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ABSTRACT
Big data and data scientific applications in the modern agriculture
are rapidly evolving as the data technology advances and more
computational power becomes available. The adoption of big data
has enabled farmers and producers to optimize their agricultural
activities sustainably with cutting-edge technologies, resulting in
eco-friendly and efficient farming. Wireless sensor networks and
machine learning have had a direct impact on smart and precision
agriculture, with deep learning techniques applied to data collected
via sensor nodes. Additionally, internet of things, drones, and ro-
botics are being incorporated into farming techniques. Digital data
handling has amplified the information wave, and information and
communication technology have been used to deliver benefits to
both farmers and consumers. This work highlights the technologi-
cal implications and challenges that arise in data-driven agricultural
practices as well as the research problems that need to be solved.
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1 INTRODUCTION
The agricultural industry has experienced tremendous changes
over the years. Traditional farming practices have been replaced by
smart farming, which uses technology to increase food production
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more effectively and efficiently. Along with advanced transporta-
tion technology, innovations in communication tools and software
engineering started to be incorporated into food and agricultural
industries. This new kind of farming, known as agriculture 4.0, has
been revolutionizing the food and agricultural sectors, addressing
some of the problems from the earlier generations. Historically,
agriculture 1.0 and 2.0 required traditional and manual labors of
human and domesticated animals. Since agriculture 3.0, farming
practices and its capacity started to improve by utilizing technol-
ogy. In agriculture 4.0, technology is completely changing how
we do agriculture. For instance, researchers are working on auto-
matic disease diagnosis using computer vision although it is still
challenging and error-prone due to various non-infectious and
infectious pathogenic agents that can cause similar symptoms in
crops. Researchers showed how swarm intelligence can be used to
deal with some of the challenges involved in smart farming. Others
also looked at how blockchain technology can be used to create
transparent smart contracts and to improve the food supply chain.
Big data analytics, data science, machine learning (ML) and artificial
intelligence (AI) are also being used to develop precision agriculture
and other agricultural applications [25]. This work reviews and
investigates the latest developments and future directions of smart
farming and agrotech. These include big data analytics, data science,
ML and AI, deep learning (based on neural networks), internet-of-
things (IoT), block chain technology, robotics, autonomous systems,
and swarm intelligence; see Figure 1 for an illustrative summary.

2 PRECISION AGRICULTURE & SMART
FARMING SYSTEMS

The modern agriculture is undergoing a transformation by collect-
ing and analyzing data to inform smarter farming decisions. Combi-
nation of different computational techniques, such as ML and deep
learning (DL) in conjunction with sensor networks, are making the
agricultural system smarter andmore efficient [19, 32, 34]. Precision
agriculture has also brought a heightened degree of competition
for input supply firms. In this section, we highlight many of the
technological and data scientific advancements that made precision
agriculture and smart farming systems a reality.

2.1 Big Data
Big data is a research field of analyzing large amounts of data,
characterized by volume, velocity, variety, veracity, etc. Precision
agriculture emphasizes the collection and utilization of data to make
decisions for agricultural value creations. There are many differ-
ent sources of big data, including ground sensors, historical data
collected by governmental and non-governmental agencies, web
services, and online repositories. Over the past decade, agricultural
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Figure 1: The current state of the art for connected, data-driven precision agriculture and smart farming systems

production has seen a lot of growth due to the increasing use of data
from sensors and IoT devices [14, 24]. This data is used to analyze
food production patterns, processing, and supply chains. Big data
helps producers know what crops to plant and how to produce
the most food possible. Sawant et al. [30] designed platforms that
connect supply chain actors with quality products and processes.
Karmas et al. [17] studied different methods of high-throughput
to provide detailed information about interactions between plants
and the environment. The study by Gutiérrez et al. [13] looked
at self-operating and data-intensive production systems such as
indoor LED-illuminated aeroponics and greenhouses. Love et al.
[21] demonstrated how these systems can be used to control pests.

2.2 Machine Learning
ML is a technique to help understand the patterns in data. Whether
descriptive, predictive or even prescriptive, it is important to choose
the right data when constructing ML models, and doing so requires
a lot of thought. In supervised learning, labeled data is used to
train a model. There are numerous algorithms that can be used for
classification such as multiple logistic regression, support vector
machines (SVM), decision trees, random forests, naive Bayes, and
artificial neural networks (ANN). On the other hand, unsupervised
learning algorithms are used to identify patterns in data without
being given any labels for classifications. These algorithms can be
used to identify trends or relationships in data sets through group-
ing and clustering. Semi-supervised ML models are trained using

both labeled and unlabeled data. In order to handle the unlabeled
data, some relationships need to be established between the data
distributions. Reinforcement learning (RL) is a type of ML used to
decide the best course of action given a situation or environment
by rewarding desired behaviors and/or punishing undesired ones.
It deals with the sequential decision-making problem in uncertain
and unknown environments through learning by practice. There
are two different models used for this purpose: Markov decision
process (MDP) and Q-learning. The RL approach uses hit and trial
methods to help the agents learn within the environment.

As agricultural practices have become more complex, smart
farming is the cutting-edge technology that can help farmers deal
with the challenges of today. However, fast and optimal decision-
making process is still a challenge at the regional and national levels
[7]. Additionally, an accurate prediction model is required to decide
the type and timing of crops. Elavarasan et al. [2] studied how
atmospheric conditions affect crop production using ML models,
and how ML can be used to manage soil, livestock, and predict
when crops are ready to be harvested. Li et al. [2] performed a
systematic review of different methods for determining when fruit
is ripe and how best to harvest it. Tewari et al. [37] used computer
vision to figure out how to spray pesticides at different rates, and
Gao [10] developed a ML-based recognition system for spraying
areas from unmanned aerial vehicles (UAV).
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2.3 Deep Learning
Currently, there is a lot of excitement in the field of DL as the
techniques are capable of dealing with complicated problems, help-
ing to improve modern farming practices. Based on ANN, there
are various architectures of DL. The convolutional neural network
(CNN) is a type of deep feed-forward ANN that helps to simplify a
network by reducing its dimensions. Its success has been widely
known in computer vision. The recurrent neural network (RNN) is
a type of ANN that can remember previous information. It is used
to analyze time-series data or longitudinally collected data such as
plant phenotyping, leaf area index estimation, soil moisture content
prediction, and event date estimation. A deep belief network (DBN)
is a model that mixes direct and indirect connections between the
layers, meaning that the relationships between different layers are
not always clear. It was recently applied to smart farming appli-
cations such as forecasting of crop prices, product characteristics,
and facial feature extraction [22]. The deep reinforcement learning
(DRN) is an evolutionary model that can make systems more self-
reliant and intelligent in agricultural fields. Just like RL, the agents
are rewarded based on their performance, and the model continues
to attempt to improve by making changes to the course of itera-
tions. The deep recurrent Q network uses a linear and non-linear
mapping among crop yield, raw data of soil, and groundwater pa-
rameters. It differs from other supervised learning algorithms used
in yield prediction [11]. In recent years, DL has been used to process
images and data in diverse ways. Yang and Xu [42] surveyed DL
technologies in the horticultural field and witnessed their increased
applications. DL has been especially helpful in smart farming areas
such as quality assessments, stress phenotyping, growth monitor-
ing, yield estimation, variety recognition, plant disease prediction,
and crop yield prediction [9, 16]. For example, Trong et al. [38]
introduced a new way to classify different types of weeds by using
various DL models.

2.4 GAN
Generative adversarial network (GAN) is a type of DL technology
that works by training two different networks to compete against
each other: generator and discriminator. The generator is taught to
do things like recognize patterns and create new ones like images
while the discriminator tells the generator whether the created
image is real or fake. In this way, they can learn to make better de-
cisions even when they do not have a lot of training data. There are
different GAN models applied in the agricultural field. For tomato
disease identification, Abbas et al. [1] used the conditional GAN to
generate a number of synthetic disease images, and then, DenseNet
121 classifier was trained to classify images. Zhao et al. [44] devel-
oped a two-stage (double) GAN to classify tomato crop leaf diseases.
Zhang et al. [43] developed a method to identify diseases in cucum-
ber leaves in real time by using the activation reconstruction GAN
(ARGAN) and the dilated inception CNN (DICNN). Liu et al. [20]
proposed a method of identifying grape crops, using a leafGAN
model. Arsenovic et al. [3] developed a method for detecting plant
diseases in the field, using a style GAN. Förster et al. [8] presented
a cycle consistent GAN to track the dynamic behavior of leaf and
disease on a daily basis. Wang et al. [39] developed an auxiliary
classifier GAN (AC-GAN) for early detection of viruses in crop

disease. Wen et al. [40] introduced the enhanced super resolution
GAN (ESRGAN) with a transfer learning approach to improve the
accuracy of smart farming applications. Bi and Hu [4] introduced
Wasserstein GAN with gradient penalty and label smoothing reg-
ularization to overcome overfitting problem with limited training
datasets.

2.5 Internet-of-Things
The internet-of-things (IoT) technology connects different things
together so that information about them can be shared from all
over the world via the internet. The use of IoT and DL in wireless
sensor networks (WSN) is bringing the next level of agriculture.
Whitmore et al. [41] studied the identification techniques, process-
ing and networking capabilities of IoT devices. Research in this
area has continued to grow, and IoT has been helping agricultural
development more responsive to changing weather patterns. It has
used information and communication technology (ICT) to help
farmers get the most out of their land and crops, ensuring they are
as productive and healthy as possible. The IoT ensures sustainabil-
ity, profitability, and safeguards for the environment by enabling
site-specific agricultural practices. For instance, the smart irriga-
tion system uses IoT to calculate the water needs of urban areas.
It notifies when to irrigate crops based on the moisture levels in
soil and temperature. This system collects data about humidity,
wind direction and temperature within the test bed. Bo and Wang
[5] also discussed the feasibility and potential of combining cloud
computing and IoT for applications in agriculture and forestry.

2.6 Cloud-Fog-Edge Computing
Cloud computing virtually pulls many similar and/or different com-
puter resources that may be closely or distantly located from each
other, in order to provide on-demand computing services over the
internet. Three different service models of cloud computing are
software as a service (SaaS), infrastructure as a service (IaaS), and
platform as service (PaaS). Fog nodes have the ability to commu-
nicate with other fog nodes and clouds as well as the computing
power and storage to process data efficiently. Edge computing is a
growing area of technology that enables efficient data processing
without a need to upload data to the central node. During the past
decades, cloud-fog-edge (CFE) computing have played an important
role in transforming the agricultural sector. This allowed to store
data remotely, capture data from different sources, automate land
records, and make predictions about the weather to support more
effective agricultural management and improve the crop produc-
tion. Alonso et al. [2] developed a new edge computing architecture
for monitoring the activities of livestock on dairy farms. This sys-
tem can improve the dairy industry by making the activities of the
livestock more transparent, efficient, and environmentally friendly.

2.7 Cyber-Physical Systems
During the past decades, cyber-physical systems (CPS) have become
very good at interacting with the physical world by extending the
capabilities of physical objects. This is a major step forward as com-
puter and physical elements are becoming more connected to work
together more easily and be more useful. This makes computers
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more adaptable and efficient, and makes physical objects more reli-
able and safer. CPS provides a way to gather information about the
environment, like soil, humidity, and temperature, in order to help
decision-making about what crops to plant on which land. AI on
CPS can help predict the market demand on different types of pest
control solutions. Right now, we use different methods to control
pests (e.g., fences, traps, and rodenticides) but a smart pest control
solution was also devised by recognizing the rats’ behaviors and
activities. CPS helps us understand how crops are growing, what
decisions need to be made about the fertilizer use, and how to best
use water to accelerate the plant growth. CPS can keep track of the
soil moisture levels in the field as well as the information about the
trees’ water requirements. Song et al. [36] conducted a systematic
review of several agriculture CPS such as weather monitoring for
frost prevention, soil moisture monitoring for scheduling irrigation,
and monitoring the soil contents for effective use of fertilizers. Sko-
belev et al. [35] applied the revolutionary concept of digital twins
for plant growth analysis and effective scheduling of resources.

2.8 Blockchain Technology
The blockchain technology is a distributed ledger system that helps
keep track of transactions in a secure, transparent, and immutable
manner without a middleman like a bank. It can be used to create a
decentralized database that is tamper-proof. Every computer node
on the blockchain network must verify every transaction, which en-
sures that everyone involved in a transaction is accountable. There
are many different types of consensus algorithms to check the accu-
racy of information that goes in and out, and the cryptocurrencies
like Bitcoin and Ethereum are used to reward these validators. The
technology is already being used in different areas like healthcare
facilities, financial services, supply chain management, and digital
media transfer. The technology can be also useful for small and
medium-sized farms because it supports a secure and trackable food
supply chain. Smart contracts are essential for keeping track of the
transactions in this system. The digital transformation is made pos-
sible with the use of blockchain-based smart contract technologies.
In addition, cooperatives can be formed to improve competitiveness
in developing countries, allowing farmers to produce crops with a
larger value compared to their original crops. This will prevent dis-
putes and conflicts among farmers, allowing cooperatives to work
smoothly. This technology can also help to insure crops against
unpredictable weather and natural disasters. Caro et al. [6] pro-
posed an AgriBlockIoT traceability system for decentralized smart
farming. A generic framework leveraging the small contracts for
soybean traceability was constructed by Salah et al. [29]. Utilizing
blockchain technologies, Jamil et al. [15] developed and optimized
a smart livestock farming system.

2.9 Robotics & Autonomous Systems
Over the last decade, there has been a significant progress in im-
proving agricultural productivity by using UAV, unmanned aircraft
system (UAS) or drones, robotics and autonomous systems [28].
Different technologies have been developed to increase the effec-
tiveness and reliability of machines, which has replaced certain
human labors. These technologies are being used in different pro-
duction patterns of smart farming such as plant factories, 3D food

printing, aerial spraying, biodiverse farming, and autonomous farm-
ing. UAV/UAS in particular has been used for plant counts, plant
height, field uniformity, soil water levels, soil temperature and to-
pography/3D mapping. Sharma [33] designed a framework to help
reduce the waste in the food supply chain while Ghafar et al. [12]
designed a robot that can spray fertilizers and insecticides more
efficiently, saving costs and eliminating safety risks. Polic et al. [26]
created a soft robot system to do indoor organic farming more
effectively, and Montoya-Cavero et al. [23] studied the computer
vision systems for harvesting robots.

2.10 Swarm Intelligence
Swarm intelligence focuses on the collective behavior of a decen-
tralized or self-organized system. By working together as a group,
the problems can be solved more reliably, securely, and efficiently
than working alone. This is seen among social animals like birds,
ants, and fish, but it can also be used in more complex situations,
like smart and precision farming. The technological revolution of
swarm intelligence has shown that it can be very useful in different
areas of agriculture, such as annual crop planning, organization of
agricultural products logistics, drones for smart farming, food op-
erations, and plant leaf disease detection. Alternative solutions can
be more cost-effective than the traditional methods, and can save
time as well. Sethanan and Neungmatcha [31] proposed a particle
swarm optimization-based routing solution for the sugarcane har-
vester robot while Karouani and Elgarej [18] proposed an efficient
monitoring system that can optimize milk run logistics to reduce
transportation costs.

3 CHALLENGES & OPPORTUNITIES
Big data and analytics in agriculture have been expanding rapidly
as more computational power becomes available, resulting in more
use cases, applications, and practices. Actual solutions to real-life
problems are scarce though. Here we discuss about the implications
and challenges that arise in data-driven agricultural practices as
well as the research problems that need to be solved for the future
of precision agriculture and smart farming systems.

3.1 Open Data & Open Access
The biggest challenge when training ML, DL, and AI models is
to acquire large datasets. Data-driven models are data hungry by
nature. This requires developing large public datasets containing
various structured and unstructured data types such as texts, im-
ages, audios and videos, collected spatially and temporally. Data
augmentation techniques, such as GAN and data wrapping, can
be used to train the model more effectively but a more systematic
solution to this issue is sought. For instance, GODAN (Global Open
Data for Agriculture and Nutrition) promotes global efforts for open
data and open access of agriculture and nutrition data. We need
to encourage collaboration and cooperation among existing open
data efforts, and bring stakeholders together to solve long-standing
global problems in this regard.

3.2 Data Security & Privacy
Smart farming systems collect a lot of data from different intercon-
nected sensors and devices. Data privacy is an important issue to
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Figure 2: The challenges and opportunities for the future of data-driven precision agriculture and smart farming systems

the data owners, including farmers and producers in order to keep
their agricultural operations safe, secure, and resilient. As inno-
vations require constant communications, it is necessary to allow
various stakeholders to share and access data while keeping them
secure. For running businesses with different technologies and busi-
ness models, data must be kept accurate and confidential, and it
must also be authenticated to ensure that it is from the trustworthy
source. This is especially difficult when it comes to agriculture be-
cause capital investments can often delay the growth of the smart
farming industry. Moreover, a wide range of IoT devices used in
the agricultural CPS could be vulnerable to cyberattacks and data
breaches. As the environmental conditions can change, connected
devices can also move around and affect security. To protect these
systems, we need a way to store, process, and analyze data securely
and reliably.

3.3 Adaptive & Novel Learning Models
A variety of technologies have been developed to improve agricul-
tural productivity but there are still some areas where we do not
have very good predictions as the agricultural environment changes
constantly. Some of the factors that can affect the prediction accu-
racy include soil quality, rainfall, weather condition, etc. This calls
for developing adaptive and self-learning models. Also, some DL
models are fast and accurate while others are more accurate but
take longer to compute. How to optimize the architecture of ANN is
still a relatively unexplored research area. One way to tackle this is
by using a hit and trail method, used in CNN. For smart agricultural
systems, GAN has been used to solve diverse problems, including
image enhancement, crop identification, early virus detection, plant
disease detection, and salt tolerance [34]. However, it is a challeng-
ing task to select the optimal GAN model for a particular crop. To
improve disease detection, researchers need to develop innovative

algorithms to generate clearer images. This will help to improve
the prediction accuracy while enhancing the model parsimony.

3.4 Hardware & Software Resources
For running effective ML, DL, and AI-based models, substantial in-
vestments must be made to install andmaintain necessary hardware
and software systems with adequate computational power such as
high-performance computing (HPC) systems. For instance, IoT is
supported by WSN but there are not enough sensors available to
make smart farms work well [27]. Thus, it is still difficult to send ac-
curate data from farms using wired or wireless networks. There are
numerous IoT devices and several different IoT platforms to choose
from, including ThingWorx, Amazon Web Services, and Sales force
IoT Cloud. These platforms will make it easier for farmers to do
business by providing them with useful data but the resources to
integrate and compute a large amount of data are not sufficient to
handle the recent growth in its usage. Also, edge devices are used
to collect a large amount of data continuously, which is then sent
to a cloud server. To manage the costs of smart agriculture, it is
important to find ways to minimize the hardware costs of these
devices. Poor internet connectivity in rural farmlands can also im-
pose several challenges such as delays in responses, lost data, and
slow data uploading speeds. It is imperative to invest and develop
necessary infrastructures to support and advance the smart farming
systems.

3.5 Communication & Training
When it comes to adopting new technology, farmers are not as ad-
vanced as researchers while researchers do not know all of the chal-
lenges that farmers are facing in the fields. Linking researchers with
agricultural experts and producers together is the best way to learn
about these challenges and to find ways to overcome them. Thus,
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constant and effective communications between farmers/producers
and researchers are critical to advance the precision agriculture
to the next level. Also, to help farmers understand and realize the
benefits of using AI and robots in agricultural production systems,
we need to provide technical training and educational support to
farmers so that they can use the technology more effectively to
increase the farm productivity.

3.6 Environmental Challenges
Extensive urbanization is continually threatening and reducing the
agricultural land mass. Unpredictable environmental conditions
due to the climate changes, etc. are also making it difficult to keep
accurate track of soil nutrients, humidity, and temperature, all of
which can affect plant growth and health, eventually the overall
farm production levels. For running successful smart farms, we
need to make the smart farming system more resilient and agile
against these unexpected environmental changes or shocks. This
requires systemic studies and thorough research in the uncertainty
quantification of the environmental parameters.

4 CONCLUSION
Agricultural operation is changing, and new technology is helping
to improve farming practices. Nevertheless, a lack of awareness
about these advances could prevent the implementation of more
sophisticated automation systems. There are a few studies that
have looked at the impact of technology on agriculture, and they
all concluded that this is a growing field with potential benefits for
both farmers/producers and consumers. There are many different
types of technology that could be used to help farmers but none of
the surveys was able to provide a complete list of all the possible
use cases of these technologies. For food security and sustainabil-
ity, it is important to study this area in more detail to figure out
the challenges, opportunities, and future directions of this smart
agrotech; see Figure 2 for an illustrative summary.
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