
Thorium: A Language for Bounded Veri�cation of
Dynamic Reactive Objects

Kevin Baldor
kevin.baldor@utsa.edu

University of Texas at San Antonio
San Antonio, USA

Southwest Research Institute
San Antonio, USA

Xiaoyin Wang
xiaoyin.wang@utsa.edu

University of Texas at San Antonio
San Antonio, USA

Jianwei Niu
jianwei.niu@utsa.edu

University of Texas at San Antonio
San Antonio, USA

Abstract

Developing reliable reactive software is notoriously di�cult
– particularly when that software reacts by changing its be-
havior. Some of this di�culty is inherent; software that must
respond to external events as they arrive tends to end up in
states that are dependent on the value of that input and its
order of arrival. This results in complicated corner cases that
can be challenging to recognize. However, we �nd that some
of the complexity is an accident of the features of the pro-
gramming languages widely used in industry. The loops and
subroutines of structured programming are well-suited to
data transformation, but poorly capture – and sometimes ob-
scure – the �ow of data through reactive programs developed
using the inversion-of-control paradigm; an event handler
that modi�es the data �ow tends to be declared closer to the
de�nition of the event that activates it than to the initial de�-
nition of the data �ow that it modi�es. This paper approaches
both challenges with a language inspired by the declarative
modules of languages SIGNAL and Lustre and the seman-
tics of the SodiumFRP Functional Reactive Programming
library with a declarative mechanism for self modi�cation
through module substitution. These language features lead
to software with a code structure that closely matches the
�ow of data through the running program and thus makes
software easier to understand. Further, we demonstrate how
those language features enable a bounded model checking
approach that can verify that a reactor meets its require-
ments or present a counterexample trace, a series of states
and inputs that lead to a violation. We analyze the runtime
performance of the veri�er as a function of model size and
trace length.

CCS Concepts: • Software and its engineering→ Data

�ow languages.

REBLS ’23, October 23, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0400-0/23/10.

h�ps://doi.org/10.1145/3623506.3623574

Keywords: Bounded Model Checking, Functional Reactive
Programming

ACM Reference Format:

Kevin Baldor, Xiaoyin Wang, and Jianwei Niu. 2023. Thorium: A

Language for Bounded Veri�cation of Dynamic Reactive Objects.

In Proceedings of the 10th ACM SIGPLAN International Workshop on

Reactive and Event-Based Languages and Systems (REBLS ’23), Octo-

ber 23, 2023, Cascais, Portugal. ACM, New York, NY, USA, 13 pages.

h�ps://doi.org/10.1145/3623506.3623574

1 Introduction

Whether in an embedded system or a graphical user interface,
we expect reactive software to be responsive and just work.
Embedded software is generally hidden from the user within
a hardware device and that further encourages the expecta-
tion that it will work like hardware. For some applications,
this isn’t unreasonable; the application either performs the
same operation inde�nitely or can be described as a �nite
state machine. For those applications, software languages
like SIGNAL[22], Lustre[6], and Esterel[4] describe software
with declarative syntax that resembles that of hardware de-
scription languages like VHDL and Verilog and enables static
analysis like that available for hardware. For safety-critical
applications, the limitations of such systems are worthwhile
for the reliability that they can guarantee, but we are inter-
ested in bringing some of the advantages of such languages
to applications for which absolute reliability can be sacri�ced
in exchange for �exibility.

This paper presents a declarative language for describing
reactive software in terms of reactors that contain state and
de�ne how that state will change in response to external
input. The key innovation is that the elements of a reactor’s
state can themselves be reactors and that those sub-reactors
can be created and destroyed during the execution of the
program. We believe that limiting recon�guration to swap-
ping out reactors encourages the developer to separate the
behavior from the logic that is used to select the desired
behavior. We selected its features to provide a minimum vi-
able product for a self-modifying reactive system – desirable
features such as containers are left to future research – to
evaluate the feasibility of bounded model checking such a
system.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8883-1199
https://orcid.org/0000-0002-9079-5534
https://orcid.org/0000-0002-5667-3285
https://doi.org/10.1145/3623506.3623574
https://doi.org/10.1145/3623506.3623574
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3623506.3623574&domain=pdf&date_stamp=2023-10-19

REBLS ’23, October 23, 2023, Cascais, Portugal Kevin Baldor, Xiaoyin Wang, and Jianwei Niu

The paper is organized as follows: sections 2 and 3 de-
scribe the prior work on functional reactive languages and
frameworks and describes the technologies from which we
synthesized the thorium language; section 4 presents an
overview of the language use cases and the model-checking
output; section 5 formally de�nes the syntax and semantics;
section 6 describes the process of encoding the semantics
of the thorium operators in the Python version of the Z3
Satis�ability Modulo Theories (SMT) library; and section 7
evaluates the runtime performance on a set of simple self-
modifying reactors.

2 Background

The Thorium language is a synthesis of existing technolo-
gies. The semantics of the language are strongly in�uenced
by a polyglot implementation of Functional Reactive Pro-
gramming (FRP) called Sodium; we rely on o�-the-shelf SMT
solvers to perform the actual veri�cation; and the bounded
veri�cation is strongly in�uenced by Alloy[20].

2.1 FRP

Functional Reactive Programming was �rst introduced in
Conal Elliot’s FRAN[12]. The immediate bene�t was that it
provided a mechanism for describing time-varying values in
the immutable Haskell language declaratively as a function of
a value over time. It is that declarative nature and emphasis of
side-e�ect-free operations that enables our model checking
approach.
Over the years, a number of alternate implementations

of FRP [12],[27], [11] – and FRP inspired reactive systems
[25] – have explored di�erent semantics. We have based our
languge features on those of the multi-language SodiumFRP
[5] family of libraries because it provides semantics that
made reasoning about the behavior of the program with a
push-based system that �ts well with the industry-dominant,
procedural, languages that we wish to target.
SodiumFRP relies on two fundamental concepts: cells,

which hold a value at all points in time, and streams which
represent a stream of events and hold a value only at times
when the event is taking place. Cells take their name and
behavior from the cells of a spreadsheet. A spreadsheet cell
can be de�ned as a function of a number of other cells and
whenever any of those cells changes, that cell will automat-
ically change as well. Streams do not �t as well into the
spreadsheet metaphor, but they could describe the mouse
clicks and keyboard input that initiates changes to the values
of the cells.
The primary feature that drew us to the SodiumFRP’s

semantics is the concept of the transaction. All responses to
a set of simultaneous inputs can be thought of as happening
synchronously (i.e. instantaneously) from the perspective of
the rest of the program. Thus, the execution of the program

can be seen as a series of transactions updating all of the
reactive values in a reactor simultaneously.

2.2 Bounded Model Checking

The reactors that this investigation supports, as limited as
they are, still de�ne in�nite-state machines, so traditional
model checking procedures that prove properties on �nite-
state machines cannot be directly applied. However, if we
place a limit on the length of the trace (series of transactions)
that we will consider, the problem then becomes one of
satis�ability: the veri�cation of a given property becomes
a matter of searching for an assignment of values to the
members of the reactor in each transaction that contradicts
the property.

This approach to bounded model checking brings a signif-
icant limitation, it can only detect violations of properties
that can be contradicted by a �nite trace. These are the safety
(i.e. bad things won’t happen) properties of [1] and omits the
liveness (i.e. good things will continue to happen inde�nitely)
properties that can be important features of a high-reliability
system. In defense of our approach, however, this is also true
of any testing and our bounded veri�cation is equivalent to
testing against all input sets up to the length of the bound.

2.3 Satis�ability Modulo Theories

In the previous section, we claimed that our approach to
bounding the problem of veri�cation reduced it to satis�abil-
ity. Further, if all of the variables in a reactor were Boolean-
valued then it would reduce to Boolean satis�ability and –
though the problem is NP-Complete in general – often solved
reasonably quickly by the DPLL [9] algorithm of a standard
Satis�ability (SAT) solver. But, by employing a SMT solver,
we can support a richer set of variable types, such as integers
and reals.
Like a SAT solver, an SMT solver answers a yes-or-no

question: can a given statement be made to be true by assign-
ing values to its free variables? Where a SAT solver could
determine that the statement

(0 ∨ ¬1) ∧ (1 ∨ 2) ∧ (0 ∨ 2)

can be satis�ed for the truth assignments
0 1 2

true true
false true

true true
An SMT solver could be presentedwith a similar statement

((G > 15) ∨ ¬(G > 10))∧

((G > 10) ∨ (G < 5)∧

((G > 15) ∨ (G < 5)

(1)

that is the same logical statement, but with 0 substituted
with G > 15 and so on. That is, it remains a satis�ability
problem, but one that is further restricted by the theory of
integer arithmetic. Not all of the solutions identi�ed by the

2

Thorium: A Language for Bounded Verification of Dynamic Reactive Objects REBLS ’23, October 23, 2023, Cascais, Portugal

SAT solver are actually acceptable once a value of G must
be found that satis�es the required truth assignments. In
particular, only the latter two assignments are possible.

3 Related Work

Our research is primarily inspired by our perceived di�-
culties in working with existing reactive frameworks in im-
perative languages. Since our approach is an extension lan-
guage that enables veri�cation, there are a number of re-
lated languages with comparable goals with which we have
less familiarity. We believe that our novelty derives from a
combination of the semantics and the support for runtime
modi�cation.

3.1 Languages and Libraries for Reactive

Programming

Many formalisms, libraries, and languages have been pro-
posed to address the complexities of reactive programs. Harel
Statecharts[16] are a turing-complete extension to �nite
state machines and the Actor model [17] captures the non-
determinism of distributed computing by limiting coordi-
nation between actors to message passing with no de�ned
order of arrival or processing. Both statecharts and the ac-
tor model lend themselves to direct implementation and
many such implementations exist. Statecharts underly the
proprietary CREATE [18] library (formerly Yakindu [19])
for C, C++, Java, and Python. Popular actor model imple-
mentations include Scala Actors [15], Akka [23], and the
signals and slots message passing architecture of the Qt
framework [7] tends to result in applications that follow the
actor-model. However, it was our exposure to large Qt ap-
plications that led to our focus on FRP rather than the actor
model. The ability to re-wire the signals and slots from arbi-
trary points in the application can quickly lead to spaghetti
signals. We also objected to its lack of glitch-freedom [11].
That is, if actor � sends a single signal to actors � and � si-
multaneously and � and � each react by sending a signal to
� , � can display a temporarily-inconsistent state. The glitch-
freedom provided by FRP-inspired frameworks like Sodium-
FRP [5], REScala [27] and especially Distributed REScala
[11] inspired our focus on the FRP semantics. That said, the
parallel, and similarly-motivated research by Lohstroh et
al[24] also claims glitch-freedom in a framework inspired by
actor-model semantics.
Ultimately, our primary syntactical inspiration has come

from the early reactive languages like Verilog, SIGNAL[22].
Many of the other reactive frameworks support dynamic re-
con�guration, but due to implementation as a library within
an imperative language, the code that con�gures – and es-
pecially recon�gures – the reactive subsystem obscures the
shape of the resulting data�ow. We believe that the single-
de�nition principle provides the greatest potential for mak-
ing complicated reactive software comprehensible.

3.1.1 Veri�cation of Reactive Systems. Synchronous
programming [13] has been used to design veri�able reac-
tive systems. Halbwachs et al. [14] shows that synchronous
programs can be compiled into e�cient sequential code and
the control structure of the object code is a �nite automaton
which is synthesized by an exhaustive simulation of a �nite
abstraction of the program. Je�rey [21] proposed to extend
the type system of functional reactive programming with
Linear Temporal Logic which constraints temporal behav-
ior of the reactive program and facilitate the veri�cation of
temporal properties. Dimitrova et al. [10] proposed an inte-
gration of information �ow properties into Linear Temporal
Logic to model check information �ows in reactive systems.
Constant et al. [8] proposed to combine formal veri�cation
with conformance testing to detect speci�cation violations in
reactive systems. As described earlier, the limitations of the
declarative SIGNAL[22] and Esterel[4] languages support
automatic analysis [2] and veri�cation[28].

3.1.2 Language Extension for Veri�cation. In more
broader domains, there are other language extensions for
developers to use to support automatic veri�cation. Anwar
et al. [3] proposed SVOCL, a language extension of System
Verilog to express the design veri�cation requirement of the
latter. Molotnikov et al. [26] proposed mbeddr, a domain
speci�c C language extension to verify domain-level proper-
ties of C language. To the best of our knowledge, thorium
represents a novel approach bringing a transactional update
model that has much in common with Verilog and other
hardware description languages, but with the freedom to
operate in the e�ectively unbounded state-space of software.

4 Thorium Language

Thorium’s design was informed by the belief that the restric-
tions imposed by pure FRP result in reactive code that is
easier to reason about. Speci�cally, the features that we are
emphasizing are that each reactive value

1. is either a cell or stream, where
• cells hold a value at all points in time and
• streams have a value only at some time instants,

2. is declaratively de�ned in one place in the code using
a specialized set of operators on other reactive values,
and

3. cannot be observed to di�er from that de�nition from
outside of the FRP system.

These restrictions were a fairly natural �t to the language
Haskell – in which they were �rst developed [12] – but
are less-easily integrated into the imperative languages that
dominate in industry. The most successful e�ort to bring
some of the advantages of FRP to those languages through
libraries, the reactive extensions [25], capture the stream
logic extremely well, but leave state changes up to the de-
veloper. All such libraries su�er from readability challenges
due to limitations of the syntax of the host language and

3

REBLS ’23, October 23, 2023, Cascais, Portugal Kevin Baldor, Xiaoyin Wang, and Jianwei Niu

the potential to distribute the logic that injects events into
the observables across the program. We seek to make
pure FRP semantics available to industrial programming lan-
guages.

However, we accept that creating a full pure-FRP language
that could interact with the outside world would either result
in unrealistically modeling the outside world in FRP terms
or allowing impurity to seep into the reactive code. Further,
industry has programming-language inertia and introducing
an entire new language is a daunting task. So, we propose
a compromise: we enable a programmer to develop reactor
code that operates in a pure-FRP environment and then com-
pile that code into objects callable from industrial languages
but that enforces the FRP semantics internally.

For example the reactor accumulator de�ned in �gure 1

1 reactor accumulator(inc: stream unit) {

2 value: cell int = 0 .. ~value+increment;

3 private:

4 increment: stream int = 1 @ inc;

5 properties:

6 non_negative: G value >= 0;

7 bounded: G (0 <= value and value <= 3);

8 }

Figure 1. Accumulator Reactor

de�nes a reactor that acts as a tally clicker that increments
its value by one each time that its input, inc, is active.
This introduces a number of language features that will be
explained more fully in section 5, but will be introduced
brie�y here:

• Line 1 declares the reactor and de�nes inc to be an
input of type stream unit, meaning that it doesn’t
carry any information other than whether it is active
or not.

• Line 2 declares value to be of type cell int, mean-
ing that it will have an integer value at all points in
time. Further, it is de�ned using the hold syntax “<init>
.. <updates>” de�ning an initial value and the stream
of events that will change its value.

• The <updates> portion of the hold expression in line 2,
~value+increment, de�nes a stream of integers. The
~ operator provides access to the value of its operand
immediately before the current transaction within
stream expressions. It enables the sort of update logic ex-
empli�ed by this accumulator example while also sup-
porting access to the value of cells in the current state
so long as no circular cell de�nitions are made. This
expression says that whenever increment is active,
this expression will contain the sum of increment
and the value that value held immediately before the
transaction in which increment became active.

reactor

property 2

property 1

counter-

example

trace

negate

negate

declarations

SMT Model
bounds

Figure 2. Thorium Work�ow

• Line 4 declares increment to be of type stream int

and uses the snapshot syntax, “<cell value>@ <event>”
that takes a “snapshot” of a the value of a cell expres-
sion (in this case the constant expression “1”) whenever
the “<event>” (in this case the inc input) stream is
active.

That is, for each inc input event, the public value cell
increments by one. Ignoring, for the moment, the properties
section, it will result in a C++ class with signature

1 class accumulator {

2 accumulator(Stream<int> Unit);

3 Cell<int> value();

4 }

Figure 2 illustrates the developer work�ow. At present,
only the model-checking operations are supported, but we
have selected operators and semantics that can be imple-
mented in SodiumFRP [5] so that, regardless of whether the
declared properties are valid, a developer will be able to com-
pile a syntactically-valid reactor de�nition into an executable
backend like C++, Java, etc. That artifact can be used for test-
ing and eventual integration into a larger software product.
While we believe that the syntax aids program comprehen-
sion, our primary value proposition is the ability to provide
automated static analysis on the properties declared for a
reactor. For the accumulator reactor we have asserted that

• non-negative: G value >= 0
– G(lobally), that is at all points in time, value is never
negative

• bounded: G (0 <= value and value <= 3)
– value is never greater than three (an invalid asser-
tion)

The model-checking procedure works as follows:
First, all of the declarations in the reactor are used to

produce a single SMTmodel using the procedure described in
section 6. This model represents, through logical constraints,
all possible execution traces of length equal to the number
of steps speci�ed at the time of veri�cation.

Then, each property is also represented by an SMT model,
but with an important caveat. It is negated to produce a

4

Thorium: A Language for Bounded Verification of Dynamic Reactive Objects REBLS ’23, October 23, 2023, Cascais, Portugal

k 0 1 2 3 4 5

inc unit unit unit unit unit
value 0 1 2 3 4 5

increment 1 1 1 1 1

Figure 3. accumulator counterexample for the bounded
property. Each column represents the values of each of the
declared members of the accumulator reactor. inc and
increment are streams of type unit and int, respectively,
and don’t carry a value at time : = 0.

model of all possible execution traces (of bounded length)
for which the property is false. This, in combination with
the model of the reactor, produces a model of all possible
execution traces that follow the de�nitions in the reactor
and violate the current property.

The desired outcome is that this produces an unsatis�able
model for each inverted property. That means that the def-
initions of the reactor are su�cient to guarantee that the
property will never be violated – at least in an execution
trace limited by the speci�ed number of steps. For increased
con�dence, the programmer can increase the number of steps
to be considered, but that will lead to an increase in the time
and memory required to complete the analysis as shown in
section 7.
When the SMT solver �nds an assignment of values that

do satisfy the model, that represents a property that the
reactor de�nitions fail to enforce. The good news is that, due
to the small-step semantics that we model in section 6, that
assignment of values maps directly into an execution trace
that illustrates one test case for which the reactor de�nitions
are insu�cient.
Figure 3 shows the counterexample trace produced for

the bounded property of the accumulator reactor with a
veri�cation bound of four steps. The model checker deter-
mined that when the inc input is active for all four steps,
the property is violated. The trace shown in �gure 4 shows
the full model used to verify the property. The reactor model
contains one member for each subexpression in the reac-
tor de�nition. This is overkill for some subexpressions –
constants, in particular, seem like good candidates for op-
timization – but it simpli�es the de�nition of the reactive
operators hold, snapshot, filter, and merge.
The �nal contribution of thorium is the mechanism for

supporting runtime recon�guration. Existing FRP implemen-
tations make use of switch statements that de�ne a variable
of type Cell<T> in terms of a stream of type Stream<Cell<T>>
(and corresponding versions for updating variables of type
Stream<T>). We believe that this is a potential source of
confusion for those with an object-oriented programming
background. Instead, thorium supports reactive values – par-
ticularly cells – that contain reactor instances. This enables
a reactor’s behavior to be determined by its sub-reactors.

k 0 1 2 3 4 5

inc unit unit unit unit unit

value 0 1 2 3 4 5

increment 1 1 1 1 1

non_negative True True True True True True

bounded False False False False False False

value-1 0 0 0 0 0 0

value-2-1 0 1 2 3 4 5

value-2-2 1 1 1 1 1

value-2 1 2 3 4 5

increment-1 1 1 1 1 1 1

increment-2 unit unit unit unit unit

non_negative-1-1 0 1 2 3 4 5

non_negative-1-2 0 0 0 0 0 0

non_negative-1 True True True True True True

bounded-1-1-1 0 0 0 0 0 0

bounded-1-1-2 0 1 2 3 4 5

bounded-1-1 True True True True True True

bounded-1-2-1 0 1 2 3 4 5

bounded-1-2-2 3 3 3 3 3 3

bounded-1-2 True True True True False False

bounded-1 True True True True False False

Figure 4. The full counterexample trace for the
accumulator reactor. This is the same counterexam-
ple trace as �gure 3, but also shows all of the internal state
maintained for each of the subexpressions. Any label with a
hyphen in the name represents a subexpression of one of the
declared reactor members. Note the ine�ciency of members
like bounded-1-2-2 that represent constants that could be
eliminated. This allowed for a direct translation between the
Abstract Syntax Tree (AST) and the SMT model, but will be
considered for optimization in future research.

This is functionally equivalent to the switch statement, but
syntactially resembles object-oriented extension by compo-
sition. Currently, the number of sub-reactors is limited by
the number of members because container datatypes are not
yet supported.

5 Syntax and Semantics

5.1 Declarations

For the purpose of this paper, there are two top-level decla-
rations: datatypes and reactors.

5.1.1 Datatypes. Thorium datatypes are simple Algebraic
Data Type (ADT)s providing support for structure-like prod-
uct types such as

1 datatype Point2D {

2 x : real,

3 y : real

4 }

enumeration-like sum types such as

1 datatype Shape {

5

REBLS ’23, October 23, 2023, Cascais, Portugal Kevin Baldor, Xiaoyin Wang, and Jianwei Niu

2 RECT

3 | CIRCLE

4 }

and, more interestingly, combining sum types and product
types to support de�nitions like

1 datatype Shape2D {

2 Rect{ center: Point2D, width: real, height: real}

3 | Circle{center: Point2D, radius: real}

4 }

Access to the members of product types is accomplished
with the “.” operator. For example, if r is a Point2D, the
expression r.x yields the value of the x member of r. For
sum types, access is accomplished with match expressions
of the form

⟨match⟩ ::= ‘match’ ⟨expr⟩ ‘{’ ⟨match case⟩

(‘|’ ⟨match case⟩)* ‘}’

⟨match case⟩ ::= ⟨type spec⟩ => ⟨expr⟩

⟨type spec⟩ ::= ⟨ID⟩(::⟨ID⟩)*⟨match case args⟩?

⟨match case args⟩ ::= ‘(’ ⟨ID⟩ (‘,’ ⟨ID⟩) ‘)’

More concretely, assuming that shape is of type stream
Shape2D, we can de�ne a stream of area measurements with
the expression

1 match shape { Shape2D::Rect(c,w,h) => w*h

2 | Shape2D::Circle(c,r) => 3.14159*r*r

3 };

5.1.2 Reactors. Reactors de�ne a set of reactive members
in terms of reactive inputs and, optionally, de�ne properties
that must hold for those reactive values.

⟨reactor⟩ ::= ‘reactor’ ⟨ID⟩ ⟨params⟩? ‘{’
⟨member⟩*
(‘private:’ ⟨member⟩*)?
(‘properties:’ ⟨property⟩*)? ‘}’

⟨params⟩ ::= ‘(’ ⟨param⟩ (‘,’ ⟨param⟩)* ‘)’

⟨param⟩ ::= ⟨ID⟩ ‘:’ ⟨rtype⟩

⟨member⟩ ::= ⟨ID⟩ ‘:’ ⟨rtype⟩ = ⟨expr⟩ ‘;’

⟨rtype⟩ ::= ‘cell’ ⟨type⟩
| ‘stream’ ⟨type⟩

⟨type⟩ ::= int | real | bool

⟨property⟩ ::= ⟨ID⟩ ⟨LTL⟩

⟨LTL⟩ ::= (‘G’|‘F’|‘P’) ⟨LTL⟩
| ⟨LTL⟩ (‘U’|‘S’|‘=>’) ⟨LTL⟩
| ⟨boolean expr of reactor members⟩

⟨expr⟩ ::= ⟨standard expression syntax⟩

5.2 Reactive Values

Syntax: As shown above, reactive values within a reactor
can be declared with an <ID> and <rtype>, so the code

1 c : cell int ...

2 s : stream real ...

declares a cell c and a stream s, respectively. Reactive values
are also declared by any expression that operates on reactive
values as shown in the following subsections.
Semantics: Thorium interprets reactive values as functions
from dense time to values. By dense time, we mean that for
any two time instants, there is always some time instant
between them for which the interpretation of the reactive
values remains valid.

Reactive values are either cells or streams.

A |= Reactive<T> =⇒ A |= Cell<T> or A |= Stream<T>

Constants of type T can be treated as Cell<T> when consid-
ering operations on reactive types.

2 |= Cell<T>

2 is a total function from dense time to type) . i.e., 2 : R+ → T

B |= Stream<T>

B is a partial function from dense time to type) . i.e., B : R+ →

) ∪ {⊥} where ⊥ denotes the lack of value.

5.3 Reactive Operators

Thorium supports the FRP operators �lter, merge, snapshot,
and hold. The �rst two control streams of events – �lter
conditionally blocks events and merge converts two event
streams into a single stream. The latter two, convert cells to
streams and vice versa, respectively.

5.3.1 Filter. The �lter operator takes a stream and only
allows those events from that stream for which a correspond-
ing condition is true. Unlike some other �lter de�nitions, the
condition need not depend on the value of the event. The
condition can even be a cell.
Syntax:

⟨�lter expr⟩ ::= ⟨value: expr⟩ ‘if’ ⟨condition: expr⟩

where value |= Stream<T> and condition |= Reactive<bool>
Semantics:

s = v if c de�nes s |= Stream<T>

∀C ∈ R
+.BC =

{

⊥ if cC ∈ {⊥, false}

vC otherwise

5.3.2 Merge. Since all of the updates within a transaction
are considered to be simultaneous, there is no automatic
serialization of events within streams. The programmer must
specify how the reactor is to behave for all combinations
of input streams. This is accomplished by using the merge
operator to prioritize which stream should take precedence.
Syntax:

⟨merge expr⟩ ::= ⟨s1: expr⟩ ‘|’ ⟨s2: expr⟩

where s1, s2 |= Stream<T>
Semantics: s = s1 | s2 de�nes s |= Stream<T>

6

Thorium: A Language for Bounded Verification of Dynamic Reactive Objects REBLS ’23, October 23, 2023, Cascais, Portugal

∀C ∈ R
+.BC =

{

s1C if s1C ≠ ⊥

s2C otherwise

5.3.3 Snapshot. Snapshot provides a conversion from a
cell to a stream whenever a stream has an event. Regardless
of the type of the trigger stream, the snapshot operator only
checks for the presence or absence of an event.
Syntax:

⟨snapshot expr⟩ ::= ⟨value: expr⟩ ‘@’ ⟨trigger: expr⟩

where value |= Cell<)1> and trigger |= Stream<)2>
Semantics:

s = v@ t de�nes s |= Stream<T1>

∀C ∈ R
+.sC =

{

⊥ if tC = ⊥

vC otherwise

5.3.4 Hold. The hold operator creates a cell that has the
value of the most recent event on an updates stream. Since
a cell must have a value at all points in time and there might
never be an event in the updates stream, an init value is
provides that will be the value of the hold expression until
the �rst event arrives.
Syntax:

⟨hold expr⟩ ::= ⟨init: expr⟩ ‘..’ ⟨updates: expr⟩

where init |= Cell<T> and trigger |= Stream<T>
Semantics:

c = i .. u de�nes 2 |= Cell<T>, such that

∀C ∈ R
+.2C =

{

uC ′ max C ′ such that C ′ <= C ∧ uC ′ ≠ ⊥

i otherwise

5.4 Function Application

Arithmetic and logical operators as well as datatype construc-
tion can be treated as function application. Functions in Tho-
rium are de�ned in terms of base (non-reactive) datatypes,
so some sort of lift operation must take place. When all ar-
guments are cells, this is fairly straightforward: the result is
of type Cell<T> where T is the return type of the function
and it is always equal to the result of calling the function
with the value of each argument; if any of the arguments is
a stream, then the result is of type Stream<T> where T is the
return type of the function and it is only active when all of
its inputs are active and at that time it contains the result of
calling the function with the value of each argument.

5.4.1 Function application on cells. For a function

5 :)1,)2, . . . ,)? →)

and parameters

21, 22, . . . , 2? ∈ Cell<)1>,Cell<)2>, . . . ,Cell<)?>,

2 = 5 (21, 22, . . . , 2?) de�nes 2 |= Cell<T> such that

∀C ∈ R
+.2C = 5 (21C , 22C , . . . , 2:C)

5.4.2 Function application on streams. for a function

5 :)1,)2, . . . ,)? →)

and parameters

A1, A2, . . . , A? ∈ Reactive<)1>, Reactive<)2>, . . . , Reactive<)?>

for which at least one parameter is a stream,

B = 5 (A1, A2, . . . , A?) de�nes B |= Stream<T>, such that

∀C ∈ R
+.BC =

{

⊥ if ∃: ∈ [1, ?] .A:C = ⊥

5 (A1C , A2C , . . . , A:C) otherwise

5.5 Composition

The previous sections described the semantics for a reac-
tor composed of basic datatypes. To capture applications
that change their behavior in response to input events, tho-
rium reactors support members of reactive types carrying
reactors. When declaring a reactor that takes a reactive ar-
gument, there are two ways that it could be interpreted: The
constructor should either capture the speci�c stream that
existed at the time of the reactor’s creation or remember how
the stream was de�ned and update the input stream if the re-
sult of that de�nition changes. This is most important when
dealing with the situation when the output of one reactor(A)
feeds the input of another(B). If reactor A is replaced with
a new instance, should B continue to receive the output of
the instance at the time of B’s creation or begin consuming
the output of the new instance. We have opted for the latter
and �nd that it best re�ects the behavior when dealing with
non-reactor members. See the Pipeline reactor in �gure 5.

6 SMT Mapping

In the original formulation of FRP, both cells and streams are
interpreted as functions from time to a value. The primary
innovation of thorium is its emphasis on the reactor, rather
than the cell and stream, as the fundamental reactive element.
In the runtime, this is seen in that the behavior of a cell
or stream in a reactor can only change by replacing a sub-
reactor with a new one with a di�erent behavior. In the
thorium model-checker, this is re�ected in the fact that all
execution traces are mappings from time instants to an entire
reactor state rather than an individual cell or stream.
This slightly complicates the de�nition of the operators.

Instead of an expression like � = � +� mapping to

∀:,�[:] = � [:] +� [:],

it is more accurately represented as

∀:,)A024 [:] .� =)A024 [:] .� +)A024 [:] .�

Further, we avoid all use of quanti�cation, so the ∀: is ac-
tually implemented as a series of assertions for each : in
the speci�c reactor’s start state :0 (not necessarily state 0)
and : , the �nal state in the bounded model. This approach
enables the representation of multiple instances of the same

7

REBLS ’23, October 23, 2023, Cascais, Portugal Kevin Baldor, Xiaoyin Wang, and Jianwei Niu

reactor type created at di�erent times over the duration of
the bounded model checker.

The model for the trace for a reactor that is created at time
:0 is produced by de�ning a member for every subexpression
in the reactor. Then the value of each subexpression member
is de�ned at each time index : as a function of its child
sub-expressions and the semantics of the subexpression. The
following subsections describe how we represent thorium’s
semantics in the Python binding of the Z3 SMT solver. The
�rst describes our representation for reactive values and the
remainder describe the process for de�ning those reactive
values for a selection of the supported operators.

6.1 Reactive Values

As introduced earlier, our FRP semantics are de�ned on two
reactive value kinds: the cell and the stream: A cell T has
a value of type T at all points in time and a stream T has
a value of type T only at points of time in which an event
arrives on that stream. Conceptually, a reactive value of type
T is a function from real-valued time C to a value of type
T (or nothing in the case of a stream that does not have an
event at time C). However, in our Z3 implementation we use
the Array construct rather than an actual Function be-
cause our semantics only allows changes in value in discrete
transactions, so real-valued time is unnecessary and, unlike
functions, arrays can be composed in Z3. This is necessary
to support composable reactors since each reactor instance
de�nes a trace of state transitions. Using an array rather
than a function does not materially impact our de�nitions
because we explicitly assert the de�nition of each reactive
value at each time instant.

This is quite straightforward for cells: the Z3 model simply
represents them as their fundamental datatype. That is, a
cell int member becomes an Int in Z3. However, for
streams, we need a way to explicitly assert that the stream
is inactive at those states for which it has no value. Were we
to represent it with its fundamental data type and simply
leave its value unde�ned at those states, Z3 would be free
to assume any value. Instead, we produce a new datatype
Stream<T> that either contains an event with a value of type
T or nothing (when the stream is not active). In SMTLib2,
this is represented as

(declare-datatypes (T)

((Stream (event (value T))

(nothing))))

Since the Python API lacks support for generic datatypes,
each type specialization must be declared explicitly. This can
be automated with a function like

1 def declare_stream(type:str , T):

2 stream = z3.Datatype(f'stream-{type}')

3 stream.declare('event', ('value', T)))

4 stream.declare('nothing')

5 return stream.create()

Unfortunately, this means that directly accessing the value
held in a stream di�ers from that in a cell and thus com-
plicates the de�nition of all operators that can operate on
combinations of stream and cell values. To mitigate this, we
make use of the ReactiveValue class that:

1. presents each member of a reactor within a trace as a
function from time to a value

2. abstracts away the di�erences between streams and
cells where that distinction is unimportant

3. allows all streams to be checked for emptiness with a
uniform syntax regardless of the underlying Z3 type.

4. supports optionally treating the presence of a value in
a stream as a Boolean when desirable. e.g., snapshot
triggers and within the “active()” pseudo-function.

1 class ReactiveValue:

2 def __init__(self, trace, accessor, thorium_type,

z3_type):

3 self.trace = trace

4 self.accessor = accessor

5 self.thorium_type = thorium_type

6 self.z3_type = z3_type

7

8 def isStream(self):

9 return isinstance(self.thorium_type, Stream)

10

11 def isNothing(self, k):

12 if self.isStream():

13 return self(k) == self.z3_type.nothing

14 return False

15

16 def isActive(self, k):

17 if self.isStream():

18 return self(k) != self.z3_type.nothing

19 return True

20

21 def isTrue(self, k):

22 if self.isStream():

23 return z3.If(self.isNothing(k), False, self[k])

24 return self(k)

25

26 def setValue(self, k, value):

27 if self.isStream():

28 return self(k) == self.z3_type.event(value)

29 return self(k) == value

30

31 def __call__(self, k):

32 return self.accessor(self.trace[k])

33

34 def __getitem__(self,k):

35 if self.isStream():

36 return self.z3_type.value(self(k))

37 return self(k)

8

Thorium: A Language for Bounded Verification of Dynamic Reactive Objects REBLS ’23, October 23, 2023, Cascais, Portugal

6.2 Reactive Operators

Because they are the fundamental thorium operations, we
present the SMT mapping for all of the reactive operators
de�ned in section 5.3: �lter, merge, snapshot, and hold.

6.2.1 Filter. This function enforces the semantics de�ned
in section 5.3.1. Informally, that the result will be equal to
value if the value and condition are active and condition
is true. It returns a set of assertions that are added to the
SMT solver by the caller.

1 def filter(k0 : int, # initial state

2 kK : int, # final state

3 result : ReactiveValue,

4 value : ReactiveValue,

5 condition : ReactiveValue):

6 yield result.isNothing(k0-1)

7 for k in range(k0, kK+1):

8 active = z3.And(condition.isActive(k),

9 value.isActive(k),

10 condition[k])

11 yield z3.If(active,

12 result.setValue(k,value[k]),

13 result.isNothing(k))

6.2.2 Snapshot. This function enforces the semantics of
section 5.3.3. Informally, the result takes on the value of
cell only when stream is active.

1 def snapshot(k0 : int, # initial state

2 kK : int, # final state

3 result : ReactiveValue,

4 cell : ReactiveValue,

5 stream : ReactiveValue):

6 yield result.isNothing(k0-1)

7 for k in range(k0, kK+1):

8 yield z3.If(stream.isNothing(k),

9 result.isNothing(k),

10 result.setValue(k, cell[k]))

6.2.3 Merge. This function enforces the semantics of sec-
tion 5.3.2. Informally, the it prioritizes s1 by only allowing
s2 to pass through if s1 is not active.

1 def merge(k0 : int, # initial state

2 kK : int, # final state

3 result : ReactiveValue,

4 s1 : ReactiveValue,

5 s2 : ReactiveValue):

6 yield result.isNothing(k0-1)

7 for k in range(k0, kK+1):

8 yield result(k) == z3.If(s1.isNothing(k),

9 s2(k),

10 s1(k))

6.2.4 Hold. This function enforces the semantics of sec-
tion 5.3.4. Informally, the it begins with the value init and
only changing (to the value carried by the event in update)
when update is active. Even if init is a cell that might

change at some future time, the semantics are ensured by
only taking the value of init at time :0 and then de�ning
result at future times in terms of the previous value of
result or the value of update. It places the value of init
in the pre-history of the result (time :0 − 1) so that if the
update is active at time :0, it will replace the value of init.

1 def hold(k0 : int, # initial state

2 kK : int, # final state

3 result : ReactiveValue,

4 init : ReactiveValue,

5 update : ReactiveValue):

6 yield result[k0-1] == init[k0]

7 for k in range(k0, kK+1):

8 yield result[k] == z3.If(update.isNothing(k),

9 result[k-1],

10 update[k])

The for loop on line 3 iterates through all states at which
streams may be active, i.e. [:0, :]. At each state, line 4
sets the value of result depending on whether the update
stream has a value. If not, then the value of result will
be unchanged, i.e. equal to its value in the previous state.
Otherwise, it takes on the value held in the update stream.

6.3 Temporal Logic

6.3.1 Globally. The Linear Temporal Logic (LTL) opera-
tors present an additional complication. Strictly speaking,
they are de�ned on in�nitely-long traces. More importantly,
for the future-time LTL operators, globally(G), eventually(F),
and until(U), they can describe properties that cannot be
satis�ed by a �nite trace.

1 def globally(k0 : int, # initial state

2 kK : int, # final state

3 result : ReactiveValue,

4 arg : ReactiveValue):

5 for k in range(k0, kK+1):

6 yield result[k] == z3.And(arg.isTrue(k),

7 result[k+1])

8 # optimistic semantics

9 yield result[kK+1] == True

In the case of globally, this is fairly naturally addressed by the
so-called optimistic semantics. We require that the property
holds at each state within the bound, but trust that it will
hold for any state not explicitly checked.

6.3.2 Since. The since operator, though the most compli-
cated of the past-time LTL operators, requires no such ac-
commodations. It can be completely de�ned on a �nite trace.
The interpretation of ?(@ is that, for it to be true at time : , ei-
ther @ must be true at time : or ? must be true and have been
true since the last time that @ was true. This is recursively
de�ned with

9

REBLS ’23, October 23, 2023, Cascais, Portugal Kevin Baldor, Xiaoyin Wang, and Jianwei Niu

1 def since(k0 : int, # initial state

2 kK : int, # final state

3 result : ReactiveValue,

4 p : ReactiveValue,

5 q : ReactiveValue):

6 yield z3.Not(result[k0-1])

7 for k in range(k0, kK+1):

8 yield result[k] == z3.Or(q.isTrue(k),

9 z3.And(p.isTrue(k),

10 result[k-1]))

6.4 Apply

One of the most important – and complex – operators in tho-
rium is apply. It is used to implement function calls, struct
instantiation, and all basic operators. When all arguments
are cells (line 16), its operation is fairly straightforward. It
de�nes the value of result at each time instant k as the
value returned by the function f when passed the value of
each of the arguments at that time instant.

1 def apply(k0 : int, # initial state

2 kK : int, # final state

3 result : ReactiveValue,

4 f : callable,

5 args : List[ReactiveValue]):

6 stream_args = [arg for arg in args if arg.isStream()]

7 for k in range(k0, kK+1)

8 values = [arg[k] for arg in args]

9 if stream_args:

10 active = z3.And(*[arg.isActive(k)

11 for arg in stream_args])

12 yield z3.If(active,

13 result.setValue(k, f(*values)),

14 result.isNothing(k)))

15 else: # all cells

16 yield result.setValue(k, f(*values))

However, when any input is a stream, it ensures that the
output will only have a value when all of the inputs are
active.

6.4.1 Sub-Reactors. Each reactor state is represented as
a Z3 structure containing the value of all of its members.
The naive approach would be to simply use that datatype as
the type of the sub-reactor member. This was our original
approach when composition was only supported during the
initial state. Now that we support arbitrary replacement of
reactors, we have switched to a new approach. All members
of type reactor are represented as an integer. That integer
represents the index of the reactor in a set of "heap" arrays
(one for each reactor type). Whenever members of a sub-
reactor must be used in an expression of the larger reactor,
a special accessor function is created to ensure that the the
index into the heap array is updated whenever the instance
is replaced in the parent reactor.

7 Evaluation

7.1 Recon�gurable Computation Pipeline

We begin with a reactor that exercises arbitrary recon�gura-
tion of sub-reactors. It implements a simple computational
pipeline for which any of the stages may be changed dur-
ing execution. In this case, each of the stages performs the
same operation, multiplication by the con�gured coe�cient.
A more realistic computational pipeline would perform dif-
ferent operations in each of the stages, but this is simple
enough to reason about and allowed us to contrive a prop-
erty that could only be violated by recon�guring each of
the processing stages, though they can be recon�gured in
arbitrary order.

1 reactor Mult(c: cell int, in : stream int) {

2 out: stream int = c * in;

3 }

4

5 datatype CFG { S1: int

6 | S2: int

7 | S3: int }

8

9 reactor ReconfigurablePipeline(cfg: stream CFG,

10 in: stream int) {

11 s1: cell Mult = Mult(1, in)

12 .. match cfg { CFG::S1(c) => Mult(c, in) };

13 s2: cell Mult = Mult(1, s1.out)

14 .. match cfg { CFG::S2(c) => Mult(c, s1.out) };

15 s3: cell Mult = Mult(1, s2.out)

16 .. match cfg { CFG::S3(c) => Mult(c, s2.out) };

17 out: stream int = s3.out;

18 private:

19 C: cell int = 0 .. match cfg { CFG::S1(c) => c

20 | CFG::S2(c) => c

21 | CFG::S3(c) => c };

22 properties:

23 bounded: (G (0<=C and C<10))

24 => not F ((in==1) and

25 (out/in > 100));

26 }

Figure 5. Recon�gurable Pipeline

Lines 1-3 de�ne the reactor Mult that is con�gured with
a coe�cient that will be multiplied with the input stream
to produce the output stream. Lines 5-7 de�ne the datatype
CFG as a sum type that will contain one of the three values
S1, S2, or S3. This will be used in the Pipeline reactor to
determine which of the stages will be recon�gured. In the
de�nition of the Pipeline, lines 11-16 de�ne three stages such
that s2 consumes the output of s1 and s3 consumes the
output of s2. It is important to note that the expression
s2.out will automatically update when s2 is updated in
response to a cfg input that contains CFG::S2 as de�ned

10

Thorium: A Language for Bounded Verification of Dynamic Reactive Objects REBLS ’23, October 23, 2023, Cascais, Portugal

on line 13. Finally, lines 23-25 de�ne the property, bounded,
that asserts that if the coe�cient of any of the cfg inputs
is non-negative and less than ten, then the product of the
con�gured coe�cients will be less than 100. This is not true,
of course, but thanks to the limitation on the coe�cients,
none of the three coe�cients can be left at the initial value
of one.

Recon�gurablePipeline

k 0 1 2

cfg CFG::S3(8) CFG::S1(3) CFG::S2(8)
in 1
s1 Mult-0 Mult-2 Mult-2
s2 Mult-4 Mult-4 Mult-7
s3 Mult-9 Mult-9 Mult-9
out 192
C 8 3 8

Mult-0

k 0 1 2

c 1 1 1
in 1
out 1

Mult-1

k 0 1 2

c -1 -1 -1
in 1
out -1

Mult-2

k 1 2

c 3 3
in 1
out 3

Mult-3

k 2

c -1
in 1
out -1

Mult-4

k 0 1 2

c 1 1 1
in 3
out 3

Mult-5

k 0 1 2

c 16 16 16
in 3
out 48

Mult-6

k 1 2

c -2 -2
in 3
out -6

Mult-7

k 2

c 8
in 3
out 24

Mult-8

k 0 1 2

c 1 1 1
in 24
out 24

Mult-9

k 0 1 2

c 8 8 8
in 24
out 192

Mult-10

k 1 2

c 6 6
in 24
out 144

Mult-11

k 2

c 1
in 24
out 24

Figure 6. Counterexample trace for the Recon�g-
urablePipeline

Initially, we developed a two-stage version of the pipeline.
The performance looked quite promising, generally taking

less than a minute to �nd a contradiction, so we increased
the number of stages to the three shown above. We were
struck by the increased processing time; our initial attempts
took thirty minutes to an hour.

7.2 Performance Baseline for Recon�gurable

Pipeline

To evaluate the overhead of the reactor composition, we
created a baseline implementation that performed all of the
same operations, but without the reactor composition. It
uses the CFG datatype to determine which coe�cient will
be updated in each step.

1 datatype CFG { S1: int

2 | S2: int

3 | S3: int }

4

5 reactor BaselinePipeline(cfg: stream CFG,

6 in: stream int) {

7 coef1: cell int = 1 .. match cfg {CFG::S1(c) => c};

8 coef2: cell int = 1 .. match cfg {CFG::S2(c) => c};

9 coef3: cell int = 1 .. match cfg {CFG::S3(c) => c};

10 out: stream int = coef1 * coef2 * coef3 * in;

11 private:

12 C: cell int = 0 .. match cfg {CFG::S1(c) => c

13 |CFG::S2(c) => c

14 |CFG::S3(c) => c

15 };

16 properties:

17 bounded: (G (0<=C and C<10))

18 => not F ((in==1) and

19 (out/in > 100));

20 }

BaselinePipeline

k 0 1 2

cfg CFG::S1(2) CFG::S3(7) CFG::S2(8)
in 0 1

coef1 2 2 2
coef2 1 1 8
coef3 1 7 7
out 0 112
C 2 7 8

Figure 7. Counterexample trace for the BaselinePipeline

The BaselinePipeline – the version of the pipeline
without reactor composition – was substantially faster, tak-
ing between one and ten seconds rather than the thirty min-
utes to an hour. Clearly, the current approach to modeling
sub-reactor instances leaves room for improvement.

11

REBLS ’23, October 23, 2023, Cascais, Portugal Kevin Baldor, Xiaoyin Wang, and Jianwei Niu

7.3 Sequential Pipeline

To evaluate the impact of the ability to recon�gure the stages
in arbitrary order in the �rst reactor, we tried one more
variant: The SequentialPipeline. Unlike the arbitrarily
recon�gurable pipeline, the sequential pipeline always builds
the pipeline in order, i.e., the �rst event in the cfg streamwill
be used to con�gure the �rst stage; the second will con�gure
the second stage, and so on.

1 reactor Mult(c: cell int, in : stream int) {

2 out: stream int = c * in;

3 }

4

5 reactor SequentialPipeline(cfg: stream int,

6 in: stream int) {

7 s1: cell Mult = Mult(1, in)

8 .. Mult(cfg, in) @ cfg if stage==1;

9 s2: cell Mult = Mult(1, s1.out)

10 .. Mult(cfg, s1.out) @ cfg if stage==2;

11 s3: cell Mult = Mult(1, s2.out)

12 .. Mult(cfg, s2.out) @ cfg if stage==3;

13 out: stream int = s3.out;

14 private:

15 stage: cell int = 0 .. ~stage + 1 @ cfg;

16 C: cell int = 0 .. cfg;

17 properties:

18 bounded: (G (0<=C and C<10)) =>

19 not F ((in==1) and

20 (out/in > 100));

21 }

7.4 Performance Comparisons

We found in our early experiments that

• the number of stages had a signi�cant e�ect on run-
time and

• the runtime for a given number of stages was highly
variable.

To measure both the growth in runtime and the variability,
we produced three versions each of the BaselinePipeline,
ReconfigurablePipeline, and SequentialPipeline

in which each pipeline contained one, two, or three stages.
Each pipeline was veri�ed ten times with a bound of three
time steps for each, producing the plot in �gure 8.

The y-axis of �gure 8 is logarithmic, so we are seeing ex-
ponential growth in runtime as a function of the number of
stages. It is interesting that the variability in runtime was
highest in the two-stage experiments. We believe that this
was caused by the fact that all of the tests were performed
with a bound of three steps. Three steps are required to
identify a violation when there are three stages, so there
isn’t much room for variability. The one-stage case doesn’t
present any options to the solver about which stage to up-
date. Regardless, this suggests that it may be valuable to
check for counterexamples in shorter traces �rst because

giving the solver unnecessary degrees of freedom to �nd the
counterexample increases the variance in solve time.

1 2 321 311 2 321 2 331 21 33322 321 21 31
number of stages

10−2

10−1

100

101

102

103

104

ru
nt

im
e

(s
)

Runtime vs. Number of Stages
baseline
sequential stage insertion
arbitrary stage insertion

Figure 8. Growth in pipeline veri�cation time vs. number
of stages

8 Conclusion and Future Work

We present a �rst attempt at a veri�er for a language that
supports dynamic reactive programs. We believe that the
syntax that we have developed makes the intent and be-
havior of the reactor more clear than most library-based
reactive frameworks and the synchronous semantics enable
a bounded model checking procedure that identi�es errors
far more reliably than testing – provided that the properties
are properly speci�ed.
The performance results suggest that the next step is to

search for optimizations. Our �rst attempt will be to condi-
tion each of the assertions for a reactor on the condition that
leads to the creation of that reactor instance. Hopefully that
will free the solver to focus on the free variables that might
impact the result.

The most signi�cant future work for the language will be
the introduction of containers so that pipelines might be built
with an arbitrary number of stages – though it seems that
the practicality of doing so will be contingent on bringing
down the cost of reactor composition.

For the present, despite its limitations, we have established
that our selected language features and semantics enable
model checking of actual code potentially avoiding an er-
ror prone process of manually translating from a modeling
language.

References
[1] Bowen Alpern and Fred B. Schneider. 1987. Recognizing Safety and

Liveness. Distributed Computing 2 (1987), 117–126.

12

Thorium: A Language for Bounded Verification of Dynamic Reactive Objects REBLS ’23, October 23, 2023, Cascais, Portugal

[2] Ha�z Muhammad Amjad, Kai Hu, Jianwei Niu, Noor Khan, Loïc

Besnard, and Jean-Pierre Talpin. 2019. Translation Validation of Code

Generation from the SIGNAL Data-Flow Language to Verilog. In 2019

15th International Conference on Semantics, Knowledge and Grids (SKG).

153–160. h�ps://doi.org/10.1109/SKG49510.2019.00034

[3] MuhammadWaseem Anwar, Muhammad Rashid, Farooque Azam, and

Muhammad Kashif. 2017. Model-based design veri�cation for embed-

ded systems through SVOCL: an OCL extension for SystemVerilog.

Design Automation for Embedded Systems 21, 1 (2017), 1–36.

[4] Gérard Berry and Georges Gonthier. 1992. The Esterel synchronous

programming language: design, semantics, implementation. Science of

Computer Programming 19, 2 (1992), 87–152. h�ps://doi.org/10.1016/

0167-6423(92)90005-V

[5] Stephen Blackheath. 2016 (accessed 9 January 2017). Sodium. h�ps:

//github.com/SodiumFRP/sodium.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. 1987. LUSTRE:

A Declarative Language for Real-Time Programming. In Proceed-

ings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages (Munich, West Germany) (POPL ’87). As-

sociation for Computing Machinery, New York, NY, USA, 178–188.

h�ps://doi.org/10.1145/41625.41641

[7] The Qt Company. 2022. Qt|Cross-platform software for embedded and

desktop. h�p://qt.io.

[8] Camille Constant, Thierry Jéron, Hervé Marchand, and Vlad Rusu.

2007. Integrating formal veri�cation and conformance testing for

reactive systems. IEEE Transactions on Software Engineering 33, 8

(2007), 558–574.

[9] Martin Davis, George Logemann, and Donald Loveland. 1962. A Ma-

chine Program for Theorem-proving. Commun. ACM 5, 7 (July 1962),

394–397. h�ps://doi.org/10.1145/368273.368557

[10] Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N Rabe,

and Helmut Seidl. 2012. Model checking information �ow in reactive

systems. In International Workshop on Veri�cation, Model Checking,

and Abstract Interpretation. Springer, 169–185.

[11] Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini.

2014. Distributed REScala: An Update Algorithm for Distributed Re-

active Programming. In Proceedings of the 2014 ACM International

Conference on Object Oriented Programming Systems Languages & Ap-

plications (Portland, Oregon, USA) (OOPSLA ’14). ACM, New York, NY,

USA, 361–376. h�ps://doi.org/10.1145/2660193.2660240

[12] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation.

SIGPLAN Not. 32, 8 (Aug. 1997), 263–273. h�ps://doi.org/10.1145/

258949.258973

[13] Nicolas Halbwachs. 1998. Synchronous programming of reactive

systems. In International Conference on Computer Aided Veri�cation.

Springer, 1–16.

[14] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. 1994. Syn-

chronous observers and the veri�cation of reactive systems. In Al-

gebraic Methodology and Software Technology (AMAST’93). Springer,

83–96.

[15] Philipp Haller and Stephen Tu. (accessed 6 Mar 2023). Scala Actors

API. h�ps://docs.scala-lang.org/overviews/core/actors.html.

[16] David Harel. 1987. Statecharts: A Visual Formalism for Complex

Systems. Sci. Comput. Program. 8 (1987), 231–274.

[17] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal

Modular ACTOR Formalism for Arti�cial Intelligence. In Proceedings of

the 3rd International Joint Conference on Arti�cial Intelligence (Stanford,

USA) (IJCAI’73). Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 235–245.

[18] Inc. Itemis. 2023. Itemis CREATE - state machines made easy. h�ps:

//www.itemis.com/en/products/itemis-create/.

[19] Inc. Itemis. (Last updated 2021). Yakindu. h�ps://github.com/Yakindu/

statecharts.

[20] Daniel Jackson. 2006. Software Abstractions: Logic, Language, and

Analysis. The MIT Press.

[21] Alan Je�rey. 2012. LTL types FRP: linear-time temporal logic proposi-

tions as types, proofs as functional reactive programs. In Proceedings

of the sixth workshop on Programming languages meets program veri�-

cation. 49–60.

[22] P. LeGuernic, T. Gautier, M. Le Borgne, and C. Le Maire. 1991. Pro-

gramming real-time applications with SIGNAL. Proc. IEEE 79, 9 (1991),

1321–1336. h�ps://doi.org/10.1109/5.97301

[23] Inc Lightbend. 2011-2023(accessed 6Mar 2023). Akka: build concurrent,

distributed, and resilient message-driven applications for Java and

Scala. h�ps://akka.io/.

[24] Andrés Goens Patricia Derler Jeronimo Castrillon Edward A. Lee

Marten Lohstroh, Iñigo Incer Romeo and Alberto Sangiovanni-

Vincentelli. 2019. Reactors: A Deterministic Model for Composable

Reactive Systems. In Model-Based Design of Cyber Physical Systems

(CyPhy). h�ps://www.icyphy.org/publications/2019_LohstrohEtAl3/

[25] ErikMeijer. 2010. Reactive Extensions (Rx): Curing Your Asynchronous

Programming Blues. In ACM SIGPLAN Commercial Users of Functional

Programming (Baltimore, Maryland) (CUFP ’10). ACM, New York, NY,

USA, Article 11, 1 pages. h�ps://doi.org/10.1145/1900160.1900173

[26] Zaur Molotnikov, Markus Völter, and Daniel Ratiu. 2014. Automated

domain-speci�c C veri�cation with mbeddr. In Proceedings of the 29th

ACM/IEEE international conference on Automated software engineering.

539–550.

[27] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala:

bridging between object-oriented and functional style in reactive ap-

plications. In MODULARITY.

[28] Yahui Song andWei-Ngan Chin. 2021. A Synchronous E�ects Logic for

Temporal Veri�cation of Pure Esterel. In Veri�cation, Model Checking,

and Abstract Interpretation: 22nd International Conference, VMCAI 2021,

Copenhagen, Denmark, January 17–19, 2021, Proceedings (Copenhagen,

Denmark). Springer-Verlag, Berlin, Heidelberg, 417–440. h�ps://doi.

org/10.1007/978-3-030-67067-2_19

Received 2023-07-21; accepted 2023-08-29

13

https://doi.org/10.1109/SKG49510.2019.00034
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://github.com/SodiumFRP/sodium
https://github.com/SodiumFRP/sodium
https://doi.org/10.1145/41625.41641
http://qt.io
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/2660193.2660240
https://doi.org/10.1145/258949.258973
https://doi.org/10.1145/258949.258973
https://docs.scala-lang.org/overviews/core/actors.html
https://www.itemis.com/en/products/itemis-create/
https://www.itemis.com/en/products/itemis-create/
https://github.com/Yakindu/statecharts
https://github.com/Yakindu/statecharts
https://doi.org/10.1109/5.97301
https://akka.io/
https://www.icyphy.org/publications/2019_LohstrohEtAl3/
https://doi.org/10.1145/1900160.1900173
https://doi.org/10.1007/978-3-030-67067-2_19
https://doi.org/10.1007/978-3-030-67067-2_19

	Abstract
	1 Introduction
	2 Background
	2.1 FRP
	2.2 Bounded Model Checking
	2.3 Satisfiability Modulo Theories

	3 Related Work
	3.1 Languages and Libraries for Reactive Programming

	4 Thorium Language
	5 Syntax and Semantics
	5.1 Declarations
	5.2 Reactive Values
	5.3 Reactive Operators
	5.4 Function Application
	5.5 Composition

	6 SMT Mapping
	6.1 Reactive Values
	6.2 Reactive Operators
	6.3 Temporal Logic
	6.4 Apply

	7 Evaluation
	7.1 Reconfigurable Computation Pipeline
	7.2 Performance Baseline for Reconfigurable Pipeline
	7.3 Sequential Pipeline
	7.4 Performance Comparisons

	8 Conclusion and Future Work
	References

