= −
n

∑
q=1

∫
Ω

Diq

(
∂(ui(t, x)− u∗i )

∂xq

)2

dx

≤ −
n

∑
q=1

∫
Ω

diq

(
∂(ui(t, x)− u∗i )

∂xq

)2

dx

≤ −
n

∑
q=1

∫
Ω

diq

l2
q
(ui(t, x)− u∗i )

2dx = −d̃i

∫
Ω
(ui(t, x)− u∗i )

2dx.

(17)

Conditions H1–H4 imply∫
Ω

ai(ui(t, x)− u∗i )[bi(ui(t, x))− bi(u∗i )]dx ≥ aiBi

∫
Ω
(ui(t, x)− u∗i )

2dx, (18)

and

ai

∫
Ω
(ui(t, x)− u∗i )

m

∑
j=1

c+ij
∣∣ f j
(
uj(t, x)

)
− f j(u∗j )

∣∣dx

≤ ai

∫
Ω

m

∑
j=1

c+ij Lj|ui(t, x)− u∗i ||uj(t, x)− u∗j |dx

≤ 1
2

ai

m

∑
j=1

∫
Ω

c+ij Lj
[
(ui(t, x)− u∗i )

2 + (uj(t, x)− u∗j )
2]dx.

(19)

In addition,

ai

∫
Ω
(ui(t, x)− u∗i )

m

∑
j=1

w+
ij

∣∣gj
(
uj(t− τj(t), x)

)
− gj(u∗j )

∣∣dx

≤ ai

m

∑
j=1

∫
Ω

w+
ij Mj|ui(t, x)− u∗i |

∣∣uj(t− τj(t), x)− u∗j
∣∣dx

≤ 1
2

ai

m

∑
j=1

∫
Ω

w+
ij Mj

[
(ui(t, x)− u∗i )

2 + (uj(t− τj(t), x)− u∗j )
2]dx.

(20)
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In view of (16)–(20), we have

1
2

d
dt
||u(t, .)− v(t, .)||22

≤
m

∑
i=1

[
− (d̃i + aiBi)

∫
Ω
(ui(t, x)− u∗i )

2dx

+
1
2

ai

m

∑
j=1

∫
Ω

c+ij Lj
[
(ui(t, x)− u∗i )

2 + (uj(t, x)− u∗j )
2]dx

+
1
2

ai

m

∑
j=1

∫
Ω

w+
ij Mj

[
(ui(t, x)− u∗i )

2 + (uj(t− τj(t), x)− u∗j )
2]dx

]

≤ −1
2

m

∑
i=1

[
2
(
d̃i + aiBi

)
− ai

m

∑
j=1

(
Ljc+ij + Mjw+

ij + Lic+ji
)] ∫

Ω
(ui(t, x)− u∗i )

2dx

+
1
2

m

∑
i=1

m

∑
j=1

ajw+
ji Mi

∫
Ω

sup
−τ≤ξ≤0

(uj(ξ, x)− u∗j )
2dx

≤ − min
1≤i≤m

[
2
(
d̃i + aiBi

)
− ai

m

∑
j=1

(
Ljc+ij + Mjw+

ij + Lic+ji
)]1

2
||u(t, .)− u∗||22

+ max
1≤i≤m

(
Mi

m

∑
j=1

ajw+
ji

)1
2
||u− u∗||2τ = −c1

1
2
||u(t, .)− u∗||22 + c2

1
2
||u− u∗||2τ ,

(21)

where

c1 = min
1≤i≤m

[
2
(
d̃i + aiBi

)
− ai

m

∑
j=1

(
Ljc+ij + Mjw+

ij + Lic+ji
)]

,

c2 = max
1≤i≤m

(
Mi

m

∑
j=1

ajw+
ji

)
.

From condition 2 of Theorem 3, it follows that there exists a constant c > 0 such that

1
2

d
dt
||u(t, .)− v(t, .)||22 ≤ −

1
2

c||u(t, .)− v(t, .)||22. (22)

By repeating the same arguments, we can conduct the proof of the inequality (22) in the case
when ui(t, x) < vi(t, x) for any i = 1, 2, . . . , m and (t, x) ∈ [−τ, ∞)×Ω, and, in any other case, when
ui(t, x) < vi(t, x) for some i = 1, 2, . . . , m and ui(t, x) ≥ vi(t, x) for the rest of the variables of u(t, x)
and v(t, x), (t, x) ∈ [−τ, ∞)×Ω.

Using (22) for the upper right-hand derivative of V along the solutions of system (2), for ϕ̃ ∈ C,
ϕ̃ = (ϕ̃1, ϕ̃2, . . . , ϕ̃m)T , we have

D+V(t, ϕ̃(0, .)) ≤ −cV(t, ϕ̃(0, .))

when V(t + ξ, ϕ̃(ξ, .)) ≤ V(t, ϕ̃(0, .)) for −τ ≤ ξ ≤ 0, ϕ̃ ∈ PC, t ≥ 0.
Now, applying Theorem 2, we conclude that the set M = [−τ, ∞)×Ω×{Rm : u∗i ≤ ui ≤ u∗i , i =

1, 2, . . . , m} is uniformly globally exponentially stable with respect to the impulsive reaction-diffusion
CGNN (2).
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4. Robust Stability of Sets

In this section, a robust stability of sets result for the impulsive reaction-diffusion CGNN model
(2) will be presented. To this end, we will extend the model (2) to incorporate uncertain terms.

Consider the following uncertain impulsive reaction-diffusion delayed CGNN corresponding to
the system (2)

∂ui(t, x)
∂t

=
n

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)

−
(
ai(ui(t, x)) + ãi(ui(t, x))

)[(
bi(ui(t, x)) + b̃i(ui(t, x))

)
−Ii(t, x)− Ĩi(t, x)

−
m

∑
j=1

(
cij(t) + c̃ij(t)

)(
f j
(
uj(t, x)

)
+ f̃ j

(
uj(t, x)

))

−
m

∑
j=1

(
wij(t) + w̃ij(t)

)(
gj
(
uj(t− τj(t), x)

)
+ g̃j

(
uj(t− τj(t), x)

))]
, t 6= tk,

ui(tk+, .)− u(tk, .) = −(γik + γ̃ik)ui(tk, x),

(23)

where ãi, b̃i, c̃ij, w̃ij, f̃ j, g̃j, Ĩi, γ̃ik, i, j = 1, . . . , m, k = 1, 2, . . . are all continuous functions in their domains,
and represent the uncertain terms in the system (23) [54–57]. Note that, if all of these functions are
zeros, then we will recover the “nominal system” (2) [54].

In numerous applications, the activation function of a neural network model may involve
uncertain terms. Uncertain parameters also appeared in the connection coefficients as well as
in the external inputs, due to uncertainty in the environment, data measurement, etc. See,
for example, [5,7,21,56,57] and the references therein. Thus, it is essential to study the effect of uncertain
terms on the stability behavior of impulsive reaction-diffusion CGNNs.

With the next definition, we introduce the notion of robust exponential stability of a set with
respect to system (2).

Definition 4. The set M is said to be robustly uniformly globally exponentially stable with respect to system
(2) if for any functions ãi, b̃i, c̃ij, w̃ij, f̃ j, g̃j, Ĩi, i, j = 1, . . . , m, the set M is uniformly globally exponentially
stable with respect to system (23).

Introduce the following conditions:

Hypothesis 10 (H10). For ã+i = supχ∈R ãi(χ), i = 1, 2, . . . , m, we have

ã+i ∈ [ai − ai, ai − ai].

Hypothesis 11 (H11). The functions b̃i, i = 1, 2, . . . , m, are continuous and

bi(χ1) + b̃i(χ1)− (bi(χ2) + b̃i(χ2))

χ1 − χ2
≥ Bi
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for χ1, χ2 ∈ R, χ1 6= χ2.

Hypothesis 12 (H12). The functions c̃ij, Ĩi, w̃ij, i, j = 1, 2, . . . , m, are continuous on their domains, and

sup
t∈R

c̃ij(t) = c̃+ij , sup
t∈R

w̃ij(t) = w̃+
ij .

Hypothesis 13 (H13). There exist positive constants L̃i, M̃i, i = 1, 2, . . . , m, with

| f̃i(χ1)− f̃i(χ2)| ≤ L̃i|χ1 − χ2|,

|g̃i(χ1)− g̃i(χ2) ≤ M̃i|χ1 − χ2|

for all χ1, χ2 ∈ R, χ1 6= χ2, and f̃i(0) = g̃i(0) = 0.

Hypothesis 14 (H14). The unknown constants γ̃ik are bounded and γ̃ik ∈ [−1−γik, 1−γik], i = 1, 2, . . . , m.

Theorem 4. Assume that
1. Conditions H1–H14 hold.
2. The inequality

min
1≤i≤m

[
2
(
d̃i + aiBi

)
−ai

m

∑
j=1

(
(Lj + L̃j)(c+ij + c̃+ij ) + (Mj + M̃j)(w+

ij + w̃+
ij ) + (Li + L̃i)(c+ji + c̃+ji )

)]

> max
1≤i≤m

(
(Mi + M̃i)

m

∑
j=1

ajw+
ji

)
> 0

is satisfied.
Then, the set M = [−τ, ∞)×Ω× {Rm : u∗i ≤ ui ≤ u∗i , i = 1, 2, . . . , m} is robustly uniformly globally

exponentially stable with respect to the impulsive reaction-diffusion CGNN (2).

Proof. The proof of the uniform global exponential stability of the set M with respect to system (23)
for any values of the uncertain terms can be conducted similarly to the proof of Theorem 3 using
the assumptions H1–H14. Hence, it follows by Definition 4 that the set M = [−τ, ∞)×Ω× {Rm :
u∗i ≤ ui ≤ u∗i , i = 1, 2, . . . , m} is robustly uniformly globally exponentially stable with respect to the
impulsive reaction-diffusion CGNN (2).

5. Examples

In this section, the effectiveness of the proposed sufficient conditions is demonstrated through
two examples.
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Example 1. Consider an impulsive reaction-diffusion CGNN model (2), where Ω = {x ∈ R2 : |xq| < 1, q =

1, 2} given by 

∂ui(t, x)
∂t

=
2

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)
− ai(ui(t, x))

[
bi(ui(t, x))

−Ii(t, x)−
2

∑
j=1

cij(t) f j
(
uj(t, x)

)

−
2

∑
j=1

wij(t)gj
(
uj(t− τj(t), x)

)]
, t 6= tk, k = 1, 2, . . . ,

u(t+k , x)− u(tk, x) =

(
−2/5 0
0 −1/7

)
u(tk, x), k = 1, 2, . . . ,

ui(t, x) = 0, t ∈ [−τ, ∞), x ∈ ∂Ω,
ui(s, x) = ϕ0i(s, x), s ∈ [−τ, 0], x ∈ Ω,

(24)

where t > 0, 0 < t1 < t2 < · · · < tk < tk+1 < . . . , lim
k→∞

tk = ∞, I1 = I2 = 0, fi(ui) = gi(ui) =

1
2
(|ui + 1| − |ui − 1|), τ1(t) = τ2(t) = et/(1 + et), 0 ≤ τi(t) ≤ τ (τ = 1), ai(ui) = 1, b1(ui) = ui,

b2(ui) = 3ui, i = 1, 2,

(cij)2×2(t) =

(
c11(t) c12(t)
c21(t) c22(t)

)
=

(
0.6− 0.4 sin(t) 0.1− 0.4 cos(t)
0.2− 0.4 cos(t) 0.2− 0.3 sin(t)

)
,

(wij)2×2(t) =

(
w11(t) w12(t)
w21(t) w22(t)

)
=

(
0.3 sin(t) 0.4 cos(t)
0.4 cos(t) 0.6 sin(t)

)
,

(Dik)2×2 =

(
D11 D12

D21 D22

)
=

(
1 + 2 sin t 0
0 cos t

)
.

Clearly, we have that the assumptions H1–H9 are satisfied for ai = ai = 1, i = 1, 2, B1 = 1, B2 = 3,
L1 = L2 = M1 = M2 = 1 and

(dik)2×2 =

(
d11 d12

d21 d22

)
=

(
3 0
0 1

)
.

Conditions H1–H9 also guarantee the existence of a unique equilibrium point u∗ = (u∗1 , u∗2)
T of the

system (24) [31–35].
In addition, we have that condition 3 of Theorem 3 holds, and condition 2 of Theorem 3 is satisfied for

c1 = min
1≤i≤2

[
2
(
d̃i + aiBi

)
− ai

2

∑
j=1

(
Ljc+ij + Mjw+

ij + Lic+ji
)]

= 4.2

and

c2 = max
1≤i≤2

(
Mi

2

∑
j=1

ajw+
ji

)
= 1.

Therefore, by Theorem 3, we conclude that the set M = [−τ, ∞)×Ω× {R2 : ui ≤ u∗i , i = 1, 2, . . . , m}
is uniformly globally exponentially stable with respect to the impulsive reaction-diffusion CGNN (24).
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Example 2. Consider the uncertain reaction-diffusion CGNN model (28) with uncertain terms as follows:

∂ui(t, x)
∂t

=
2

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)

−
(
ai(ui(t, x)) + ãi(ui(t, x))

)[(
bi(ui(t, x)) + b̃i(ui(t, x))

)
−Ii(t, x)− Ĩi(t, x)

−
2

∑
j=1

(
cij(t) + c̃ij(t)

)(
f j
(
uj(t, x)

)
+ f̃ j

(
uj(t, x)

))

−
2

∑
j=1

(
wij(t) + w̃ij(t)

)(
gj
(
uj(t− τj(t), x)

)
+ g̃j

(
uj(t− τj(t), x)

))]
, t 6= tk,

u(t+k , x)− u(tk, x) =

(
−2/5 + γ̃1k 0
0 −1/7 + γ̃2k

)
u(tk, x),

(25)

where k = 1, 2, . . . , the continuous functions ãi, b̃i, c̃ij, w̃ij, f̃ j, g̃j, Ĩi and the constants γ̃ik, i, j = 2 are the
uncertain terms.

If all uncertain terms are bounded so that all conditions of Theorem 4 are satisfied and the unknown
constants γ̃ik are such that

γ̃1k ∈ [−7
5

,
3
5
], γ̃2k ∈ [−8

7
,

6
7
], k = 1, 2, . . . ,

then, according to Theorem 4, the set M = [−τ, ∞) ×Ω × {R2 : ui ≤ u∗i , i = 1, 2, . . . , m} is robustly
uniformly globally exponentially stable with respect to the impulsive reaction-diffusion CGNN (25).

6. Conclusions

In this paper, the general concept of stability of sets for impulsive reaction-diffusion delayed
CGNNs is introduced. Sufficient conditions for uniform global asymptotic stability and uniform global
exponential stability with respect to sets are presented. The obtained results are useful in the cases when
it is essential to consider attractors other than equilibrium points. A robust stability of sets analysis is
also derived for the impulsive reaction-diffusion CGNNs under consideration. Finally, two examples
are given to illustrate the effectiveness of the developed approach. The generalized set-stability concept
can be extended to study other types of impulsive control neural network delayed systems.
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