
Citation: Yin, X.; Liu, X.; Sun, M.;

Dong, J.; Zhang, G. Fuzzy Reasoning

Numerical Spiking Neural P Systems

for Induction Motor Fault Diagnosis.

Entropy 2022, 24, 1385. https://

doi.org/10.3390/e24101385

Academic Editor: Salim Lahmiri

Received: 4 September 2022

Accepted: 26 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Fuzzy Reasoning Numerical Spiking Neural P Systems for
Induction Motor Fault Diagnosis
Xiu Yin 1, Xiyu Liu 1,* , Minghe Sun 2 , Jianping Dong 3 and Gexiang Zhang 4

1 Academy of Management Science, Business School, Shandong Normal University, Jinan 250014, China
2 College of Business, The University of Texas at San Antonio, San Antonio, TX 78249, USA
3 Research Center for Artificial Intelligence, Chengdu University of Technology, Chengdu 610059, China
4 School of Automation, Chengdu University of Information Technology, Chengdu 610225, China
* Correspondence: xyliu@sdnu.edu.cn

Abstract: The fuzzy reasoning numerical spiking neural P systems (FRNSN P systems) are proposed
by introducing the interval-valued triangular fuzzy numbers into the numerical spiking neural P
systems (NSN P systems). The NSN P systems were applied to the SAT problem and the FRNSN P
systems were applied to induction motor fault diagnosis. The FRNSN P system can easily model fuzzy
production rules for motor faults and perform fuzzy reasoning. To perform the inference process,
a FRNSN P reasoning algorithm was designed. During inference, the interval-valued triangular
fuzzy numbers were used to characterize the incomplete and uncertain motor fault information. The
relative preference relationship was used to estimate the severity of various faults, so as to warn and
repair the motors in time when minor faults occur. The results of the case studies showed that the
FRNSN P reasoning algorithm can successfully diagnose single and multiple induction motor faults
and has certain advantages over other existing methods.

Keywords: fuzzy reasoning numerical spiking neural P systems; interval-valued triangular fuzzy numbers;
fault diagnosis

1. Introduction

Induction motors are widely used to drive various mechanical and industrial equip-
ment. The major components of an induction motor are usually stators, rotors, air gaps
and bearings [1,2]. Due to their heavy workload and harsh working environment, induc-
tion motors are prone to various hidden troubles during operations. The occurrence of
faults usually causes huge economic losses, so it is necessary to detect faults early, prevent
the occurrence and development of faults and prevent the occurrence of destructive and
catastrophic accidents [3–5]. The fault diagnosis of induction motors generally consists
of two processes including state detection and diagnosis. Specifically, by monitoring and
analyzing its relevant operating parameters, the current operating state of an induction
motor is evaluated to determine whether a fault exists. If it is in a fault state, the location,
severity and development trend of the fault need to be clarified [6,7].

In recent years, motor fault diagnosis methods based on artificial neural networks [8–11]
have become a research hotspot. Mejia-Barron et al. [12] proposed a multi-layer neural
network-based model to reproduce the current characteristics associated with inter-turn
short circuit fault conditions, providing a new tool for testing and monitoring the induction
motor working conditions. Deng et al. [11] proposed a new method for bearing fault diag-
nosis based on empirical wavelet transform, fuzzy entropy and support vector machines.
Kumar and Hati [6] proposed a new detection technique for bearing faults and broken rotor
bars of squirrel-cage induction motors based on an extended convolutional neural network
model. Although neural networks can be used to find solutions according to the faults that
need to be resolved, they also have obvious disadvantages, such as the need to learn from
a large number of samples, slow convergence and serious local optimal solutions [13]. In
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addition, the above-mentioned methods do not have the ability to detect faults in complex
conditions and cannot conduct a comprehensive diagnosis of the entire machine [14,15].

As a new high-performance distributed parallel computing model, fuzzy reasoning
spiking neural P systems (FRSN P systems) [16] have been widely used in power system
fault diagnosis and have achieved good results. Since spiking neural P systems (SN P
systems) do not have the ability to deal with fuzzy and uncertain data in fault diagnosis
problems, the FRSN P systems integrate different fuzzy logics into SN P systems. Var-
ious fuzzy reasoning algorithms for fault diagnosis using FRSN P systems have been
developed [15–21]. An SN P system consists of a network of neurons connected together
with synapses and can be regarded as the third generation of neural network models. SN P
systems transmit information with pulses (spikes) among neurons through synapses [22].
A SN P system is also a directed graph, in which nodes represent neurons, and the connec-
tions between nodes represent synapses. Spikes are transmitted from presynaptic neurons
to postsynaptic neurons along the synapses [23]. Variants of SN P systems have been
developed and have been applied not only to power system fault diagnosis but also to
Boolean circuits modeling [24], combinatorial optimization [25], image processing [26,27]
and fingerprint recognition [28].

Fault diagnosis using FRSN P systems stems from the similarity between the transmis-
sion of impulses between neurons through synapses and the propagation of faults in power
systems [4,29]. Although FRSN P systems have been used for fault diagnosis of power
systems, spikes are only used as a “tool” in FRSN P systems to perform operations between
the values that spikes can represent, i.e., real numbers in the interval [0, 1]. In order to
take full advantage of numerical operations, this work adopts the numerical spiking neural
P system (NSN P system) proposed by Wu et al. [30] and uses it for fault diagnosis of
induction motors. The NSN P systems establish the connection between SN P systems
and NP systems by replacing the spikes and the evolution rules in the SN P systems with
numerical variables and programs in the NP systems, respectively, but still retaining the
directed graph structure of the SN P systems.

The NSN P system is used first to solve the Boolean satisfiability (SAT) problem, a
NP-complete problem, to demonstrate its computational capability, before the FRNSN P
system is used for motor fault diagnosis. The SAT problem and the motor fault diagnosis
problem have certain similarities since their cores are propositional formulas. Therefore, the
NSN P system is capable of solving the motor fault diagnosis problem if it can successfully
solve the SAT problem.

In order to better characterize the uncertainty in motor fault diagnosis, the fuzzy
reasoning numerical spiking neural P systems (FRNSN P systems) are developed by intro-
ducing the interval-valued triangular fuzzy numbers (IVTFNs) [31] into NSN P systems
in this study. The FRNSN P reasoning algorithm is designed based on the operating
mechanism of the FRNSN P system. The FRNSN P systems are used to model the faults,
and the FRNSN P reasoning algorithm is used to diagnose the faults of the induction
motors. In addition, the relative preference relationship is used to estimate the severity of
various potential faults of the motors in order to detect the faults in a timely manner. The
contributions of this work are summarized as follows:

1. The NSN P system, as a combination of the SNP system and the NP system, is applied
to motor fault diagnosis for the first time. In order to prove its ability to deal with
induction motor fault diagnosis, the NSN P system is used to solve the SAT problem
first. The results show that the NSN P system can successfully solve the SAT problem
in six steps;

2. The IVTFNs are applied to the NSN P system, and the FRNSN P system is proposed to
deal with the incompleteness and uncertainty of motor fault information. The FRNSN
P system can successfully model the fault fuzzy production rules of induction motors;

3. A FRNSN P reasoning algorithm is designed by using the operating mechanism of
FRNSN P systems, making the motor fault diagnosis intelligent;
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4. The relative preference relationship is used to estimate the severity of multiple faults
when they occur, so as to diagnose the faults in a timely manner and to prevent the
deterioration of the faults.

The rest of this paper is organized as follows. Section 2 provides preliminaries on the
IVTFNs and the relative preference relations. Section 3 presents the NSN P systems, shows
a computational example, and gives the definition of the FRNSN P systems. Section 4
describes the fuzzy reasoning process of the FRNSN P systems and designs the FRNSN P
reasoning algorithm. Section 5 reports the computational results to show the effectiveness
of the FRNSN P reasoning algorithm for fault diagnosis of induction motors.

2. Preliminaries
2.1. The Interval-Valued Triangular Fuzzy Number

An IVTFN is defined as A =
[
AL AU] = [(

aL
l , aL

h , aL
r ; wL

A
)
,
(
aU

l , aU
h , aU

r ; wU
A
)]

, where
AL and AU represent the lower and upper limits of A and AL ⊆ AU . When wL

A = wU
A = 1

and aL
h = aU

h , the form of A becomes A =
[
AL, AU] = [(

aU
l , aL

l
)
,
(
aL

h = aU
h
)
,
(
aL

r , aU
r
)]

=[(
aU

l , aL
l
)
, ah,

(
aL

r , aU
r
)]

, which is called a normalized IVTFN (NIVTFN). An NIVTFN is
shown in Figure 1, where µA(x) is the membership function representing the degree of
the membership of x, and µAL(x) and µAU (x) are the lower and the upper bounds of
µA(x) [31].
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Figure 1. An NIVTFN A.

2.2. The Relative Preference Relation

Suppose Ψ = {A1, A2, . . . , An} is a set of n IVTFNs, with Ai =
[(

aU
il , aL

il
)
, aih,

(
aL

ir, aU
ir
)]

for i = 1, 2, . . . , n. The average of Ai is represented by A given by A =
[(

aU
l , aL

l
)
, ah,

(
aL

r , aU
r
)]

.
A membership function µβ

(
Ai, A

)
∈ [0, 1] with a relative preference relation β expresses

the preference of Ai to A. A µβ

(
Ai, A

)
< 1

2 means A takes precedence over Ai, and a
µβ

(
Ai, A

)
> 1

2 means Ai takes precedence over A. The membership function µβ

(
Ai, A

)
is

defined in (1) as follows

µβ

(
Ai, A

)
=

1
2

p×

(
aL

il − aL
r

)
+ 2(aih − ah) +

(
aL

ir − aL
l

)
2× ‖TL+

S , TL−
S ‖

+ (1− p)×

(
aU

il − aU
r

)
+ 2(aih − ah) +

(
aU

ir − aU
l

)
2× ‖TU+

S , TU−
S ‖

 f or 0 ≤ p ≤ 1, (1)



Entropy 2022, 24, 1385 4 of 21

where ‖TL+
S , TL−

S ‖ =


(tL+

sl −tL−
sr )+2(t+sh−t−sh)+(tL+

sr −tL−
sl )

2 , if tL+
sl ≥ tL−

sr
(tL+

sl −tL−
sr )+2(t+sh−t−sh)+(tL+

sr −tL−
sl )

2 + 2
(

tL−
sr − tL+

sl

)
, if tL+

sl < tL−
sr

,

‖TU+
S , TU−

S ‖ =


(tU+

sl −tU−
sr )+2(t+sh−t−sh)+(tU+

sr −tU−
sl )

2 , if tU+
sl ≥ tU−

sr
(tU+

sl −tU−
sr )+2(t+sh−t−sh)+(tU+

sr −tU−
sl )

2 + 2
(

tU−
sr − tU+

sl

)
, if tU+

sl < tU−
sr , and

TL−
S =

(
tL−
sl , t−sh, tL−

sr

)
=
(
min

{
aL

il
}

, min{aih}, min
{

aL
ir
})

TL+
S =

(
tL+
sl , t+sh, tL+

sr

)
=
(
max

{
aL

il
}

, max{aih}, max
{

aL
ir
})

TU−
S =

(
tU−
sl , t−sh, tU−

sr

)
=
(
min

{
aU

il
}

, min{aih}, min
{

aU
ir
})

TU+
S =

(
tU+
sl , t+sh, tU+

sr

)
=
(
max

{
aU

il
}

, max{aih}, max
{

aU
ir
})

, for i = 1, 2, . . . , n.

In the above relative preference relationship, the coefficients p and 1 − p are the
weights of the lower interval AL and the upper interval AU , respectively. The value of
p, called the relative preference relation value, is generally determined subjectively, and
several different values are usually considered. A good relative preference relationship has
a value of p close to 1, and a poor relative preference relationship has a value of p close to
0. Therefore, the relative merits of IVTFNs in a specific set can be quickly judged by the
relative preference relation value p [13,31,32].

3. The NSN P System and Its Extension to the FRNSN P System

The NSN P systems are described and their computational power is demonstrated by
solving SAT problems. The FRNSN P system is then defined by introducing the IVTFNs
into the NSN P system, which lays the foundation for fault diagnosis of induction motors.

3.1. The NSN P System

The NSN P system, described in detail below, has a slightly different threshold from
that used in the literature [30,33].

An NSN P system is defined as a tuple as shown in (2) below:

∏ = (σ1, σ2, . . . , σl , syn, in, out), (2)

where l ≥ 1 is the degree of the NSN P system. The notations in this definition are
given below.

(1) σ1, σ2, . . . , σl represent l neurons with the form σk = (θk, Vark, Prk, Vark(0)), for 1 ≤ k ≤ l,
where

(a) θk ∈ Z is the threshold of neuron σk;
(b) Vark =

{
xw,k

∣∣1 ≤ w ≤ hk
}

is a set of variables in neuron σk, where hk is the
number of variables in σk;

(c) Vark(0) =
{

xw,k(0)
∣∣xw,k(0) ∈ R, 1 ≤ w ≤ hk

}
refers to the set of initial values

of the variables in the set Vark;
(d) Prk =

{
prP,k = FP,k

(
x1,k, . . . , xhk ,k

)∣∣1 ≤ P ≤ h′k
}

is a set of programs, where
F is called a production function in neuron σk, where h′k is the number of
programs in σk.

(2) syn = { (k, j)|1 ≤ k, j ≤ l, k 6= j} is the set of synapses.
(3) in and out correspond to the input neuron σin and the output neuron σout, respectively.

In NSN P system Π, xw,k and prP,k represent variable w and program P in neuron σk,
respectively. When neuron σk has only one variable or only one program, w or P is omitted
from the subscripts. At time t, the value of variable xw,k is represented by xw,i(t) and the
production value of program prP,k is represented by prP,k(t) = FP,k

(
x1,k(t), . . . , xhk ,k(t)

)
,

i.e., the production value prP,k(t) is determined by the values of the variables x1,k, . . . , xhk ,k
at time t. Each neuron in Π has a threshold θk, and program prP,k will be applied only when
prP,k(t) ≥ θk. Once prP,k is applied, meaning neuron σk fires, the values of the variables
x1,k, . . . , xhk ,k are reset to 0 and prP,i(t) is simultaneously transmitted to the variables of the
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postsynaptic neurons of neurons σk. If prP,k(t) < θk, neuron σk will not fire and prP,k(t)
will disappear at this moment.

If the sum of the production values received by variable xw,k at time t is pr(t), then
xw,k(t + 1) is updated according to (3) in the following:

xw,k(t + 1) =

{
pr(t), if the application of program prP,k involves variable xw,k

pr(t) + xw,k(t), if the application of program prP,k does not involve variable xw,k
(3)

All neurons work in parallel in the NSN P system, and each neuron applies one
program at most at each moment. If more than one program can be applied, only one can
be selected non-deterministically.

3.2. An Application to the SAT Problem

A SAT problem checks whether the variables of a given Boolean formula can be
consistently replaced with the values TRUE and FALSE such that the formula evaluates
to TRUE. The instances of SAT problems are determined by two parameters m and n
representing the numbers of clauses and variables, respectively. Given a set of Boolean
variables Q = {q1, q2, . . . , qn}, a clause C can be expressed in the form q1(¬q1) ∨ · · · ∨
qi(¬qi) ∨ · · · ∨ qn(¬qn), where ∨ indicates the disjunction. A qi = 1 means that qi is
assigned a true value. In general, if qi = 1, then ¬qi = 0, and if qi = 0, then ¬qi = 1.
As long as a variable in C is given a true value, C is assigned a value of 1, meaning C is
satisfiable. The SAT problem is stated as:

INSTANCE: A clause setC = {C1, C2, . . . , Cm}, constructed from a finite set {q1, q2, . . . , qn}
of Boolean variables.

TASK: Find if there is an assignment of the variables q1, q2, . . . , qn satisfying all the
clauses in C.

When the assignment of the variables satisfies all the clauses, C is satisfiable and each
clause Cj, for 1 ≤ j ≤ m, is given a value of 1. In the following, the SAT problems are
solved uniformly with a family of NSN P systems.

The NSN P systems, working non-deterministically, can solve the SAT problem in
finite time steps. The general structure of the NSN P systems is shown in Figure 2, with
modules Qi, for 1 ≤ i ≤ n, and Yj, for 1 ≤ j ≤ m, corresponding to variables qi and clauses
Cj, respectively. Each module Qi has three synapses connected to module Yj.
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Figure 2. The structure of the NSN P systems for solving the SAT problems.

The following method is used to encode a given SAT instance in order to obtain a
uniform solution. A propositional formula γ = C1 ∧ C2 ∧ . . . ∧ Cm is considered in the
conjunctive normal form, where ∧ indicates the conjunction. Since variable qi may or may
not appear in a clause Cj and can or cannot be negated when it appears, two bits binary
numbers are used to code the relationship between qi and Cj with 00 indicating qi not
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appearing in Cj, 01 or equivalently 10 indicating qi appearing in Cj, and 11 indicating ¬qi
appearing in Cj.

Each clause corresponds to an input neuron, and a sequence of 2n digits of 0 s and 1 s
is introduced into the input neuron to describe the clause. Therefore, 2n steps are required
to input the code of the clause with n variables. For example, γ = (¬q1 ∨ q2) ∧ (q1 ∨ ¬q3)
is a propositional formula composed of clauses C1 = ¬q1 ∨ q2 and C2 = q1 ∨ ¬q3, and the
sequences 110100 and 010011 corresponding to clauses C1 and C2 will be introduced into
the associated input neurons within six steps, respectively.

Module Qi is shown in Figure 3. The neurons σc1 , σc2 , σc3 and σc4 in each module Qi
are allowed to appear only once in order to reduce the computational complexity. Initially
only variable xc1 of neuron σc1 is assigned a value of 1. Module Qi non-deterministically
produces a truth assignment for variable qi by non-deterministically choosing a program
between Pr1,di

= xdi
and Pr2,di

= xdi
− 1 in neuron σdi

. Neuron σei will fire if program
Pr1,di

= xdi
is applied and will not fire if program Pr2,di

= xdi
− 1 is applied. In this

way, neuron σei transmits the value of 1 or nothing to neuron σzj in module Yj. Then qi is
assigned the true value if the value of 1 is transmitted. In addition to feeding neuron σdi

,
neuron σc1 initially transmits a value of 1 to neuron σc2 . This value is transmitted along the
path σc3 → σf → · · · → σg or σc4 → σf → · · · → σg to neuron σzj in module Yj.
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Figure 3. Module Qi.

Delay neurons labeled σf and σg are used to maintain the synchronization of the
transmission, i.e., neuron σzj receives the value from module Qi and the value from the
input neuron associated with clause Cj simultaneously. For example, module Q1 does not
need delay neurons and module Q2 needs two delay neurons per row. By analogy, each row
of module Qi needs i− 1 pairs of delay neurons to guarantee synchronization. Therefore,
in step 1+ 2i, neuron σzj receives the assignment of variable qi and the value from the input
neuron. Further processing will be carried out in module Yj, as shown in Figure 4.

In steps 3, 5, . . . , 2n + 1, neuron σzj may receive the following values:

2 if qi = 0, but qi and ¬qi do not appear in Cj,
3 if qi = 1, but qi and ¬qi do not appear in Cj,
3 if qi = 0, but qi appears and ¬qi does not appear in Cj,
4 if qi = 1, but qi appears and ¬qi does not appear in Cj,
4 if qi = 0, but ¬qi appears and qi does not appear in Cj,
5 if qi = 1, but ¬qi appears and qi does not appear in Cj.

Program Prz = 1
4 xz in neuron σzj will be activated and will produce a value of 1 in

two cases, one is when qi = 1 and qi appears in Cj and the other is when qi = 0 and ¬qi
appears in Cj. In either case, the assignment of variable qi satisfies clause Cj. Neuron σz′ j is
used to ensure that σzj fires only once by passing the production value −5 to variable xzj .
In this way, it also ensures that variable xout receives a value of 1 at most once.

In step 2i + 2, if all clauses are satisfied, the sum of the values received by variable
xout is m, and neuron σout fires. So far, it shows that there is a variable assignment so that
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the proposition formula γ is satisfiable. Therefore, NSN P systems, containing a total of
6n2 − n + 2m + 1 neurons working non-deterministically, can solve the SAT problem in
finite time steps.
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Figure 4. Module Yj.

The computation time can be shortened by using more input neurons after modifying
modules Yj, j = 1, 2, . . . , m. The structure of the modified module Yj is shown in Figure 5.
The modified module Yj uses n input neurons to introduce the binary code of a clause in
two steps instead of bit by bit in one input neuron. Each of these n neurons receives a two
bit binary number 00, 01 (or 10) or 11. When receiving a value of 1, the input neuron σinj,i
will fire and transmit a value of 1 to neurons σzj,i , 1 ≤ i ≤ n and 1 ≤ j ≤ m. Neurons σzj,i

and σz in module Yj have similar structures and perform the same functions, i.e., checking
whether the assignment of variable qi satisfies clause Cj.
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Figure 5. Modified module Yj.

The delay neurons σf and σg in module Qi are no longer needed while all other parts
remain unchanged. In step 3, module Qi, for 1 ≤ i ≤ n, also transmits values of 2 or 3 to
all neurons σzj,i . All variables and all clauses are then checked in parallel. In step 4, if the
assignment of variable qi satisfies clause Cj, the program in neuron σzj,i will be enabled. As
a result, variable xj of neuron σj may receive values of 1, 2, . . . , n. No matter which value
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σj receives, program Pr1,j = xj will be enabled in step 5 due to the values of the threshold
θj = 1, 2, . . . , n.

The firing of neuron σj shows that Cj is satisfiable. Each neuron σj is connected
to neuron σout. In step 6, if the sum of the values received by neuron σout is m, the
assignments of variables q1, q2, . . . , qn all satisfy the clauses in C. At the same time, program
Prout =

1
m xout is applied and neuron σout fires. Obviously, the SAT problem is solved in six

steps. With the modified modules Yj, the NSN P systems use a total of 2nm + m + 2n + 5
neurons. The computation time is greatly reduced compared to the system with the original
modules Yj although it is not clear about how many more neurons are needed.

To show the computational power of the NSN P system, its time steps for solving
the SAT problem are compared with those of DDSN P systems [34], WSN P systems [35]
and SN P systems with neuron division and budding [36]. The comparisons are shown in
Table 1. Obviously, the NSN P system can solve the SAT problem with the fewest steps.

Table 1. Comparisons of time steps of different P systems for solving the SAT problem.

Modules Time Steps

NSN P systems 6

DDSN P systems [34] 2n + m + 3

WSN P systems [35] 2n + m + 3

SN P systems with neuron division and
budding [36] 2n + mn + 6

3.3. Definition of the FRNSN P System

The FRNSN P system is presented in this subsection as an extension of the NSN P
system. A fuzzy reasoning numerical spiking neural P (FRNSN P) system of degree m is
defined in (4) as follows

Π = (γ, syn, in, out) (4)

where γ = γp ∪ γr = {σ1, . . . , σl} is a set of l neurons, with γp = {σ1, . . . , σs} representing
the set of proposition neurons and γr = {σs+1, . . . , σs+n} representing the set of rule
neurons, such that l = s+ n. Each proposition neuron has the form of σi = (θi, xi, Pri, xi(0)),
for 1 ≤ i ≤ s, and each rule neuron has the form of σj =

(
θj, cj, xj, Prj, xj(0)

)
, for 1 ≤ j ≤ n.

The details of the notations in the definition of Π are given below.

(1) (a) θk ∈ Ψ is the firing threshold of neuron σk, for 1 ≤ k ≤ l;
(b) cj ∈ Ψ indicates the confidence factor of neuron σj, for 1 ≤ j ≤ n.
(c) xk is the variable of neuron σk, for 1 ≤ k ≤ l;
(d) xk(0) is the initial fuzzy value of variable xk, for 1 ≤ k ≤ l.

(e) Prk =

{
prk = Fk(xk) =

{
xk, if neuron σk is a propositinal neuron
xkck, if neuron σk is a rule neuron

, is a set

of programs, where F is called the production function, for 1 ≤ k ≤ l.
(2) syn ⊆ {1, 2, . . . , l} × {1, 2, . . . , l} with (k, k) /∈ syn is the set of synapses.
(3) in and out correspond to the input neuron σin and the output neuron σout, respectively.

In the FRNSN P system, each neuron contains only one variable and one program, each
threshold θk, each confidence factor cj or the initial value of the variable xk is an NIVTFN
and each program has only two special forms prk = xk and prk = xkcj. Everything else in
the FRNSN P system is the same as that in the NSN P system.

For convenience and intuition, NIVTFNs are associated with some linguistic semantics.
The linguistic semantics used in this work are widely used in the literature [13,15,31] and
are shown in Table 2. These linguistic semantics vividly reflect the probability that an
event occurs.
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Table 2. The correspondence between linguistic terms and NIVTFNs.

Linguistic Terms NIVTFNs

Extremely Low (EL) [(0, 0), 0, (0, 0)]
Very Low (VL) [(0, 0.06), 0.12, (0.18, 0.23)]

Low (L) [(0.20, 0.24), 0.27, (0.30, 0.39)]
Fairly Low (FL) [(0.33, 0.36), 0.44, (0.46, 0.52)]

Medium (M) [(0.454, 0.48), 0.52, (0.55, 0.64)]
Fairly High (FH) [(0.62, 0.642), 0.67, (0.721, 0.78)]

High (H) [(0.73, 0.79), 0.82, (0.84, 0.90)]
Very High (VH) [(0.86, 0.90), 0.93, (0.97, 1)]

Extremely High (EH) [(1.00, 1.00), 1.00, (1.00, 1.00)]

In addition, the following arithmetic and logic operations, involved in the operations
of the FRNSN P system, are defined.

Premise: A =
[(

aU
l , aL

l
)
, ah,

(
aL

r , aU
r
)]

and B =
[(

bU
l , bL

l
)
, bh,

(
bL

r , bU
r
)]

are two NIVTFNs,
with a and b being real numbers in the interval [0, 1].

Given the above premise, the following arithmetic operation is defined:

A× B =
[(

aU
l × bU

l , aL
l × bL

l

)
, ah × bh,

(
aL

r × bL
r , aU

r × bU
r

)]
Given the above premise, the following logical operations are defined:

(1) And: A∧ B =
[(

aU
l ∧ bU

l , aL
l ∧ bL

l
)
, ah ∧ bh,

(
aL

r ∧ bL
r , aU

r ∧ bU
r
)]

, where a∧ b = min(a, b);
(2) Or: A∨ B =

[(
aU

l ∨ bU
l , aL

l ∨ bL
l
)
, ah ∨ bh,

(
aL

r ∨ bL
r , aU

r ∨ bU
r
)]

, where a∨ b = max(a, b);
(3) If a ≥ b, then A ≥ B.

4. The FRNSN P Reasoning Algorithm

This section first uses the FRNSN P system to model the fuzzy production rules of
the induction motors, and then proposes the FRNSN P reasoning algorithm based on the
reasoning process of the FRNSN P system.

4.1. Modeling and Fuzzy Reasoning

Fuzzy production rules are usually used for knowledge representation, and the fol-
lowing three types of fuzzy production rules are involved in this work:

General rule Rj: IF p1, THEN p2
(
C = cj

)
;

And rule Rj: IF p1 AND p2 AND . . . AND ps−1, THEN ps
(
C = cj

)
;

Or rule Rj: IF p1 OR p2 OR . . . OR ps−1, THEN ps
(
C = cj

)
;

where p1, . . . , ps are fuzzy propositions, and C = cj represents the credibility of the
fuzzy production rule Rj.

The FRNSN P system is used to model the above three types of fuzzy production rules.
Four types of, i.e., proposition, G-rule, A-rule and O-rule, neurons, as shown in Figure 6, are
used in the FRNSN P systems. A proposition neuron represents a fuzzy proposition. The
G-rule, A-rule and O-rule neurons represent the three types of rules, as discussed below.
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(d) O-rule neuron.

The General rule is modeled by FRNSN P system Π1 shown in Figure 7 (Π1). System
Π1 is specified in (5) as follows

Π1 = ({σ1, σ2, σ3}, syn, in, out) (5)
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Figure 7. FRNSN P systems modeling the three types of fuzzy production rules.

The details of the notations used in system Π1 are given below.

(1) σi = (θi, Vari, Pri, Vari(0)) is a proposition neuron representing fuzzy propositions pi
for i = 1, 2;

(2) σ3 = (θ3, c3, Var3, Pr3, Var3(0)) is a G-rule neuron;
(3) syn = {(σ1, σ3), (σ3, σ2)} is the set of synapses;
(4) in = {σ1} and out = {σ2} are the input and output proposition neurons.

The fuzzy reasoning process is automatically performed as follows. Initially, the
variable of neuron σ1 is assigned a value of x1(0). Neuron σ1 fires and the variable of
neuron σ3 receives the production value pr1(0) if pr1(0) = x1(0) ≥ θ1, or does not fire and
the value pr1(0) disappears otherwise, at time t = 0. When rule neuron σ3 satisfies the
firing condition, it fires and transmits the production value of pr3(1) = x3(1)c3 = x1(0)c3
to variable x2 at time t = 1. Thus, the value x1(0)c3 is the result of the computation of
system Π1.

The AND rule is modeled by FRNSN P system Π2 shown in Figure 7 (Π2). System Π2
is specified in (6) as follows

Π2 = ({σ1, . . . , σs, σs+1}, syn, in, out) (6)

The details of the notations used in system Π2 are given below.

(1) σi = (θi, Vari, Pri, Vari(0)) is a proposition neuron representing fuzzy proposition pi
for 1 ≤ i ≤ s;

(2) σs+1 = (θs+1, cs+1, Vars+1, Prs+1, Vars+1(0)) is an A-rule neuron;
(3) syn = {(σ1, σs+1), . . . , (σs−1, σs+1), (σs+1, σs)} is the set of synapses;
(4) in = {σ1, . . . , σs−1} and out = {σs} are the set of input neurons and the output neuron.

The fuzzy reasoning process is automatically performed as follows. The variables
of neurons σ1, . . . , σs−1 are assigned initial values of x1(0), . . . , xs−1(0), respectively. For
1 ≤ i ≤ s− 1, neuron σi fires and xs+1(t) = x1(0) ∧ . . . ∧ xs−1(0) if pri(t) ≥ θi, and does
not fire and pri(t) disappears if pri(t) < θi. When the A-rule neuron fires the next time, the
production value prs+1(t) = xs+1(t)cs+1 will be transmitted to variable xs. Therefore, the
result computed by Π2 is xs = xs+1(t)cs+1.
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The OR rule is modeled by FRNSN P system Π3, as shown in Figure 7 (Π3). System
Π3 is specified in (7) as follows

Π3 = ({σ1, . . . , σs, σs+1}, syn, in, out) (7)

The details of the notations used in system Π3 are given below:

(1) σi = (θi, Vari, Pri, Vari(0)) is a proposition neuron representing fuzzy proposition pi
for 1 ≤ i ≤ s;

(2) σs+1 = (θs+1, cs+1, Vars+1, Prs+1, Vars+1(0)) is the O-rule neuron;
(3) syn = {(σ1, σs+1), . . . , (σs−1, σs+1), (σs+1, σs)} is the set of synapses;
(4) in = {σ1, . . . , σs−1} and out = {σs} are the set of input neurons and the output neuron.

The fuzzy reasoning process of system Π3 is similar to that of system Π2, and its
description is omitted.

4.2. The FRNSN P Reasoning Algorithm

This subsection introduces the FRNSN P reasoning algorithm, as detailed in Algorithm 1.
The related matrices, vectors and multiplication operators, as well as a function, are
introduced first. The flowchart of the FRNSN P reasoning algorithm is then presented.

(1) Xp(t) = (x1(t), . . . , xs(t))
T is a vector consisting of the fuzzy values of the s variables

contained in the s proposition neurons, where xi(t) is an NIVTFN, for 1 ≤ i ≤ s;
(2) Xr(t) = (x1(t), . . . , xn(t))

T is a vector consisting of the fuzzy values of the n variables
contained in the n rule neurons, where xj(t) is an NIVTFN, for 1 ≤ j ≤ n;

(3) Θ = (θ1, . . . , θl)
T is a vector consisting of the l firing thresholds of the l neurons,

where θk is an NIVTFN, for 1 ≤ k ≤ l;
(4) C = diag(c1, . . . cn) is a diagonal matrix consisting of the confidence factors of the

n rule neurons, where cj, for 1 ≤ j ≤ n, is the confidence factor of neuron σj, an
NIVTFN, representing the credibility of the fuzzy production rule Rj;

(5) D1 =
(

d(1)ij

)
s×n

is a matrix representing the synaptic connections from proposition

neurons to G− rule neurons, such that d(1)ij = 1 if a synapse exists from proposition

neuron σi to G− rule neuron σj, and d(1)ij = 0 otherwise, for 1 ≤ i ≤ s and 1 ≤ j ≤ n;

(6) D2 =
(

d(2)ij

)
s×n

is a matrix representing the synaptic connections from proposition

neurons to A− rule neurons, such that d(2)ij = 1 if a synapse exists from proposition

neuron σi to A− rule neuron σj, and d(2)ij = 0 otherwise, for 1 ≤ i ≤ s and 1 ≤ j ≤ n;

(7) D3 =
(

d(3)ij

)
s×n

is a matrix representing the synaptic connections from proposition

neurons to O− rule neurons such that d(3)ij = 1 if a synapse exists from proposition

neuron σi to O− rule neuron σj, and d(3)ij = 0 otherwise, for 1 ≤ i ≤ s and 1 ≤ j ≤ n;

(8) E =
(
eji
)

n×s is a matrix representing the synaptic connections from rule neurons
to proposition neurons such that eji = 1 if a synapse exists from rule neuron σj to
proposition neuron σj, and eji = 0 otherwise, for 1 ≤ i ≤ s and 1 ≤ j ≤ n;

(9) Vp(t) =
(
vp1(t), . . . , vps(t)

)T is a vector consisting of the values passed by proposition
neuron σi to the postsynaptic rule neuron variable. If neuron σi does not have a
postsynaptic neuron, then this value is passed to the environment as the output value.
In particular, vpi(0) = 0, for 1 ≤ i ≤ s;

(10) Vr(t) = (vr1(t), . . . , vrn(t))
T is a vector consisting of the values passed by rule neuron

σj to the postsynaptic proposition neuron variable. In particular, vrj(0) = 0 for
1 ≤ j ≤ n.

In addition, several multiplication operators for the above matrices and vectors
are defined:
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(1) C ⊗ Xr(t) = (c1x1(t), . . . , cnxn(t))
T . Similarly, D1

T ⊗ Xp(t) =
(

d
(1)
1 , d

(1)
2 , . . . d

(1)
n

)T
,

where d
(1)
j = d(1)1j x1(t) + d(1)2j x2(t) + . . . + d(1)sj xs(t), for 1 ≤ j ≤ n;

(2) DT
2 �Xp(t) =

(
d
(2)
1 , d

(2)
2 , . . . d

(2)
n

)T
, where d

(2)
j = d(2)1j x1(t)∨ d(2)2j x2(t)∨ . . .∨ d(2)sj xs(t),

for 1 ≤ j ≤ n;

(3) DT
3 ⊕Xp(t) =

(
d
(3)
1 , d

(3)
2 , . . . d

(3)
n

)T
, where d

(3)
j = d(3)1j x1(t)∧ d(3)2j x2(t)∧ . . .∧ d(3)sj xs(t),

for 1 ≤ j ≤ n.

Finally, a function (8) for production value prk(t) and threshold θ is defined.

vk(t) =

{
prk(t), if prk(t) ≥ θk

0, otherwise
, 1 ≤ k ≤ l, s + n = l. (8)

Algorithm 1: The FRNSN P reasoning algorithm

Input: Θ, C, D1, D2, D3, E, XP(0), Xr(0)

1. Let t = 0;
2. Set the stopping condition 0r = (0, . . . , 0)T

n ;
3. while (Xr(t) 6= 0r) do
4. for each of the (input) proposition neurons do
5. if the proposition neuron has a postsynaptic rule neuron then
6. Calculate Xr(t) =

(
DT

1 ⊗Vp(t)
)
+
(

DT
2 �Vp(t)

)
+
(

DT
3 ⊕Vp(t)

)
;

7. if pri(t) ≥ θi then
8. Transmits the value vpi(t) to the rule neuron;
9. else
10. Transmits the value 0 to the rule neuron;
11. end if
12. end if
13. end for
14. for each of the rule neurons do
15. if prj(t) ≥ θj then
16. Transmits the value vrj(t) to the postsynaptic proposition neuron;
17. Calculate Xp(t) = ET ⊕ (C⊗Vr(t));
18. end if
19. end for
20. t = t + 1;
21. end while

Output: The fuzzy values of the output proposition neurons.

Matrices Θ, C and Xp(0) were obtained from expert experience and historical data,
and matrices D1, D2, D3 and E were obtained from the topology of the FRNSN P system.
The flowchart of the FRNSN P reasoning algorithm is shown in Figure 8.
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5. Fault Diagnosis of Induction Motors Using the FRNSN P Reasoning Algorithm

The fault mechanism of induction motors is complex, and the relationship between
a fault and a symptom is not one-to-one correspondent but is complex. Generally, a
fault manifests as multiple symptoms and different faults may correspond to the same
symptom [37–39]. The faults of induction motors are mostly related to windings, bearings
and rotors. The single-fault cases “Winding insulation burnt”, “Bearing damage” and
“Broken rotor bar”, and the multiple-fault cases “Winding insulation burnt and bearing
damage” and “Bearing damage and broken rotor bar”, as listed in Table 3, were investi-
gated using Algorithm 1. Due to the similarity of the reasoning processes, the multi-fault
case “Winding insulation burnt and bearing damage” is used as an example for detailed
description. A flowchart showing the induction motor fault diagnosis process is in Figure 9.

Table 3. Comparisons of the reasoning results of FRNSN P and the other three methods.

Preset
Methods

Result

Cases Fault
Locations

Fault
Symptoms Fault Cases Fault Events Fault

Sources Fault Cases

1 Broken rotor
bar

σ38 σ12(H) σ12, σ23, σ34

FFPN [37] σ38 σ12 σ12, σ23, σ34
CLPSO-FPN [38] σ38 σ12 σ12, σ23, σ34
rMFRSNPs [40] σ38 σ12 σ12, σ23, σ34

FRNSN P σ38 σ12 σ12, σ23, σ34

2
Winding

insulation
burnt

σ36 σ2(FH), σ3(H)
σ2, σ3, σ17,

σ27

FFPN [37] σ36 σ2, σ3
σ2, σ3, σ17,

σ27

CLPSO-FPN [38] σ36 σ2, σ3
σ2, σ3, σ17,

σ27

rMFRSNPs [40] σ36 σ2, σ3
σ2, σ3, σ17,

σ27

FRNSN P σ36 σ2, σ3
σ2, σ3, σ17,

σ27
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Table 3. Cont.

Preset
Methods

Result

Cases Fault
Locations

Fault
Symptoms Fault Cases Fault Events Fault

Sources Fault Cases

3
Bearing
damage

σ37 σ8(H), σ9(FH) σ8, σ21, σ32

FFPN [37] σ37 σ8, σ9
σ8, σ9, σ21,

σ32

CLPSO-FPN [38] σ37 σ8, σ9
σ8, σ9, σ21,

σ32
rMFRSNPs [40] σ37 σ8 σ8, σ21, σ32

FRNSN P σ37 σ8 σ8, σ21, σ32

4

Bearing
damage and
broken rotor

bar

σ37, σ38
σ8(H), σ10(FH),

σ11(VH)

σ8, σ11,
σ21, σ22, σ23,
σ32, σ33, σ34

FFPN [37] σ38 σ11 σ11, σ23, σ34

CLPSO-FPN [38] σ37, σ38 σ8, σ11
σ8, σ11,
σ22, σ23,

σ32, σ33, σ34

rMFRSNPs [40] σ37, σ38 σ8, σ11
σ8, σ11,

σ21, σ22, σ23,
σ32, σ33, σ34

FRNSN P σ37, σ38 σ8, σ11
σ8, σ11,

σ21, σ22, σ23,
σ32, σ33, σ34

5

Winding
insulation
burnt and

bearing
damage

σ36, σ37

σ2(FH), σ3(VH),
σ5(VH), σ6(H),
σ8(H), σ9(H),

σ10(FH),
σ13(FH)

σ3, σ5, σ6,
σ8, σ9, σ17,

σ19, σ20, σ21,
σ27, σ29, σ30,

σ31, σ32

FFPN [37] σ36 σ3, σ5, σ6
σ3, σ5, σ6,

σ17, σ20, σ27,
σ30

CLPSO-FPN [38] σ36 σ3, σ5, σ6
σ3, σ5, σ6,

σ17, σ20, σ27,
σ30

rMFRSNPs [40] σ36, σ37,
σ38

σ2, σ3, σ5,
σ6, σ8, σ9,

σ13

σ2, σ3, σ5,
σ6, σ8, σ9,

σ13, σ17, σ19
σ20, σ21, σ27

σ29, σ30,
σ31, σ32

FRNSN P σ36, σ37
σ3, σ5, σ6,

σ8, σ9

σ3, σ5, σ6,
σ8, σ9, σ17,

σ19, σ20, σ21,
σ27, σ29, σ30,

σ31, σ32

5.1. Fuzzy Production Rules for Induction Motors

The fuzzy production rules related to motor faults are presented and the relevant
fault events are enumerated, as shown in Figure 10 [37,38,40]. There is a one-to-one
correspondence between fault events and propositions in fuzzy production rules. Fault
events 36, 37 and 38 are the immediate causes of “motor fault”, and the motor is considered
faulty whichever of the three faults occurs. The events in bold in Figure 10 are fault
symptom events of faults 36, 37 and 38, and event 7 is a symptom of all the three faults.
The fuzzy production rules are listed below:

R1: IF p1, THEN P15 (C = c1);
R2: IF p2 AND p3, THEN P16 (C = c2);
R3: IF p3, THEN P17 (C = c3);
R4: IF p4, THEN P18 (C = c4);
R5: IF p5, THEN P19 (C = c5);
R6: IF p6 OR p7, THEN P20 (C = c6);
R7: IF p8 OR p9, THEN P21 (C = c7);
R8: IF p10 OR p11, THEN P22 (C = c8);
R9: IF p11, THEN P23 (C = c9);
R10: IF p12, THEN P24 (C = c10);
R11: IF p7, THEN P25 (C = c11);
R12: IF p13 OR p14, THEN P26 (C = c12);
R13: IF p15 OR p16 OR p17, THEN P27 (C = c13);
R14: IF p18, THEN P28 (C = c14);
R15: IF p19, THEN P29 (C = c15);
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R16: IF p20, THEN P30 (C = c16);
R17: IF p20, THEN P31 (C = c17);
R18: IF p21, THEN P32 (C = c18);
R19: IF p22, THEN P33 (C = c19);
R20: IF p23 OR p24 OR p25, THEN P34 (C = c20);
R21: IF p26, THEN P35 (C = c21);
R22: IF p27 OR p28 OR p29 OR p30, THEN P36 (C = c22);
R23: IF p31 OR p32 OR p33, THEN P37 (C = c23);
R24: IF p34 OR p35, THEN P38 (C = c24);
R25: IF p36 OR p37 OR p38, THEN P39 (C = c25).
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Defining the FRNSN P systemDefining the FRNSN P 
system

Defining the FRNSN P system
Modeling fuzzy production rules for 
induction motors using the FRNSN P 

system

Defining the FRNSN P 
systemFuzzy reasoning

Defining the FRNSN P systemDetermining if the motor is 
faulty

Defining the FRNSN P systemIdentifiing fault location and 
determining severity

End

NIVTFNs

Fault events

Algorithm 1

Forward reasoning

Backward reasoning

Start

Figure 9. The flowchart of induction motor fault diagnosis process using Algorithm 1.

Entropy 2022, 24, x FOR PEER REVIEW 18 of 25 
 

 

36. Winding insulation burnt

1. Overload
2. Rotor winding short circuit

3. The resistance value of a phase winding decreases
 4 Fuse blown 

5. Shaft seal ring damaged
6. Oil seal material overheating

7. lubricating oil reduction
15. Rotation speed drops

 16. Excessive current of a certain phase
17. Excessive excitation current

18.Voltage loss of a phase
19. Foreign matter enters the clearance of the rotating shaft

20. Excessive roughness value of the shaft seal surface
27. Motor overheating

28. Phase loss operation
29. Abnormal rotation or rotor stuck

30. Insulation aging

37.  Bearing damage

6. Oil seal material overheating
 7. Lubricating oil reduction 

8. Inner ring failure
9. Outer ring failure

10. Rolling element failure
11. Faulty bearing locking device

20. Excessive roughness value of the shaft 
seal surface

21. Bearing temperature rises
22. Excessive vibration when the motor is 

running
31. Bearing fracture

32. Bearing fatigue shedding
33. Excessive wear of the bearing

38. Broken rotor bar

7. Lubricating oil reduction 
11. Faulty bearing locking device

12. Poor lubrication
13. Deformation of rotor core

14. Cracked or dislodged magnetic wedge
23. Faulty spring compression device

24. Rotor axial play
25. Poor shaft alignment

26. Motor sweeping
34. Excessive bearing noise

35 Abnormal noise when the motor is 
running

 
Figure 10. Fault events related to motor faults. 

5.2. Parameter Settings 
The relevant parameters of the FRNSN P reasoning algorithm are specified in this 

subsection. The confidence factors jc  for 1 j n≤ ≤  of the O-rule neurons, the G-rule neu-
rons and the A-rule neurons were set to ( ) ( )1.00, 1.00 , 1.00, 1.00, 1.00EH =    ,

( ) ( )0.86,0.90 ,0.93, 0.97,1VH =     and ( ) ( )0.73,0.79 ,0.82, 0.84,0.90H =    , respectively, 
based on experience and historical data [39,40]. The firing thresholds kθ  for 1 k l≤ ≤  of 
the proposition neurons and the rule neurons were set to 

( ) ( )0.454,0.48 ,0.52, 0.55,0.64M =    . In addition, if the NIVTFN of the variable in a prop-

osition neuron satisfies ( ) ( ) ( )0.62,0.642 ,0.67, 0.721,0.78ix t FH≥ =    , then the fault event 
corresponding to the proposition neuron has indeed occurred. If the NIVTFN of the vari-
able in a proposition neuron satisfies ( ) ( ) ( )0.33,0.36 ,0.44, 0.46,0.52ix t FL≤ =    , then the 
fault event corresponding to the proposition neuron has not occurred. 

5.3. Case Studies 
In this subsection, the potential fault of the motor is modeled using the fuzzy pro-

duction rules, as shown in Figure 11. The fault diagnosis of the motor was carried out 
through Algorithm 1. Specifically, fault diagnosis contains two phases. The first phase is 
forward reasoning, which is to infer whether the motor will fail according to the proba-
bility of occurrence of failure events. The second phase is backward reasoning, that is to 
infer the fault cause and fault path of the motor after determining the motor fault. Suppose 
that the fault symptom events 2, 3, 5, 6, 8, 9, 10 and 13 occurred according to the online 
monitoring system, indicating that the initial NIVTFNs of the variables in neurons 2σ , 

3σ , 5σ , 6σ , 8σ , 9σ , 10σ  and 13σ  are all greater than or equal to FH  as defined in Ta-
ble 2. 

Figure 10. Fault events related to motor faults.



Entropy 2022, 24, 1385 16 of 21

5.2. Parameter Settings

The relevant parameters of the FRNSN P reasoning algorithm are specified in this
subsection. The confidence factors cj for 1 ≤ j ≤ n of the O-rule neurons, the G-rule
neurons and the A-rule neurons were set to EH = [(1.00, 1.00), 1.00, (1.00, 1.00)],
VH = [(0.86, 0.90), 0.93, (0.97, 1)] and H = [(0.73, 0.79), 0.82, (0.84, 0.90)], respectively,
based on experience and historical data [39,40]. The firing thresholds θk for 1 ≤ k ≤ l of the
proposition neurons and the rule neurons were set to M = [(0.454, 0.48), 0.52, (0.55, 0.64)].
In addition, if the NIVTFN of the variable in a proposition neuron satisfies
xi(t) ≥ FH = [(0.62, 0.642), 0.67, (0.721, 0.78)], then the fault event corresponding to the
proposition neuron has indeed occurred. If the NIVTFN of the variable in a proposition neu-
ron satisfies xi(t) ≤ FL = [(0.33, 0.36), 0.44, (0.46, 0.52)], then the fault event corresponding
to the proposition neuron has not occurred.

5.3. Case Studies

In this subsection, the potential fault of the motor is modeled using the fuzzy pro-
duction rules, as shown in Figure 11. The fault diagnosis of the motor was carried out
through Algorithm 1. Specifically, fault diagnosis contains two phases. The first phase is
forward reasoning, which is to infer whether the motor will fail according to the probability
of occurrence of failure events. The second phase is backward reasoning, that is to infer the
fault cause and fault path of the motor after determining the motor fault. Suppose that the
fault symptom events 2, 3, 5, 6, 8, 9, 10 and 13 occurred according to the online monitoring
system, indicating that the initial NIVTFNs of the variables in neurons σ2, σ3, σ5, σ6, σ8, σ9,
σ10 and σ13 are all greater than or equal to FH as defined in Table 2.
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Figure 11. The forward reasoning model for induction motor fault diagnosis using the FRNSN P system.
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5.3.1. Forward Reasoning

The threshold vector Θ and the confidence factor matrix C were presented in Section 5.2.
The synaptic connection matrices D1, D2, D3 and E are given in the topological structure
of the FRNSN P system in Figure 11. The initial IVTFNs of the variables of the input
proposition neurons, i.e., the probabilities of occurrences of fault symptom events, were
obtained according to the historical data and the experienced fault diagnosis reports in the
industry [39,40].

The detailed process of forward reasoning using the FRNSN P system in Figure 11 is as
follows. Initially only the variables of the input proposition neurons contain nonzero values.
A 0 represents a vector of 0 s, i.e., the NIVTFNs in the neurons are [(0, 0), 0, (0, 0)]. An input
proposition neuron fires and passes the production value to the rule neurons if it satisfies
the threshold condition and does not fire and the contained production value disappears
otherwise. The neurons in Figure 11 fire hierarchically and the production values are passed
from presynaptic to postsynaptic neurons. According to the fuzzy reasoning process of
the three FRNSN P systems in Section 4.1, the values of the variables, represented by the
NIVTFNs, in the neurons at each time step are as follows.

Xp(0) =



[(0.33, 0.36), 0.44, (0.46, 0.52)]
[(0.62, 0.642), 0.67, (0.721, 0.78)]

[(0.86, 0.90), 0.93, (0.97, 1)]
[(0.20, 0.24), 0.27, (0.30, 0.39)]
[(0.86, 0.90), 0.93, (0.97, 1)]

[(0.73, 0.79), 0.82, (0.84, 0.90)]
[(0.20, 0.24), 0.27, (0.30, 0.39)]
[(0.73, 0.79), 0.82, (0.84, 0.90)]
[(0.73, 0.79), 0.82, (0.84, 0.90)]
[(0.62, 0.642), 0.67, (0.721, 0.78)]
[(0.20, 0.24), 0.27, (0.30, 0.39)]
[(0, 0.06), 0.12, (0.18, 0.23)]

[(0.62, 0.642), 0.67, (0.721, 0.78)]
[(0.20, 0.24), 0.27, (0.30, 0.39)]

0



, Xr(0) = [0].

When t = 1,

Xr(1) =



[(0, 0), 0, (0, 0)]
[(0.62, 0.642), 0.67, (0.721, 0.78)]

[(0.86, 0.90), 0.93, (0.97, 1)]
[(0, 0), 0, (0, 0)]

[(0.86, 0.90), 0.93, (0.97, 1)]
[(0.73, 0.79), 0.82, (0.84, 0.90)]
[(0.73, 0.79), 0.82, (0.84, 0.90)]
[(0.62, 0.642), 0.67, (0.721, 0.78)]

0


, Xp(1) =



0
[(0.7396, 0.81), 0.8649, (0.9409, 1)]

[(0, 0), 0, (0, 0)]
[(0.7396, 0.81), 0.8649, (0.9409, 1)]

[(0.73, 0.79), 0.82, (0.84, 0.9)]
[(0.73, 0.79), 0.82, (0.84, 0.9)]

[(0.62, 0.642), 0.67, (0.721, 0.78)]
0


.

When t = 2,

Xr(2) =



0
[(0.7396, 0.81), 0.8649, (0.9409, 1)]

[(0, 0), 0, (0, 0)]
[(0.7396, 0.81), 0.8649, (0.9409, 1)]

[(0.73, 0.79), 0.82, (0.84, 0.9)]
[(0.73, 0.79), 0.82, (0.84, 0.9)]
[(0.73, 0.79), 0.82, (0.84, 0.9)]

[(0.62, 0.642), 0.67, (0.721, 0.78)]
0


, Xp(2) =



0
[(0.7396, 0.81), 0.8649, (0.9409, 1)]

[(0, 0), 0, (0, 0)]
[(0.6361, 0.729), 0.8044, (0.9127, 1)]
[(0.6278, 0.711), 0.7626, (0.8148, 0.9)]
[(0.6278, 0.711), 0.7626, (0.8148, 0.9)]
[(0.6278, 0.711), 0.7626, (0.8148, 0.9)]
[(0.5332, 0.5778), 0.6231, (0.6994, 0.78)]

0


.

When t = 3,

Xr(3) =


0

[(0.7396, 0.81), 0.8649, (0.9409, 1)]
[(0.6278, 0.711), 0.7626, (0.8148, 0.9)]

0

, Xp(3) =


0

[(0.7396, 0.81), 0.8649, (0.9409, 1)]
[(0.6278, 0.711), 0.7626, (0.8148, 0.9)]

0

.

When t = 4,
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Xr(4) =

 0
[(0.7396, 0.81), 0.8649, (0.9409, 1)]

0

, Xp(4) =

 0
[(0.7396, 0.81), 0.8649, (0.9409, 1)]

0

.

When t = 5,
Xr(5) = [0]

When the computation completes at t = 4, the value of the variable in the output
proposition neuron σ39 is [(0.7396, 0.81), 0.8649, (0.9409, 1)]. The output proposition neuron
σ39 fires since it satisfies the firing condition [(0.7396, 0.81), 0.8649, (0.9409, 1)] ≥ M at t = 5.
Therefore, Xr(5) = [0], the stopping condition is satisfied, the algorithm terminates and
the reasoning result is obtained. The fault event corresponding to the output proposition
neuron σ39 occurs, i.e., the motor is faulty, since [(0.7396, 0.81), 0.8649, (0.9409, 1)] ≥ FH.

5.3.2. Backward Reasoning

After the induction motor is determined to be faulty, the computation results of the
FRNSN P reasoning algorithm are used to perform backward reasoning to find out the
fault event, fault source and the fault propagation path. The backward reasoning model is
shown in Figure 12.
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Figure 12. The backward reasoning model for induction motor fault diagnosis using the FRNSN P system.

The immediate cause of the motor failure can be determined from the threshold condi-
tions. Since the confidence factors of propositions p36, p37 and p38 are [(0.7396, 0.81), 0.8649,
(0.9409, 1)] ≥ FH, [(0.6278, 0.711), 0.7626, (0.8148, 0.90)] ≥ FH and [(0.2838, 0.324), 0.4092,
(0.4462, 0.52)] ≤ FL, respectively, the fault events “Winding insulation burnt” and “Bearing
damage”, but not “Broken rotor bar”, are determined to have occurred.

The fault propagation path generally begins with the source of the fault and ends at
the immediate cause of the motor fault. In this case, there are six fault propagation paths,
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including L1 = {σ3 → σ17 → σ27 → σ36 → σ39}, L2 = {σ5 → σ19 → σ29 → σ36 → σ39},
L3 = {σ6 → σ20 → σ30 → σ36 → σ39}, L4 = {σ6 → σ20 → σ31 → σ37 → σ39},
L5 = {σ8 → σ21 → σ32 → σ37 → σ39} and L6 = {σ9 → σ21 → σ32 → σ37 → σ39}. It can
be found that the fault events 2, 10 and 13 cannot ultimately lead to motor failure even if
they also occur, i.e., they are not fault sources for motor failure.

Next, the severity of “Winding insulation burnt” and “Bearing failure” are determined
by computing the relative preference values for proposition neurons σ37 and σ38. Let
A1 = [(0.7396, 0.81), 0.8649, (0.9409, 1)] and A2 = [(0.6278, 0.711), 0.7626, (0.8148, 0.90)],
then A = [(0.6837, 0.7605), 0.81375, (0.87785, 0.95)] TL−

S =
(

tL−
sl , t−sh, tL−

sr

)
= (0.711, 0.7626,

08148), TL+
S =

(
tL+
sl , t+sh, tL+

sr

)
= (0.81, 08649, 0.9409), TU−

S =
(

tU−
sl , t−sh, tU−

sr

)
= (0.6278,

0.7626, 0.9), TU+
S =

(
tU+
sl , t+sh, tU+

sr

)
= (0.7396, 0.8649, 1), ‖TL+

S , TL−
S ‖ = 0.22445,

‖TU+
S , TU−

S ‖ = 0.529, µβ

(
A1, A

)
= 0.669 and µβ

(
A2, A

)
= 0.331. Due to the relative

preference value µβ

(
A1, A

)
> µβ

(
A2, A

)
, the fault of “Winding insulation burnt” is more

serious. When multiple faults occur in the motor, the introduction of the relative preference
relation β can help determine the severities of all the faults.

Finally, the performance of the FRNSN P system was compared with those of other
motor fault diagnosis methods. The methods used for comparison were FFPN [37], CLPSO-
FPN [38] and rMFRSNPs [40], and the comparison results are shown in Table 3. Fault events,
fault symptoms, fault sources and fault cases are represented by corresponding neurons.

For the single-fault cases “Winding insulation burnt” and “Broken rotor bar”, FFPN [37],
CLPSO-FPN [38], rMFRSNPs [40] and FRNSN P could correctly detect the fault events and
obtain the same fault sources and fault causes. The fault event of case 3 was “Bearing
damage”. Although all four methods could obtain the correct detection results, FFPN [37]
and CLPSO-FPN [38] found one more fault source, i.e., neuron σ9, than rMFRSNPs [40] and
FRNSN P did.

For the multi-fault case “Bearing damage and broken rotor bar”, CLPSO-FPN [38],
rMFRSNPs [40] and FRNSN P gave correct and consistent results, but FFPN [37] could
only detect one of the faults, i.e., “Broken rotor bar”. For the multi-fault case “Winding
insulation burnt and bearing damage” detailed in this subsection, FRNSN P showed certain
advantages, i.e., it could correctly detect faults “Winding insulation burnt” and “Bearing
damage”, but FFPN [37] and CLPSO-FPN [38] could only detect fault “Winding insulation
burnt”. Although rMFRSNPs [40] could also detect faults “Winding insulation burnt” and
“Bearing damage”, fault “Broken rotor bar” that did not exist was also detected. In addition,
the fault sources were slightly different for each method. Since FFPN and CLPSO-FPN
could only detect fault event 36, their fault sources were only associated with event 36.
Since rMFRSNPs detected one more fault, it found more fault sources than FRNSN P did.
For the same case, it is reasonable and acceptable for different methods to have slightly
different fault sources due to different operating mechanisms and parameter settings.

6. Conclusions

In this work, the NSN P systems were extended to the FRNSN P systems by introduc-
ing IVTFNs. FRNSN P systems can easily model the fuzzy production rules of motor faults.
A fuzzy reasoning algorithm based on the FRNSN P system was proposed for motor fault
diagnosis. Through the study of single fault and multiple fault cases, the effectiveness and
feasibility of the FRNSN P reasoning algorithm were proved for motor fault diagnosis. In
addition, the relative preference relationship can be used to estimate the severity of various
faults, so that the motor can be repaired in time when a minor fault occurs to prevent the
fault from worsening.

Since it is necessary to rely on historical data and expert experience to obtain the
probability of occurrence of motor fault symptoms, signal processing technology will
be combined with the FRNSN P system to obtain real-time motor fault information in a
future study. Specifically, considering that the stator current signal is minimally affected
by the external environment and the current sensor is easy to install, the current signal
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will be used to obtain fault information. According to the fault information, the occurrence
probability of some cause events can be obtained early, the fault probability corresponding
to the IVTFN can then be estimated, and the FRNSN P reasoning algorithm is finally used
for fault diagnosis. Furthermore, other intelligent algorithms can be introduced into the
FRNSN P system so as to apply it to other real-world applications including the fault
diagnosis of other types of motors.
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