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Abstract: A novel variant of NSN P systems, called numerical spiking neural P systems with a
variable consumption strategy (NSNVC P systems), is proposed. Like the spiking rules consuming
spikes in spiking neural P systems, NSNVC P systems introduce a variable consumption strategy
by modifying the form of the production functions used in NSN P systems. Similar to the delay
feature of the spiking rules, NSNVC P systems introduce a postponement feature into the production
functions. The execution of the production functions in NSNVC P systems is controlled by two,
i.e., polarization and threshold, conditions. Multiple synaptic channels are used to transmit the
charges and the production values in NSNVC P systems. The proposed NSNVC P systems are
a type of distributed parallel computing models with a directed graphical structure. The Turing
universality of the proposed NSNVC P systems is proved as number generating/accepting devices.
Detailed descriptions are provided for NSNVC P systems as number generating/accepting devices. In
addition, a universal NSNVC P system with 66 neurons is constructed as a function computing device.

Keywords: membrane computing; numerical spiking neural P systems; variable consumption
strategy; postponement features; Turing universality

1. Introduction

Membrane computing is a class of distributed parallel-computing models introduced
by Păun [1], which is inspired by the structure and function of living cells and their
cooperation in tissues, organs, and biological neural networks. These computing models
are called P systems or membrane systems [2]. There are three main types of P systems, i.e.,
cell-like P systems, tissue-like P systems and neural-like P systems. Specifically, the cell-like
P systems were proposed based on the hierarchical structure of biological membranes in
cells, the tissue-like P systems were abstracted from the communication and cooperation
of cells in biological tissues, and the neural-like P systems were inspired by the facts that
neurons communicate with each other by firing short electrical impulses or spikes.

Spiking neural P (SN P) systems, proposed by Ionescu et al. [3], are a main form of
neural-like P systems. A SN P system consists of a network of neurons connected together
in a directed graph and can be regarded as the third generation of neural network models.
In the past few years, many variants of SN P systems have been proposed and studied as
being inspired by various biological activities and/or by combining methods and ideas
in computer science and mathematics. SN P systems with astrocytes, having excitatory
and inhibitory influences on synapses, were discussed by Păun [4] and Pan et al. [5]. SN P
systems with anti-spikes were constructed by Pan and Păun [6] with anti-spikes abstracted
from inhibitory impulses that participate in spiking and forgetting rules and annihilate
spikes when they are in the same neuron. Motivated by the biological phenomenon
that each neuron has a positive or negative charge, SN P systems with polarizations
are established by Wu et al. [7]. SN P systems with rules on synapses were proposed

Processes 2021, 9, 549. https://doi.org/10.3390/pr9030549 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-4976-9227
https://orcid.org/0000-0001-8503-9761
https://doi.org/10.3390/pr9030549
https://doi.org/10.3390/pr9030549
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9030549
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9030549?type=check_update&version=2


Processes 2021, 9, 549 2 of 21

by Song et al. [8], which is different from most P systems where the rules are located
in neurons. Considering the biological fact that a synapse has one or more chemical
channels, Peng et al. [9] and Song et al. [10] studied SN P systems with multiple channels.
Wang et al. [11] and Zeng et al. [12] proposed SN P systems with weights and thresholds,
respectively. Recently, coupled neural P systems [13] and dynamic threshold neural P
systems [14] have also been proposed one after another. Most SN P systems are synchronous
under the control of a global clock, but many SN P systems are asynchronous [15–17].
Many variants of SN P systems have been proven to be Turing universal as number
generating/accepting devices [18–20], language generating devices [21,22], and function
computing devices [23–25].

In SN P systems with polarizations (PSN P systems) [7], the polarization associated
with neurons can also control the firing of the spiking rules. Hence, the regular expressions
are no longer the only conditions controlling the firing of the spiking rules. Three types of
polarizations, i.e., positive, neutral, and negative, corresponding to three kinds of electrical
charges, i.e., +, 0 and −, respectively, exist in PSN P systems. Specifically, each neuron
contains an initial charge and each spiking rule also has a charge. A rule can apply only
when the charge of the rule is the same as the charge of the neuron where the rule is located.

Different from the above P systems, numerical P (NP) systems are another special type
of P systems [26], having a similar architecture to those of many cell-like P systems. NP
systems are composed of hierarchically arranged membranes and compartments formed
by adjacent membranes. Numerical variables are configured in the compartment instead
of being treated as multisets of chemical objects as used in most P systems. The variables
evolve through programs consisting of production functions and repartition protocols,
which is fundamentally different from most P systems that use multiset rewriting rules
to evolve. In order to more effectively control the application of the programs, many
variants of NP systems, such as enzymatic NP systems [27], NP systems with production
thresholds [28], and NP systems with Boolean conditions [29] have been proposed.

These biologically inspired P systems have both advantages and disadvantages for
solving real-world problems. Most P systems are distributed parallel computing models,
in which each neuron can act as an independent processor, and neurons communicate
through the spikes represented by unique symbols. The evolution rules in the P systems
are usually applied non-deterministically and in maximally parallel, i.e., the order in which
the rules are applied is random and all possible rules must be performed in each step of
the computation. Therefore, the P systems have the characteristics of simple representation
of knowledge, non-determinism, and parallelism. These advantages make them very
attractive for solving real-world problems such as image processing [30–32], robots [33,34],
fault detection [35–37] and data clustering [38–40]. Under the control of a global clock, the
application of rules in the P systems is synchronized. However, from a computational point
of view, the synchronization of the process leads to higher costs. SN P systems and their
variants encode information through spikes in neurons and neurons can only fire when the
number of spikes reaches a certain value, which makes these systems discrete computing
models. However, practical applications involve numerical representation of information
and require precise and quantitative modeling of data. Therefore, it is difficult for these
systems to solve these practical problems. In order to overcome this difficulty, Wu et al. [41]
proposed numerical spiking neural P (NSN P) systems by introducing numerical variables
and production functions used in NP systems into SN P systems. In this way, NSN P
systems are equipped with numerical capabilities, making them more capable of solving
real-world problems.

A novel variant of NSN P systems, called numerical spiking neural P systems with a
variable consumption strategy (NSNVC P systems), is proposed in this study. The Turing
universality of NSNVC P systems is investigated as number generating/accepting devices.
Moreover, a universal NSNVC P system with 66 neurons is also constructed as a function
computing device. NSN P systems use continuous production functions to replace the
usual spiking rules. After the execution of a production function, the values of the variables
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involved in the production function will all return to 0 in NSN P systems. The variable
resetting may cut down the controlling ability and the operating efficiency of NSN P
systems. In addition, NSN P systems lose the firing feature of SN P systems and the real
biological systems. Hence, it is necessary and feasible for NSNVC P systems to make
improvements. In order to regain the firing feature, each production function is assigned a
threshold in NSNVC P systems. Considering that polarizations can control the firing of
spiking rules, NSNVC P systems use polarizations and threshold to simultaneously control
the execution of the production functions. As in NSN P systems, NSNVC P systems also
use multiple synaptic channels to transmit the charges and production values to other
neurons.

Compared with NSN P systems, the improvements in NSNVC P systems are as follows.

1. By modifying the form of the production functions, NSNVC P systems adopt a new
variable consumption strategy, in which the values of the variables involved will
have a prescribed consumption rate without all being set to 0 after a production
function execution.

2. In addition to assigning a threshold to each production function to control the firing
of the neurons, polarizations of the neurons, where the production functions are
located, are also used to control production function executions in NSNVC P systems.
Therefore, both the polarization and the threshold can control the execution of a
production function.

3. The proposed NSNVC P systems also introduce postponement features and multiple
synaptic channels to reduce the complexity and the number of computing units, i.e.,
neurons, of the systems.

Some variants of P systems with their abbreviations and full names cited in this work
are listed in Table 1. Comparisons of performances of the proposed NSNVC P systems
with some of these variants of P systems listed in Table 1 are given in Section 5.

Table 1. Abbreviations and corresponding full names of some P systems cited in this work.

System Full Name

SNP systems [3] Spiking neural P systems
PSN P systems [7] Spiking neural P systems with polarizations

SNP-MC systems [17] Small universal asynchronous spiking neural P systems with multiple
channels

NP systems [37] Numerical P systems
NSN P systems [41] Numerical spiking neural P systems
SNP-IR systems [42] Spiking neural P systems with inhibitory rules

PASN P systems [43] Simplified and yet Turing universal spiking neural P systems with
polarizations optimized by anti-spikes

PSNRS P systems [44] Spiking neural P systems with polarizations and rules on synapses

The main motivation of this work is to design NSNVC P systems to improve the
computation performance of NSN P systems. In NSNVC P systems, a new variable con-
sumption strategy is proposed, which not only improves the computation mechanism,
but also increases the controlling ability of NSN P systems. In addition, the improvement
in the computation performance of NSN P systems will be investigated when both po-
larization and threshold are used to control the execution of the production functions.
The improvement in computation performance of NSN P systems is made by enhancing
their controlling ability, improving their operating efficiency, and reducing the number of
neurons used. As a result, the new variant of NSN P systems, i.e., the NSNVC P systems, is
expected to be more suitable for solving real-world problems.

The rest of this paper is organized as follows. A formal definition and an illustrative
example of NSNVC P systems are presented in Section 2. The proof of the universality of
NSNVC P systems as number accepting/generating devices is given in Section 3. Section 4
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investigates the universality of NSNVC P systems as function computing devices. Section 5
draws conclusions and outlines future research directions.

2. NSNVC P Systems

A formal definition of the proposed NSNVC P systems is presented and notations
used in NSNVC P systems are defined in this section. An example is then given to facilitate
the understanding of the proposed NSNVC P systems. The set of natural numbers, the set
of positive integers, and the set of integers are represented by N, N+ and Z, respectively.

2.1. The Definition of NSNVC P Systems

A NSNVC P system composed of m neurons is represented by the tuple
Π = (L, σ1, σ2, . . . , σm, syn, in, out), where:

1. L ⊆ N+ represents the set of channel labels.
2. σ1, σ2, . . . , σm represents m neurons with the form σi = (αi, Li, Vari, Pr fi, Vari(0)), for

1 ≤ i ≤ m. The specifics of a neuron are given below.

(a) αi ∈ {+, 0,−} refers to the initial charge of neuron σi, where +, 0 and −
indicate the positive, neutral and negative polarizations, respectively.

(b) Li ⊆ L is a finite set of channel labels of neuron σi, indicating its synaptic
channels. A synaptic channel of neuron σi may involve one or more synapses
connecting neuron σi to other neurons and a synapse may be involved in a
number of synaptic channels.

(c) Vari =
{

xq,i
∣∣1 ≤ q ≤ ki

}
is the set of variables in neuron σi.

(d) Vari(0) =
{

xq,i(0)
∣∣xq,i(0) ∈ Z, 1 ≤ q ≤ ki

}
is the set of initial values of the

variables in neuron σi.
(e) Pr fi represents a finite set of production functions associated with neuron

σi. The form of a production function is α/ fh,i(xl,i, . . . , xki ,i)|
Ch
Th

; β; d; (l), where
α, β ∈ {+, 0,−}; l is the channel label indicating the synaptic channel of
neuron σi associated with the function; 1 ≤ h ≤ |Pr fi| is used to distinguish
the production functions contained in neuron σi; Ch ∈ N is the consumption
rate of the variables when the production function fh,i. executes; Th ∈ N+

refers to the threshold at which the production function can execute; and d ≥ 0
indicates the postponement future of the production function. If d = 0, the
form of production function is simplified to α/ fh,i(xl,i, . . . , xki ,i)|

Ch
Th

; β; (l).

3. syn = {(i, j, l)} ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} × L with i 6= j is the set of synapses
among the m neurons with their channel labels, where (i, j, l) ∈ syn means that
neuron σi connects to neuron σj via synaptic channel l. If a synapse connects from
neuron σi to neuron σj, neuron σi is called a presynaptic neuron of neuron σj and
neuron σj is called a postsynaptic neuron of neuron σi.

4. in indicates the input neuron.
5. out indicates the output neuron.

Numerical variables in NSNVC P systems are represented by x with subscripts. Specif-
ically, the first subscript of a variable indicates the order of the variable among all the
variables in the same neuron, and the second subscript is the label of the neuron. For
example, variable xq,i represents variable q in neuron σi. The value of variable xq,i at time t
is expressed as xq,i(t) for 1 ≤ q ≤ ki and 1 ≤ i ≤ m. Usually, the values of the variables are
real numbers. This work restricts the values of the variables to an interval of integers in
order to simplify the computation, although NSNVC P systems have the computational
capability of processing real umbers. The subscripts of the production functions are used in
the same ways as those of the numerical variables, e.g., production function fh,i represents
function h in neuron σi. In fact, production functions can be any mathematical functions.
However, NSNVC P systems are able to achieve the same capabilities as Turing machines
under the condition of only using linear functions.
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Two forms of, i.e., non-threshold fh,i(xl,i, . . . , xki ,i) and threshold fh,i(xl,i, . . . , xki ,i)
∣∣
Th

,
production functions exist in NSN P systems. When Th ≤ min(x1,i(t), . . . , xk,i(t)), the
threshold production function fh,i(xl,i, . . . , xki ,i)

∣∣
Th

can execute, i.e., the neuron where the

production function fh,i(xl,i, . . . , xki ,i)
∣∣
Th

is located can fire. However, the neuron where
the non-threshold production function fh,i(xl,i, . . . , xki ,i) is located lost the firing feature. In
addition, the values of all variables involved in the production function, whether threshold
or non-threshold, will be reset to 0 immediately after the function execution.

The execution of production functions in NSNVC P systems will be described below.
At time t, the execution of a production function α/ fh,i(xl,i, . . . , xki ,i)|

Ch
Th

; β; d; (l) in neuron
σi can be roughly divided into three, i.e., comparison, production and distribution, stages.

1. Comparison stage: Only when neuron σi contains just charge α and the current val-
ues of the variables x1,i(t), . . . , xki ,i(t) involved in the production function are all
equal to the threshold Th, i.e., x1,i(t) = · · · = xk,i(t) = Th, the production func-
tion α/ fh,i(xl,i, . . . , xki ,i)|

Ch
Th

; β; d; (l) can apply. Otherwise, the production function
cannot apply.

2. Production stage: If production function α/ fh,i(xl,i, . . . , xki ,i)|
Ch
Th

; β; d; (l) can be applied
at time t, then its production value prvh,i(t) = fh,i(xl,i, . . . , xki ,i) is calculated based
on the current values of the variables x1,i(t), . . . , xki ,i(t).

3. Distribution stage: The distribution of the production value prvh,i(t) and a charge β is
based on the repartition protocol, which is stated in the following. The production
value prvh,i(t) and the charge β are transmitted to all postsynaptic neurons σj of
neuron σi through synaptic channel l at time t + d. If d = 0, the transmission happens
immediately at time t. If d ≥ 1, then neuron σi is dormant, i.e., cannot fire nor receive
new production values, at time t, t + 1, . . . , t + d − 1. At time t + d, neuron σi
becomes active again and the transmission occurs. In particular, the value received by
neuron σj will be immediately passed to its variables, which will increase or decrease
the values of the variables.

Based on the variable consumption strategy, after the execution of production function
α/ fh,i(xl,i, . . . , xki ,i)|

Ch
Th

; β; d; (l), all variables involved will “consume” a value of Ch, while
the variables not involved will keep their current values. Moreover, the condition Ch ≤
min(x1,i(t), . . . , xk,i(t)) must be satisfied before the execution of the production function. If
neuron σi receives several production values at time t, prv(t) will be the sum of all these
production values. Then, the value of variable xq,i in neuron σi at time t + 1 is updated
according to (1) in the following:

xq,i(t + 1) =
{

prv(t) + xq,i(t)− Ch, if xq,i is involved in fh,i
prv(t) + xq,i(t), if xq,i is not involved in fh,i

(1)

At the same time, neuron σi also receives the charges delivered by all its presynaptic
neurons. The charge calculation rules are as follows:

• Multiple positive, neutral and negative charges will degenerate to a single charge of
the same kind.

• A positive charge plus a negative charge will produce a neutral charge.
• A positive or negative charge will not change after a neutral charge is added to it.

In NSNVC P systems, at most one production function can execute in a single neuron
at each time moment, and all neurons in system Π work in parallel. At a certain time
moment, when more than one production function can satisfy the condition to execute in
a neuron, one production function in the neuron will be chosen non-deterministically to
apply.

A configuration of system Π is represented by the polarizations of all neurons and the
current values of all the variables contained therein. At time t, the configuration of system
Π is represented by a vector Ct =

([
α1, x1,1(t), . . . , xki ,1(t)

]
, . . . ,

[
αm, x1,m(t), . . . , xki ,m(t)

])
,
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where αi ∈ {+, 0,−} indicates the charge of neuron σi, and xq,i(t) ∈ Z is the current value
of xq,i, for 1 ≤ q ≤ ki and 1 ≤ i ≤ m. Therefore, the initial configuration of the system is
C0 =

([
α1, x1,1(0), . . . , xki ,1(0)

]
, . . . ,

[
αm, x1,m(0), . . . , xki ,m(0)

])
.

A transition of system Π is defined as an update from one configuration to another,
i.e., Ct ⇒ Ct+1 This transition is realized by the system by applying production functions
in parallel. Starting from the initial configuration C0, a series of finite or infinite transitions
of system Π, i.e., C0 ⇒ C1 ⇒ · · · ⇒ Cs with s ∈ N, is called a system calculation. When
system Π progresses to a configuration where no production functions can apply, the
system halts and the calculation terminates.

A NSNVC P system Π can be used as a number generating device, also called a
number generator, and can generate a number n. In this case, the output neuron σout is
used to output the computation result. The number generated by system Π is related to the
moments when the output neuron σout fires. Specifically, if t1 and t2 are the first two time
moments when the output neuron emits a nonzero value to the environment, then the time
interval t2 − t1 is defined as the computation result, i.e., the number generated by system
Π. In this way, the entire system needs a global clock to pace the time for all neurons, and
system Π is assumed to start working at time t = 1. All computation results produced by
system Π are represented by N2(Π), where the subscript 2 represents the interval between
the first two time moments when the output neuron fires.

A NSNVC P system Π can also be used as a number accepting device, also called
a number acceptor. In this case, the input neuron σin is used to introduce numbers into
the system. The output neuron is removed from the system when it is used as a number
accepting device. The number n ∈ N+ introduced into the system is encoded by the time
interval between the first two time moments when the input neuron fires. When the system
computation stops, the number n is accepted by the system. The set of all numbers accepted
by system Π is represented by Nacc(Π).

The family of all sets of numbers generated/accepted by NSNVC P systems is repre-

sented by N
chp
η INSNP

(
polyλ(r)

)
, where η ∈ {2, acc}, chp indicates that the system uses at

most p charges, and polyλ(r) indicates that each production function is a polynomial with
a degree of at most λ ≥ 0 and with at most r ≥ 0 variables.

2.2. An Illustrative Example

The example system Πex shown in Figure 1 is used to clarify the components, the
definitions, and the functions of NSNVC P systems. System Πex consists of four neurons σ1,
σ2, σ3 and σout, represented by four rectangles and labeled with 1, 2, 3, and out, respectively.
Each neuron contains one or more production functions and a list, where the first item in
the list is the initial charge of the neuron, and the other items are the variables with the
initial values in parentheses. A neuron may contain multiple variables. The output neuron
σout is used to transmit calculation results to the environment. A synapse is represented
by an arrow connecting two neurons. A synaptic channel of a neuron is represented
by the channel label marked on one or more synapses connecting from the neuron to
other neurons.
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Figure 1. An example NSNVC P system Πex.

Apparently, the initial configuration of system Πex is
C0=([α1,x1,1(0)],[α2,x1,2(0),x2,2(0)],[α3,x1,3(0)],[α4,x1,4(0)])=([+,2],[0,1,1],[0,0],[+,1]). Since neuron σ1 contains
the initial charge + and the initial value of variable x1,1 is equal to the threshold 2, the
production function +/ f1,1 = x1,1 − 1|12;+; (1) can be enabled. At time t = 1, without a
postponement feature, i.e., d = 0, production function +/ f1,1 = x1,1 − 1|12;+; (1) executes
and neuron σ1 immediately transmits a value of 1 and a positive charge to neurons σ2 and σ3
via synaptic channel (1). According to the variable consumption strategy, the value of variable
x1,1 will decrease by 1 after production function +/ f1,1 = x1,1− 1|12;+; (1) executes. Similarly,
production function +/ f1,out = x1,out|11; 0; (1) in output neuron σout also meets the execution
condition at time t = 1, so that output neuron σout sends the first nonzero value of 1 to the
environment and the value of variable x1,out becomes 0. However, neurons σ2 and σ3 cannot
fire because their functions do not satisfy their execution conditions.

Due to the firing of neuron σ1, neurons σ2 and σ3 both receive a positive charge and the
values of variables x1,2, x2,2 and x3,1 all increase by 1. Therefore, the configuration of system
Πex at time t = 1 becomes C1 = ([+, 1], [+, 2, 2], [+, 1], [+, 0]). Accordingly, production
function +/ f1,2 = x1,2 + x2,2 − 3|12;+; (1) of neuron σ2 satisfies the execution condition
and neuron σ2 sends a value of 1 and a neutral charge to neurons σout and σ1 via synaptic
channel (1) at time t = 2. From the charge calculation rules, the transmission of neutral
charges does not have any effect on the polarization of the postsynaptic neurons. Therefore,
the polarizations of neurons σout and σ1 do not change but the values of variables x1,1 and
x1,out increase by 1.

The two production functions +/ f1,3 = −x1,3|11; 0; (1) and +/ f2,3 = −x1,3|11; 0; 1; (2)
of neuron σ3 also satisfy their execution conditions at time t = 2, but only one of them
will be selected non-deterministically for application. Assuming production function
+/ f1,3 = −x1,3|11; 0; (1) is selected, neuron σ3 sends a value of −1 and a neutral charge to
neuron σout via synaptic channel (1). Since neurons σ2 and σ3 send values of 1 and −1,
respectively, to neuron σout at the same time, the value of variable x1,out in neuron σout does
not change. Therefore, neuron σout will not fire. The configuration of system Πex at time
t = 2 becomes C2 = ([+, 2], [+, 1, 1], [+, 0], [+, 0]).

At time t = 3, only production function +/ f1,1 = x1,1 − 1|12;+; (1) in neuron σ1 meets
the execution condition, so that neuron σ1 sends a positive charge and a value of 1 to
neurons σ2 and σ3. As a result of this transmission, only the values of the variables change.
Thus, the configuration of system Πex at time t = 3 becomes
C3 = ([+, 1], [+, 2, 2], [+, 1], [+, 0]). Obviously, the configuration of system Πex at time
t = 3 is the same as that at time t = 1. If the production function +/ f1,3 = −x1,3|11; 0; (1) in
neuron σ3 continues to execute, system Πex will loop between these two configurations
indefinitely.
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Suppose production function +/ f2,3 = −x1,3|11; 0; 1; (2) in neuron σ3 is chosen to execute
at time t = 2t′ + 2 for t′ ∈ N. However, since production function +/ f2,3 = −x1,3|11; 0; 1; (2)
needs to postpone the execution for a time span of d = 1, it will execute at time t = 2t′ + 3.
Thus, the configuration of system Πex at time t = 2t′ + 2 becomes
C2t′+2 = ([+, 2], [+, 1, 1], [+, 1], [+, 1]). At time t = 2t′ + 3, neuron σout fires and sends the
second nonzero value to the environment. At the same time, production functions in neurons
σ1 and σ3 also satisfy their execution conditions. Therefore, neuron σ3 sends a neutral charge
and a value of−1 to neurons σ1, σ2 and σout via synaptic channel (2), and neuron σ1 transmits a
positive charge and a value of 1 to neurons σ2 and σ3 via synaptic channel (1). Thus, the config-
uration of system Πex at time t = 2t′ + 3 becomes C2t′+3 = ([+, 0], [+, 1, 1], [+, 1], [+,−1]).

At time t = 2t′ + 4, neuron σ3 faces two choices again, but neuron σout will not fire no
matter which production function is applied. The final configuration of system Πex becomes
C2t′+4 = ([+, 0], [+, 1, 1], [+, 0], [+,−2]) if production function +/ f1,3 = −x1,3|11; 0; (1) is
selected, or becomes C2t′+5 = ([+,−1], [+, 0, 0], [+, 0], [+,−2]) if production function
+/ f2,3 = −x1,3|11; 0; 1; (2) is selected.

Figure 2 shows the configuration dynamics of system Πex. Each configuration in turn
involves variables in neurons σ1, σ2, σ3 and σout. The number generated by system Πex is
the time interval between the first two time moments when the output neuron σout sends
non-zero values to the environment, i.e., (2t′ + 3) − 1 = 2t′ + 2, with t′ ∈ N. In other
words, system Πex can generate even numbers other than 0. Hence, system Πex can be
used as a number generating device.
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Figure 2. Configuration dynamics of system Πex.

3. Turing Universality of NSNVC P Systems as Number Generating/Accepting Devices

The focus of this section is on the computation power of NSNVC P systems as number
generating/accepting devices. Specifically, the Turing universality of NSNVC P systems is
proved as number generators and number acceptors by simulating register machines, i.e.,
NSNVC P systems can generate/accept all recursively enumerable sets of numbers. The
family of all recursively enumerable sets of numbers is represented by NRE.

A register machine is usually represented as a five-tuple M = (m, H, l0, lh, I), where:

1. m is the number of registers.
2. H represents a limited set of instruction labels.
3. l0, lh ∈ H correspond to the START and HALT instruction labels, respectively.
4. I is a set of labeled instructions. The instructions in I have the following three forms:

(a) ADD instructions li : (ADD(r), lj, lk), whose function is to add 1 to the value
in register r, and move non-deterministically to one of the instructions with
labels lj and lk;
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(b) SUB instructions li : (SUB(r), lj, lk), whose function is to subtract 1 from the
value of register r, and then go to the instruction marked by lj if the number
stored in r is nonzero, or go to the instruction marked by lk otherwise;

(c) The HALT instruction lh : HALT, whose function is to terminate the operation
of the register machine.

3.1. NSNVC P Systems as Number Generating Devices

The register machine M can generate a set of numbers N(M) in the generating mode.
When all the registers are empty, machine M continuously executes a series of instructions
starting from the initial instruction l0. When M reaches the HALT instruction, the number
stored in the first register is considered to be the number generated by M. In addition, it is
well known that register machines can characterize the NRE family.

Theorem 1. Nch2
2 NSNVC P

(
poly1(1)

)
= NRE.

Proof. Based on the characterization of NRE, the proof of the inclusion
NRE ⊆ Nch2

2 NSNVC P
(

poly1(1)
)

can be obtained by simulating nondeterministic register
machines running in the generating mode, while the converse inclusion is achieved by the
Turing-Church thesis [41]. �

A NSNVC P system Π1 is constructed to simulate the register machine M. Generally,
register 1 is used as an output register, and the number that it stores is never decremented
during the computation. Specifically, system Π1 contains three types of modules, i.e.,
an ADD module to simulate the ADD instruction, a SUB module to simulate the SUB
instruction, and a FIN module to output the computation result.

Considering that each production function of any neuron in system Π1 is only related
to one variable, the first index of the variables is omitted and only the second index
identifying the neuron housing the variable is retained. For example, the variable x1,i
in neuron σi is simplified to xi. Similarly, when a neuron contains only one production
function, its first index will also be omitted. Although the value of a variable xi changes
dynamically, it is always an integer during the entire computation process of system Π1, i.e.,
xi(t) ∈ Z with t ∈ N. In addition, all production functions in system Π1 are polynomial
functions.

In order to simulate M correctly, there is a correspondence between the elements, i.e.,
the neurons, of system Π1 and the elements, i.e., the registers and the instructions, of M.
Each register r of M corresponds to a neuron σr in system Π1. If register r stores a number
n ≥ 0, then the value of variable xr in neuron σr is −3n. Each labeled instruction is also
associated with a neuron, e.g., an instruction with label li is related to a unique neuron σli .
Moreover, some auxiliary neurons are also introduced into system Π1.

The values of all the variables are 0 in the initial configuration of system Π1. System
Π1 starts the simulation of M when variable xl0 in neuron σl0 is assigned a value of
4. Similarly, the ADD module and the SUB module will simulate the corresponding
instructions li : (ADD(r), lj, lk) and li : (SUB(r), lj, lk), respectively, once the value of
variable xli in neuron σli is equal to 4 in the simulation process. System Π1 starts to
simulate the HALT instruction lh : HALT and the entire simulation terminates when
variable xlh in neuron σlh receives a value of 4 at any time moment. Then the FIN module
is activated to output the computation results.

To better clarify the whole process of using system Π1 to simulate M, the ADD, SUB,
and FIN modules are shown step by step to simulate the relevant instructions of M.

3.1.1. Module ADD—Simulating an ADD Instruction

Figure 3 displays the architecture of the ADD module and the state of the neurons it
contains. When neuron σli receives a value of 4 at a certain time moment t = t′, system
Π1 then starts simulating the ADD instruction li : (ADD(r), lj, lk). At this moment, the
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values of all the variables except xr in neuron σr are all 0. The configuration of system Π1
at time t = t′ is Ct = ([0, 4], [0,−3n], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]), which involves neurons
σli , σr, σi1 , σi2 , σi3 , σlj

, and σlk .

Processes 2021, 9, x FOR PEER REVIEW 11 of 24 
 

 

1Π  at time t t   is               0,4 , 0, 3 , 0,0 , 0,0 , 0,0 , 0,0 , 0,0t n  , which involves 

neurons 
1 2 3

, , , , , ,
i jl r i i i lσ σ σ σ σ σ  and 

kl
σ . 

 

Figure 3. The ADD module in system 1Π . 

At time 1t t   , both production functions  1

1, 4

1
0 | ; ; 1

4i il lf x   and 

 3

2, 40 1 | ;0;1; 2
i il lf x   can execute. Because production function  3

2, 40 1 | ;0;1; 2
i il lf x   

has a postponement feature, production function  1

1, 4

1
0 | ; ; 1

4i il lf x   will execute first. 

Thus, neuron 
il

σ  fires to transmit a positive charge and a value of 1 to neuron 
1i

σ  via 

synaptic channel  1 . After production function  1

1, 4

1
0 | ; ; 1

4i il lf x   executes, the value 

of variable 
il

x  will decrease by 1 according to the variable consumption strategy. Thus, 

the configuration of system 1Π  at time 1t t    becomes 

              1 0,3 , 0, 3 , ,1 , 0,0 , 0,0 , 0,0 , 0,0t n    . 

After a one-step delay, i.e., at time 2t t  , production function 

 3

2, 40 1 | ;0;1; 2
i il lf x   executes and neuron 

il
σ  transmits a neutral charge and a value 

of −3 to neuron rσ  via synaptic channel  2 , indicating that system 1Π  has completed 

the operation of adding 1 to the value stored in register r . According to the charge cal-

culation rules, the neutral charge has no effect on the polarization of a neuron, so that the 

descriptions of the neutral charges will be omitted below. Meanwhile, neuron 
1i

σ  fires 

by executing one of the production functions  
1 1

1

1, 1| ; ; 1i if x    and  
1 1

1

2, 1| ;0; 2i if x   

non-deterministically. 

1. If production function  
1 1

1

1, 1| ; ; 1i if x    is selected for execution at time 2t t  , 

then neuron 
1i

σ  sends a positive charge and a value of 1 to neuron 
2i

σ . As a result, 

the polarization of neuron 
2i

σ  becomes positive and variable 
2i

x  gets a value of 1. 

 

 

 

1

1 1

1 1

1

1, 1

1

2, 1

0, 0

| ; 1

| ;0; 2

i

i i

i i

x

f x

f x

 
 

  

 

 

 

 

1

1, 4

3

2, 4

0, 4

1
0 | ; 1

4

0 1 | ;0;1; 2

i

i i

i i

l

l l

l l

x

f x

f x

 
 

 

 

 1

 1

 1

 1

 2

 2

il

r1i

2i 3i

jl
kl

 

 
2

2 2

1

1

, 0

4 | ;0 1

i

i i

x

f x

  

 

 

 
3

3 3

1

1

0, 0

0 4 | ;0 1

i

i i

x

f x

 
 



Figure 3. The ADD module in system Π1.

At time t = t′ + 1, both production functions 0/ f1,li = 1
4 xli |

1
4;+; (1) and 0/ f2,li =

1− xli |
3
4; 0; 1; (2) can execute. Because production function 0/ f2,li = 1− xli |

3
4; 0; 1; (2) has a

postponement feature, production function 0/ f1,li =
1
4 xli |

1
4;+; (1) will execute first. Thus,

neuron σli fires to transmit a positive charge and a value of 1 to neuron σi1 via synaptic chan-
nel (1). After production function 0/ f1,li =

1
4 xli |

1
4;+; (1) executes, the value of variable xli

will decrease by 1 according to the variable consumption strategy. Thus, the configuration of
system Π1 at time t = t′ + 1 becomes Ct+1 = ([0, 3], [0,−3n], [+, 1], [0, 0], [0, 0], [0, 0], [0, 0]).

After a one-step delay, i.e., at time t = t′ + 2, production function 0/ f2,li = 1 −
xli |

3
4; 0; 1; (2) executes and neuron σli transmits a neutral charge and a value of −3 to

neuron σr via synaptic channel (2), indicating that system Π1 has completed the operation
of adding 1 to the value stored in register r. According to the charge calculation rules,
the neutral charge has no effect on the polarization of a neuron, so that the descriptions
of the neutral charges will be omitted below. Meanwhile, neuron σi1 fires by executing
one of the production functions +/ f1,i1 = xi1 |

1
1;+; (1) and +/ f2,i1 = xi1 |

1
1; 0; (2) non-

deterministically.

1. If production function +/ f1,i1 = xi1 |
1
1;+; (1) is selected for execution at time t = t′ + 2,

then neuron σi1 sends a positive charge and a value of 1 to neuron σi2 . As a result, the
polarization of neuron σi2 becomes positive and variable xi2 gets a value of 1. There-
fore, the configuration of system Π1 at time t = t′ + 2 becomes
Ct′+2 = ([0, 0], [0, 3− 3n], [+, 0], [+, 1], [0, 0], [0, 0], [0, 0]). At time t = t′ + 3, produc-
tion function +/ fi2 = 4xi2 |11; 0; (1) satisfies the execution condition, so that neuron
σi2 transmits a value of 4 to neuron σlj

, causing system Π1 to start simulating the
instruction with label lj in M.

2. If production function +/ f2,i1 = xi1 |
1
1; 0; (2) is selected for execution at time t = t′ + 2,

neuron σi1 sends a value of 1 to neuron σi3 . Therefore, the configuration of system Π1
at time t = t′ + 2 becomes Ct′+2 = ([0, 0], [0, 3− 3n], [+, 0], [+, 0], [0, 1], [0, 0], [0, 0]).
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At time t = t′ + 3, neuron σi3 transmits a value of 4 to neuron σlk , causing system Π1
to start simulating the instruction with label lk in M.

As described above, the ADD module shown in Figure 3 can correctly simulate the
ADD instruction li : (ADD(r), lj, lk) of M. Specifically, system Π1 is activated when
variable xli receives the value of 4, and then 1 is added to the value stored in register r.
Subsequently, an instruction, lj or lk, is selected non-deterministically for simulation.

3.1.2. Module SUB—Simulating an SUB Instruction li :
(
SUB(r), lj, lk

)
Figure 4 displays the architecture of the SUB module and the state of the neurons

it contains. Suppose system Π1 starts to simulate the SUB instruction li : (SUB(r), lj, lk)
at a certain time moment t = t′ after variable xli of neuron σli has received a value of 4.
Thus, production functions 0/ f1,i1 = xi1 − 1|14; 0; (1) and 0/ f1,i1 = xi1 − 1|34; 0; 1; (2) satisfy
the application condition. Production function 0/ f1,i1 = xi1 − 1|14; 0(1) executes first and
neuron σli sends a value of 3 to neuron σr, indicating that system Π1 has completed the
operation of subtracting 1 from the value stored in register r. The following two situations
will occur for neuron σr.
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Figure 4. The SUB module in system Π1.

1. One situation is that the value of variable xr, i.e., the number stored in register r, is
0 at time t = t′. Production function 0/ fr = xr − 2|33;+; (1) satisfies the threshold
condition after variable xr receives a value of 3. At time t = t′ + 1, with the execution
of this production function, neuron σr transmits a positive charge and a value of 1 to
neurons σi1 and σi2 , respectively. Since production function 0/ f2,i1 = xi1 − 1|34; 0; 1; (2)
has a postponement feature, neuron σli sends a value of 3 to neuron σi1 at time
t = t′ + 1. After production functions 0/ fr = xr − 2|33;+; (1) and 0/ f1,i1 = xi1 −
1|34; 0; 1; (2) execute, the polarization of neuron σi1 becomes positive, and the value
of variable xi1 becomes 4. Therefore, production function +/ f2,i1 = xi1 + 3|44; 0; (2)
executes at time t = t′ + 2. Then, neuron σi1 transmits a value of 7 to neuron σi2 via
synaptic channel (2). Consequently, the polarization of neuron σi2 becomes positive
and the value of variable xi2 accumulates to 8, causing neuron σi2 to transmit a value
of 4 to neuron σlk . Since neuron σlk receives a value of 4, system Π1 starts to simulate
instruction lk.
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2. The other situation is that the value of variable xr is −3n with n ∈ N+ at time
t = t′, i.e., the value stored in register r is greater than 0. After getting a value of 3
from neuron σli , the value of variable xr becomes 3− 3n, which does not satisfy the
threshold condition of production function 0/ fr = xr − 2|33;+; (1). Thus, neuron σr
will not fire at time t = t′ + 1. However, due to the execution of production function
0/ f1,i1 = xi1 − 1|34; 0; 1; (2), variable xi1 receives a value of 3 from neuron σi1 at time
t = t′ + 1, causing production function 0/ f1,i1 = xi1 + 1|33; 0; (1) to execute at time
t = t′ + 2. Ultimately neuron σlj

receives a value of 4 from neuron σi1 , leading system
Π1 to start simulating instruction lj.

Consequently, the SUB module can simulate the SUB instruction li : (SUB(r), lj, lk)
correctly. Specifically, system Π1 is activated when variable xli receives the value of 4, then
1 is subtracted from the value stored in register r, and finally an instruction, lj or lk, is
selected non-deterministically for simulation according to the value contained in register r.

3.1.3. Module FIN—Simulating a HALT Instruction lh : HALT

Figure 5 shows the architecture of the FIN module. At time t = t′, the FIN module is
activated after variable xlh receives a value of 4. This step also indicates that system Π1
has reached the HALT instruction lh : HALT, i.e., the simulation of register machine M
has completed.
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Figure 5. The FIN module in system Π1.

Assuming the value of variable x1 in neuron σ1 is −3n with n ∈ N+ at time t = t′,
meaning that a number n is stored in register 1. At time t = t′ + 1, due to the execution
of production function 0/ flh = xlh − 1|44; 0; (1), both variables xout and xh1 get a value of
3. At the next time moment t = t′ + 2, both production functions 0/ f1,out = xout|33; 0; 3; (1)
and 0/ f1,h1 = xh1 |

0
3; 0; (1) can apply. With the execution of production function 0/ f1,h1 =

xh1 |
0
3; 0; (1), variable x1 gets a value of 3, indicating that 1 is subtracted from the num-

ber stored in register 1. Because production function 0/ f1,out = xout|33; 0; 3; (1) needs to
postpone by three steps to execute, neuron σout emits the first nonzero value of 3 to the
environment at time t = t′ + 4. Since the consumption rate of variable xh1 is 0, i.e., the
value of variable xh1 is still 3 at time t = t′ + 3, production function 0/ f1,h1 = xh1 |

0
3; 0; (1)

in neuron σh1 can continue to execute until time t = t′ + n + 2.
From time t = t′ + 2 to time t = t′ + n + 2, variable x1 gets a total value of 3n + 3.

Therefore, the value of variable x1 at time t = t′ + n + 2 is 3, which is equal to the
threshold of production function 0/ f1 = 1− x1|33;+; (1). With the execution of production
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function 0/ f1 = 1− x1|33;+; (1), a value of −2 and a positive charge are transmitted to
neuron σh1 . Thus, production function +/ f2,h1 = xh1 + 3|11;+; (1) is activated at time
t = t′ + n + 3. Since the polarization of neuron σout becomes positive and variable xout
gets a value of 4, production function 0/ f2,out = xout − 1|44; 0; (2) executes and neuron σout
emits the second nonzero value of 3 into the environment via synaptic channel (2) at time
t = t′ + n + 4. Production function 0/ f1 = 1− x1|33;+; (1) in neuron σ1 can also execute
at time t = t′ + n + 3, leading the value of variable xh1 to become −2. At this point, the
system runs to the final configuration because the values of the variables in the neurons no
longer satisfy the conditions for the production functions to execute.

From the above discussions, the time interval between the two firings of the output
neuron is (t + n + 4) − (t + 4) = n, which is exactly the same as the number stored in
register 1. As specified in the definition, the computation result of system Π1 is equal to n.

Through the discussions of the operating mechanism of the ADD, SUB, and FIN
modules, system Π1 is verified to simulate register machine M correctly in its generating
mode, i.e., N2(Π1) = N(M). In addition, system Π1 uses only two types of, i.e., neutral and
positive, polarizations, and all production functions are linear with at most one variable.
Accordingly, Nch2

2 NSNVC P
(

poly1(1)
)
= NRE holds.

3.2. NSNVC P Systems as Number Accepting Devices

When used as a number accepting device, a NSNVC P system Π can accept a number
n. In this situation, the function of the input neuron σin is to accept values from the external
environment. Initially, the number n to be computed is accepted by system Π in the form
40n−14, where 4 and 0 are the values introduced into the system. Specifically, assuming
that input variable xin receives a value of 4 at time t = t1 and t = t2 respectively, the time
interval between t = t1 and t = t2, i.e., n = t2 − t1 is defined as the number accepted by
system Π. Afterwards, the number n is processed by a series of instructions. When it runs
to the final configuration, system Π is considered to have accepted the number n.

Theorem 2. Nch2
acc NSNVC P

(
poly1(1)

)
= NRE.

Proof. The proof of the inclusion NRE ⊆ Nch2
acc NSNVC P

(
poly1(1)

)
is verified by simulat-

ing deterministic register machines working in the accepting mode, while the converse
inclusion is directly confirmed by the Turing-Church thesis [41]. �

The form of a deterministic register machine is M′ = (m, H, l0, lh, I). Each element of
M′ has the same meaning as that of the corresponding element of the non-deterministic
register machine M working in the generating mode. The only difference between M′

and M is in the form of the ADD instructions. The ADD instructions in M′ are defined as
a deterministic form li :

(
ADD(r), lj

)
. In addition, the set consisting of all the numbers

accepted by M′ is represented by Nacc(M).
A NSNVC P system Π2 is designed to simulate machine M′ with a similar structure to

that of system Π1 in the generating mode. Especially, system Π2 consists of a deterministic
ADD module, a SUB module, and an INPUT module. The INPUT module is used to
introduce numbers to be processed into system Π2. The functions of the other two modules
remain the same as those in system Π1.

The architecture of the INPUT module is shown in Figure 6. In the initial configuration,
the values of all the variables in system Π2 are 0. The input variable xin is assumed to
have a value of 4 at time t = t′, so that production function 0/ f1,in = xin|04;+; (1) satisfies
the execution condition. Consequently, neuron σin sends a positive charge and a value of
4 to neuron σin1 via synaptic channel (1). Because the consumption rate of variable xin
is 0, the value of variable xin is still 4 at time t = t′ + 1. Therefore, production function
0/ f1,in = xin|04;+; (1) will continue to execute at each subsequent time moment until
variable xin again has a value of 4.
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Figure 6. The INPUT module in system Π2.

At time t = t′ + 1, neuron σin1 executes production function +/ fin1 = 1− xin1 |
4
4; 0; (1)

and transmits a value of −3 to neuron σ1, simulating the addition of 1 to the number
stored in register 1. Simultaneously, variable xin1 receives a value of 4 from neuron σin.
Accordingly, neuron σin1 will send a value of −3 to neuron σ1 at time t = t′ + 2 again. In
fact, neuron σ1 receives a value of−3 at every step from time t = t′+ 2 to time t = t′+ n+ 1.
Thus, variable x1 gets a total value of −3n, i.e., register 1 stores the number n.

At time t = t′+ n, the value of variable xin becomes 8 because it receives another value
of 4 from the external environment. In this way, production function +/ f2,in = 1

2 xin|88; 0; (2)
of neuron σin can execute. Consequently, neuron σin sends a value of 4 to neuron σl0 via
synaptic channel (2), indicating that system Π2 is about to simulate instruction l0 of
machine M′.

The configuration dynamics of the INPUT module is shown in Figure 7. The configu-
ration at each time moment involves variables xin, xin1 , x1 and xl0 in that order.

The deterministic ADD module, illustrated in Figure 8, is used to simulate a deter-
ministic ADD instruction li :

(
ADD(r), lj

)
. The simulation starts when neuron σli receives

a value of 4. Suppose that neuron σli receives a value of 4 at time t = t′, then produc-
tion function +/ f1,li = xli |

1
4; 0; (1) executes and neuron σli sends a value of 4 to neuron

σlj
via synaptic channel (1). Since the consumption rate of variable xli is 1, production

function +/ f2,li = xli |
3
3; 0; (2) meets the application conditions. Consequently, register r

receives a value of 3 at time t = t′ + 2. So far, system Π2 has completed the simulation of
instruction li and finished the operation of adding 1 to the number stored in register r.

Moreover, the SUB module in system Π2 is exactly the same as that in system Π1.
System Π2 does not have a FIN module, but has neuron σlh . System Π2 has completed the
simulation of M′ if variable xlh in neuron σlh gets a value of 4 at any point of time. At this
time point, system Π2 has reached the HALT instruction and has accepted the number n.

The above discussions show that system Π2 working in the accepting mode can
successfully simulate M′, i.e., Nacc(Π2) = Nacc(M′). In addition, the structures of the three
modules show that all the production functions are linear each with at most one variable
and the neurons have only two types of, i.e., neutral and positive, polarizations in system
Π2. Consequently, Nch2

acc NSNVC P
(

poly1(1)
)
= NRE holds.
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Figure 7. Configuration dynamics of the INPUT module.
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Figure 8. The deterministic ADD module in system Π2.

4. Turing Universality of NSNVC P Systems for Computing Functions

The lower limit on the number of neurons needed in a NSNVC P system as a universal
function computing device is discussed in this section. In order to compute function
f : Nk → N , a register machine Mc =

(
m
.
, H, l0, lh, I

)
works as follows. First, generally

registers 1 to k of machine Mc store the values of the k arguments, and all other registers
are empty. Then, machine Mc starts a computation by executing the instruction labeled
l0, and executes a series of instructions to continue the computation. Finally, the value
of function f computed by Mc is stored in another specific register rt when the HALT
instruction lh is reached. Assume (ϕ0, ϕ1, . . .) is a fixed admissible enumeration of a unary
partially recursive function. If a recursive function f satisfies ϕX(y) = Mu( f (x), y) for
natural numbers x and y, then the register machine is considered universal.

Korec [45] introduced a small universal register machine Mu = (8, H, l0, lh, I) for
function computing, as illustrated in Figure 9. The register machine Mu consists of 23
instructions and 8 registers numbered from 0 to 7. Initially, two arguments f (x) and y
are introduced into registers 1 and 2, respectively, which enable machine Mu to compute
any ϕx(y). Moreover, when the computation of Mu halts, the number stored in register 0



Processes 2021, 9, 549 16 of 21

is the computation result of function ϕx(y). A NSNVC P system is designed to simulate
machine Mu. For this purpose, Mu is modified as follows. A new register 8 is added,
and the original HALT instruction is replaced by three instructions l22 : (SUB(0), l23, lh),
l23 : (ADD(8), l22) and lh : HALT. In this way, the calculation result is stored in register 8.
The modified register machine is represented by M′u, which consists of 9 registers, labeled
from 0 to 8, and 25 instructions, including 14 SUB instructions, 10 ADD instructions and 1
HALT instruction.
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Figure 9. The universal register machine Mu.

Theorem 3. There is a Turing universal NSNVC P System with 66 neurons to be used as a function
computing device.

Proof. A NSNVC P system Π3 is designed to simulate the computation functions of register
machine M′u. System Π3 is composed of an INPUT module, an OUTPUT module, 10 ADD
modules, and 14 SUB modules. The ADD modules adopt a deterministic form. Assume
that the values of all the variables in system Π3 are 0 initially. A correspondence exists
between the elements, i.e., the registers and instructions, of M′u and the elements, i.e., the
neurons, of system Π3. �

The INPUT module of system Π3 is shown in Figure 10. The function of this module
is to introduce two natural numbers 3 f (x) and 3y into neurons σ1 and σ2, respectively,
through the sequence in the form 40 f (x)−140y−14, where 4 and 0 are the values introduced
into the system. The configuration dynamics of the INPUT module is shown in Figure 11.
Each configuration involves neurons σin, σin1 , σin2 , σ1, σ2 and σl0 in that order.

The input neuron σin is used to read the sequence 40 f (x)−140y−14. Assuming that input
variable xin gets a value of 4 at time t = t1, then production function 0/ f1,in = xin|04;+; (1)
executes and neuron σin transmits a positive charge and a value of 4 to neuron σin1 . At
time t = t1 + 1, production function +/ fin1 = 1− xin1 |

4
4; 0; (1) in neuron σin1 satisfies the

execution condition and neuron σin1 sends a value of −3 to neuron σ1. As a result, the
value stored in neuron σ1 increases by 1. In addition, since the value of variable xin will
not be consumed after production function 0/ f1,in = xin|04;+; (1) executes, neuron σin
sends the value of 4 to neuron σin1 at each time moment after time t = t1. This process
continues until neuron σin receives a value of 4 again. Therefore, from time t = t1 + 2 to
time t = t1 + f (x) + 1, neuron σ1 receives a total value of −3 f (x) from neuron σin1 , i.e., the
number stored in register 1 is f (x).
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Figure 10. The INPUT module in system Π3.
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Figure 11. Configuration dynamics of the INPUT module in system Π3.

Suppose the input neuron σin receives a value of 4 again and the value of vari-
able xin accumulates to 8 at time t = t2, (in fact, t2 = t1 + f (x)). Production func-
tion 0/ f2,in = 1

2 xin|08;+; (2) executes and neuron σin sends a value of 4 to neuron σin2
via synaptic channel (2). At time t = t2 + 1, with the execution of production func-
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tion +/ fin2 = 1− xin2 |44; 0; (1), neuron σin2 sends a value of −3 to neuron σ2 for the first
time. Similarly, because the accumulated value received by neuron σ2 from neuron σin2 is
3y from time t = t2 + 2 to time t = t2 + y + 1, the number stored in register 2 is y.

The value of variable xin becomes 12 after neuron σin receives the value of 4 for the third
time at time t = t3, (in fact, t3 = t2 + y). When production function 0/ f3,in = 1

3 xin|12
12; 0; (3)

executes, variable xl0 gets a value of 4, causing system Π3 to start the simulation of the initial
instruction l0.

Thereafter, no production function can be applied and system Π3 starts to use the
ADD and SUB modules to simulate machine M′u. All the ADD instructions in machine
M′u are of the form li :

(
ADD(r), lj

)
as shown in Figure 9. Therefore, the deterministic

ADD module in the number accepting device system Π2, as shown in Figure 8, can be used
to simulate these instructions. Moreover, the SUB module shown in Figure 4 is used to
simulate the SUB instructions li : (SUB(r), lj, lk). Hence, the discussions of the ADD and
SUB modules are not repeated. The OUTPUT module is constructed by modifying the FIN
module shown in Figure 4. Specifically, neuron σ1 in the FIN module shown in Figure 4
is replaced by neuron σ8 in the OUTPUT module. The process of NSNVC P system Π3
simulating register machine M′u is illustrated in Figure 12.
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Figure 12. An illustration of using NSNVC P system Π3 to simulate M′u.

Through the above discussion, NSNVC P system Π3 can correctly simulate register
machine M′u. The system contains 66 neurons in total, and has the following details for
the neurons:

• 25 neurons associated with 25 instruction labels;
• 9 neurons associated with 9 registers;
• 2× 14 auxiliary neurons for 14 SUB modules;
• 3 neurons in the INPUT module;
• 2 neurons in the OUTPUT module.

In fact, some optimization techniques such as combining some consecutive ADD
and/or SUB instructions can further decrease the number of neurons. Neuron σ21 in
system Π3 can be omitted by combining consecutive instructions l17 : (ADD(2), l21) and
l21 : (ADD(3), l18). The combined instructions can be simulated with the ADD-ADD
module shown in Figure 13. Because the value required to start the simulation of an
instruction is inconsistent with the value required for a register to add or subtract 1,
the combined ADD and/or SUB instructions will not be further discussed in this work.
Therefore, a universal NSNVC P system requiring only 66 neurons is obtained as a function
computing device.
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and l21 : (ADD(3), l18).

Compared with NSN P systems, each module of NSNVC P systems needs fewer
neurons, indicating that a series of improvements to NSN P systems are successful. These
improvements include the proposed variable consumption strategy, the use of polarization
and threshold as two conditions to control the execution of production functions, the
postponement feature assigned to production functions and the introduction of multiple
synaptic channels.

Some of the latest computing models [17,42–44] and a classic computing model [13]
as function computing devices are listed in Table 2 along with their numbers of computing
units, i.e., neurons. As shown in Table 2, NSNVC P systems need fewer neurons than SNP-
IR systems [42], PASN P systems [43], PSNRS P systems [44], and DTNP systems [13] to
obtain Turing universality as function computing devices. Although SNP-MC systems [17]
need only 38 neurons, fewer than that of NSNVC P systems, to obtain Turing universality
as function computing devices, they are in the type of discrete computing models due
to the use of spiking rules. However, NSNVC P systems are in the type of continuous
computing models with numerical attributes and are more suitable for solving practical
problems due to the use of production functions instead of spiking rules. The comparison
in Table 2 shows the computational power of NSNVC P systems. Apparently, NSNVC P
systems have better computing capability and performance than most other P systems.

Table 2. Comparison of different computing models in the number of neurons.

Computing Models Number of Neurons

NSNVC P systems 66
SNP-IR systems [43] 100
PASN P systems [44] 121

PSNRS P systems [45] 151
SNP-MC systems [17] 38

DTNP systems [13] 109

5. Conclusions

A new variant of NSN P systems, called NSNVC P systems, is proposed by improving
the NSN P systems. The improvements are the proposed variable consumption strategy, the
use of polarization and threshold, the postponement features of the production functions,
and the use of multiple synaptic channels. By simulating register machines, the compu-
tational completeness of NSNVC P systems as number generating/accepting devices is
proved. Furthermore, a universal NSNVC P system with 66 neurons is constructed to
compute Turing computable functions.

The new variable consumption strategy makes NSNVC P systems more flexible and
practical. Different from NSN P systems, each production function in NSNVC P systems
is assigned a threshold and a polarization. A production function must simultaneously
satisfy the threshold and polarization conditions to execute. It is precisely because of these
two conditions, NSNVC P systems achieved Turing universality by using only positive and
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neutral polarizations. These two conditions do not inhibit the operation, but complement
each other and enhance the controlling ability, of NSNVC P systems.

The introduction of multiple synaptic channels has contributed to the flexibility of op-
erations of NSNVC P systems. This is particularly evident in the INPUT module shown in
Figure 9. The postponement feature assigned to production functions also plays an impor-
tant role in NSNVC P systems. For example, if production function 0/ f1,out = xout|33; 0; 3; (1)
of neuron σout in the FIN module does not have the postponement feature, neuron σout will
need more production functions, or the FIN module will need more neurons, to achieve
the same result.

The universality of NSNVC P systems is studied in this work, and further works
are needed to use NSNVC P systems to solve some specific real-world problems. By
introducing polarizations, multiple synaptic channels, the variable consumption strategy
and the postponement feature, the dimension of the coded information in NSNVC P
systems increases. Therefore, NSNVC P systems are more suitable for solving practical
problems, such as image processing, fault diagnosis, and robots, which requires more ways
for information representation.
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