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Abstract: In this paper, we focus on developing a novel unsupervised machine learning algorithm,
named graph based multi-layer k-means++ (G-MLKM), to solve the data-target association problem
when targets move on a constrained space and minimal information of the targets can be obtained
by sensors. Instead of employing the traditional data-target association methods that are based
on statistical probabilities, the G-MLKM solves the problem via data clustering. We first develop
the multi-layer k-means++ (MLKM) method for data-target association at a local space given a
simplified constrained space situation. Then a p-dual graph is proposed to represent the general
constrained space when local spaces are interconnected. Based on the p-dual graph and graph
theory, we then generalize MLKM to G-MLKM by first understanding local data-target association,
extracting cross-local data-target association mathematically, and then analyzing the data association
at intersections of that space. To exclude potential data-target association errors that disobey physical
rules, we also develop error correction mechanisms to further improve the accuracy. Numerous
simulation examples are conducted to demonstrate the performance of G-MLKM, which yields an
average data-target association accuracy of 92.2%.

Keywords: graph theory; sensor networks; data-object association; machine learning

1. Introduction

Associating data with the right target in a multi-target environment is an important
task in many research areas, such as object tracking [1], surveillance [2,3], and situational
awareness [4]. Image sensors can be used to acquire rich information related to each target,
which will significantly simplify the data-target association problem. For example, video
cameras in a multi-target tracking mission can provide colors and shapes of targets as extra
features in the association process [5]. However, considering the costs, security issues,
and special environments (e.g., ocean tracking [6], military spying), a simple, reliable,
and low-cost sensor network is often a preferred option [7]. Consequently, the data-target
association problem needs to be further studied, especially in cases when the gathered data
are cluttered and contains limited information related to the targets.

The existing approaches for data-target association, in general, consist of three proce-
dures [8]: (i) Measurements collection–preparation before data association process, such as
object identification in video frames, radar signals processing, or raw sensor data accumu-
lation; (ii) measurements prediction–predict the potential future measurements based on
history data, which yields an area (validation gate) that narrows down the search space; and
(iii) optimal measurement selection–select the optimal measurement that matches history
data according to a criterion (varies in different approaches) and update the history dataset.
With the same procedures but different choices of the optimal measurement criteria, many
data-target association techniques have already been developed. Among them, the well-
known techniques include the global nearest neighbor standard filter (Global NNSF) [9],
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joint probabilistic data association filter (JPDAF) [10–13], and multiple hypothesis tracking
(MHT) [14].

The Global NNSF approach attempts to find the maximum likelihood estimate related
to the possible measurements (non-Bayesian) at each scan (that measures the states of all
targets simultaneously). For nearest neighbor correspondences, there is always a finite
chance that the association is incorrect [15]. Besides that, the Global NNSF assumes a
fixed number of targets and cannot adjust the target number during the data association
process. A different well-known technique for data association is JPDAF, which computes
association probabilities (weights) and updates the track with the weighted average of all
validated measurements. Similar to Global NNSF, JPDAF cannot be applied in scenarios
with targets birth and death [1]. The most successful algorithm based on this data-oriented
view is the MHT [16], which takes a delayed decision strategy by maintaining and propa-
gating a subset of hypotheses in the hope that future data will disambiguate decisions at
present [1]. MHT is capable of associating noisy observations and is resistant to a dynamic
number of targets during the association process. The main disadvantage of MHT is its
computational complexity as the number of hypotheses increases exponentially over time.

There are other approaches available for data association. For example, the Markov
chain Monte Carlo data association (MCMCDA) [5,17]. MCMCDA takes the data-oriented,
combinatorial optimization approach to the data association problem but avoids the enu-
meration of tracks by applying a sampling method called Markov chain Monte Carlo
(MCMC) [17], which implements statistical probabilities in the procedure of optimal mea-
surement selection as well. In this paper, we assume an object generates at most a single
detection in each sensor scan, namely, a point-target assumption. Hence, the approaches on
multiple detections per object per time step, i.e., extended-target [18], are not discussed here.
The data association in extended object tracking problems typically use data clustering
techniques, such as k-means [19], to address the extended-target issue by specifying which
measurements are from the same source. Then the corresponding association problems can
be simplified as point-target tracking problems. For example, the authors in [20] proposed
a clustering procedure and took into account the uncertainty and imprecision of similarity
measures by using a geometric fuzzy representation, which shows the potential of applying
clustering algorithms in the data association problem.

The main contribution of this paper is the development of an efficient unsuper-
vised machine learning algorithm, called graph based multi-layer k-means++ (G-MLKM).
The proposed G-MLKM differs from the existing data-target association methods in three
aspects. First, in contrast to the previous developed data association approaches that
estimate the potential measurement from history data for each target and select an opti-
mal one from validated measurements based on statistical probabilities, G-MLKM solves
the data-target association problem in the view of data clustering. Second, the previous
approaches are mainly developed with respect to sensors that are capable of obtaining
information from a multiple dimensional environment, such as radars, sonars, and video
cameras. G-MLKM is proposed on sensors that only provide limited information. Interest-
ing research on tracking targets with binary proximity sensors can be seen in [7], whose
objective is only limited to target counting, while G-MLKM can associate data to targets.
Third, G-MLKM can address the case that targets move in a constrained space, which
requires dealing with data separation and merging.

The reminder of this paper is structured as follows. The data association problem in
a constrained space and the corresponding tasks are described in Section 2. In Section 3,
the multi-layer k-means++ (MLKM) method is developed for data-target association at
local space given a simplified constrained space situation. The graph based multi-layer
k-means++ (G-MLKM) algorithm is then developed in Section 4 for general constrained
spaces. Simulation examples are then provided in Section 5. Section 6 provides a brief
summary of the work presented in this paper.
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2. Problem Formulation

In this paper, we consider the problem of data-target association when multiple targets
move across a road network. Here, a road network is a set of connected road segments,
along which low-cost sensors are spatially distributed. The sensors are used to collect
information of targets, which, in particular, are the velocity of targets and the corresponding
measured time. We assume (1) there is no false alarm in the sensor measurements, and (2)
the target’s velocity does not change rapidly within two adjacent sensors. The collected
information about a target is normally disassociated with the target itself, meaning that
the target from which the information was captured cannot be directly identified using the
information. Hence, data-target associations is necessary.

Figure 1 shows one road network example that consists of 6 road segments. With-
out loss of generality, let the total number of road segments in one road network be denoted
as L. The road segments are denoted as R1, R2, · · · , RL, respectively. The length of road
segment Ri is denoted as Di for i = 1, 2, · · · , L. To simplify discussion, we assume the road
segments are for one-way traffic, i.e., targets cannot change their moving directions within
one road segment. However, when the road segment allows bidirectional traffic, we can
separate it into two unidirectional road segments and the proposed approach in this paper
directly applies. Let Si = {Si1, Si2, · · · , SiNi} be a set of Ni ∈ R sensors placed along the
direction of road segment Ri. In other words, for sensor Sij ∈ Si, the larger the sub-notation
j is, the further distance the sensor locates away from the starting point of road segment Ri.
We denote the corresponding distance between sensor Sij and the starting point of road
segment Ri as dij. Hence, the position set for sensors in Ri related to the starting point can
be denoted as Pi = {di1, di2, · · · , diNi}, where 0 ≤ di1 < di2 < · · · < diNi ≤ Di.

Figure 1. An example road network. Ri represents the road segment. Sij represents the jth sensor on
the ith road segment.

For each sensor Sij, its measurements are collected and stored in chronological order.

The collections are denoted as a column vector Xij, such that Xij = [x1
ij, x2

ij, · · · , x
mij
ij ]′, where

i ∈ {1, 2, · · · , L}, j ∈ {1, 2, · · · , Ni}, the prime symbol represents the transpose operation
for a vector, mij is the total number of measurements in Xij, and xn

ij, n ∈ {1, 2, · · · , mij},
denotes an individual measurement in Xij. In particular, xn

ij = [vn
ij, tn

ij] stores the measured
velocity vn

ij when one target passed by sensor Sij at time tn
ij. As the elements in Xij are stored

in chronological order, the recorded time for each measurement satisfies t1
ij < t2

ij < · · · <
t
mij
ij , which can be distinguished based on the superscript n. All the measurement vectors

stored by sensors that locate in the same road segment Ri are stored into a matrix Xi, such
that Xi = [X̄i1, X̄i2, · · · , X̄iNi ], where Xi ∈ Rmi×Ni , mi = maxj{mij}, and the column of the

matrix is defined as X̄ij = [Xij, 01×(mi−mij)]′. If mij = mi, X̄ij = Xij. The added all-zero row
vector in X̄ij is to unify the length of vectors in matrix Xi considering that miss detection
may happen or targets may remain (or stop) inside the road network for a given data
collection period.

The road network collects Xi, i = 1, · · · , L that only include information of target’s
velocity and the corresponding measurement time. In order to solve data-target association
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based on the L matrices, three tasks need to be accomplished. The first task (Task 1) is to
cluster Xi into mi groups for each road segment. Denote the data grouping result for each
road segment as a new matrix Ti, such that:

Ti = [T̄i1, T̄i2, · · · , T̄imi ]
′, i = 1, 2, · · · , L (1)

where T̄iz, z = 1, 2, · · · , mi, is a row vector consisting of Ni measurements associated with
the same target, defined as:

T̄iz = [τ1
iz, τ2

iz, · · · , τ
Ni
iz ], (2)

where τu
iz is an entry of X̄iu for u = 1, 2, · · · , Ni. Then a new row vector Tiz is obtained

from T̄iz by excluding all zero elements.
The second task (Task 2) is to link the trajectories of targets at road intersections by

pairing sensor Si1/SiNi from multiple road segments that are connected geometrically.
In particular, let Oints

T denote the index set of road segments that have outgoing targets
related to one intersection ints, and Iints

T denote the index set of road segments that have
ingoing targets related to the same intersection. Since the road segments are unidirectional,
the two index sets have no overlaps, i.e., Oints

T ∩ Iints
T = ∅. In particular, only the dataset

that has a subscript of iNi (according to the unidirectional road segement setting) can be
the candidate for Oints

T . Similarly, only the dataset that has a subscript notation of i1 can be
the candidate for Iints

T . Therefore, datasets that belong to targets who move towards the
intersection ints are denoted as:

Qints
I = {xkO

iNi
| ∀xkO

iNi
∈ XiNi , ∀i ∈ Oints

T }, (3)

while datasets that belong to targets who leave the intersection ints are denoted as:

Qints
O = {xkI

i1 | ∀xkI
i1 ∈ Xi1, ∀i ∈ Iints

T }. (4)

where kO ∈ {1, 2, · · · , miNi}, kI ∈ {1, 2, · · · , mi1}, Oints
T ⊂ {1, 2, · · · , L}, and Iints

T ⊂
{1, 2, · · · , L}. Since targets may stop in the intersection or the data collection process
terminates before targets exit the intersection, the total number of targets heading into an
intersection ints is always greater than or equal to the number of targets leaving the same
intersection, i.e., |Qints

I | ≥ |Q
ints
O |. For simplicity of notation, denote |Qints

I | and |Qints
O | as nI

and nO. Then we can calculate nI and nO via:

nI = ∑
∀i∈Oints

T

miNi and nO = ∑
∀i∈Iints

T

mi1. (5)

The pairing task for intersection ints can be denoted as a mapping function f , such that:

f (xk
iNi

) 7→ xl1, ∀k ∈ {1, 2, · · · , nI}, (6)

where xk
iNi
∈ Qints

I and xl1 ∈ {Qints
O , 0, 0, · · · , 0nI−nO}. In particular, the function f for

intersection ints can be denoted as a permutation matrix Gints ∈ RnI×nI .
The last task (Task 3) is to merge data groups on the road network when loops may

exist, i.e., targets may pass the same road segment several times. Hence, multiple data
association groups may belong to the same target. The merged results can be denoted as L
symmetric matrices GRi ∈ Rmi×mi for each road segment Ri. If targets only pass the road
segment Ri once, GRi is an identity matrix.

In this paper, we are going to propose a new unsupervised machine learning algorithm
to associate data-target for the collected L matrices. In particular, this algorithm first creates
a new clustering structure for data grouping in each matrix (associated with each road
segment), and then leverages graph theory and clustering algorithms to link the matrices
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from different road segments for each intersection. Finally, the entire dataset can be
analyzed and associated properly to the targets. The output of this new algorithm will be a
detail trajectory path for each target with the captured velocities along the road segments.
In the next two sections, the new data-target associations algorithm will be explained in
detail. We begin the discussion with a special case when the road network is consisted of a
single road segment.

3. MLKM for a Single Road Segment

In this section, we consider the special case when L = 1, i.e., the road network only
consists of one road segment, R1. In this special case, there are neither intersections nor
loops in the road network. Therefore, the tasks in identifying data-target associations are
simplified to cluster X1 into m1 groups (Task 1) only. One example of matrix X1 ∈ R10×9

is shown in Figure 2, which is the plot of measurements for 10 different targets that are
captured by nine equally spaced sensors on road segment R1.
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Figure 2. Example of X1 for a single road segment.

3.1. K-means++ Clustering and Deep Neural Network

K-means [19] and k-means++ [21] are perhaps the most common methods for data
clustering. For a set of data points in a N-dimensional system, the two algorithms perform
clustering by grouping the points that are closer to the optimally placed centroids. From the
machine learning perspective, k-means learns where to optimally place a pre-defined
number of centroids such that the cost function, defined as ΦY(C) = ∑y∈Y d2(y, C), is
minimized, where d(y, C) = miny∈Y‖y− ci‖ represents the distance between a sub-set of
measurements Y and a centroid ci and C = {c1, ..., ck} represents the set of centroids. The
associated cost function is the sum of the Euclidean distances from all data points to their
closer centroid. The cost function and optimization algorithms are the same for k-means
and k-means++ while the only difference between them is that k-means++ places the initial
guesses for the centroids in places that have data concentration, and consequently improves
the running time of Lloyd’s algorithm and the quality of the final solution [21].

A much more complex boundary may exist between two data groups. Therefore, we
also verify the potential performance of the deep neural network (DNN) algorithm [22] in
the data association process, which is known for its capability of recognizing underlying
patterns and defining better decision boundaries among data samples. For the purpose
of evaluating the supervised DNN capabilities, a slight modification of the problem is
considered. Instead of a complete unlabeled dataset X1, part of the measurements are pre-
labeled, i.e., data-target relations for part of the measurements are known. In addition, we
extend the measurement’s dimensions to further include vt, v2t, and vt2 as extra features
so that the inner structure of DNN can be simpler. Table 1 presents the detail settings of the
DNN framework.
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Table 1. Deep neural network (DNN) configuration parameters.

Framework Definition

Cost Function Softmax
Activation Function Relu

Optimizer Adam Optimizer
Number of Hidden Layers 2

Number of Neurons 8

3.2. K-means++ with Data Preprocessing

While DNN can potentially provide better performance for the data association prob-
lem, it demands labeled datasets for training. In real scenarios, however, the training
dataset may not be available. In contrast, k-mean++ can cluster data samples without the
need for a labeled dataset. This unsupervised property of k-means++ enables a wider
application domain. Hence, k-means++ is more practical for the task of clustering X1 into
m1 groups. Moreover, when the dataset X1 is small and sparse, k-means++ can perform
well on the task of data-target association.

However, when the measurements are distributed along the time axis and velocity
profiles are close, k-means++ tends to place the centroids in positions where data from
different targets overlap and hence causes an inaccurate data-target pairing. This happens
because k-means implements Euclidean distance to determine which centroid data sample
(v, t) belongs, i.e.,

arg min
(v∗i ,t∗i )∈C

√
(v− v∗i )

2 + (t− t∗i )
2, (7)

where C is the set of centroids. When data samples distribute along time axis, the time
difference becomes the determining factor for grouping results.

One natural way to balance the two components (time difference and velocity dif-
ference) in (7) is to process X1 before applying k-means++. The idea of preprocessing
is similar to the principal component analysis [23] that projects data into a main axis.
The preprocessed data sample is denoted as x̂n

1j = [vn
1j, t̂n

1j], where t̂n
1j is given by:

t̂n
1j = tn

1j −
d1j − d∗

vn
1j

, (8)

where j ∈ {1, · · · , N1}, n ∈ {1, · · · , m1j}, d1j is the position of sensor S1j with respect to
the starting point of road segment R1, and d∗ is the reference point for projecting. In other
words, t̂n

1j is the expected starting time for a constant velocity (vn
1j) model given the current

time tn
1j. Figure 3 is the preprocessed result for the dataset in Figure 2. In this example,

the reference point d∗ is selected to be the starting point, and we can see clusters for each
target have been formed after data preprocessing.

3.3. Multi-Layer K-means++

Through the preprocessing procedure, data can be roughly separated for different
targets that provide dense and grouped subsets. The boundaries between two groups,
however, maybe still too complex for k-means++ to define, especially, when X1 is a large
dataset and the grouped subsets are close to each other. Inspired by the DNN capability
of defining classification boundaries via a multi-layer structure and a back-propagation
philosophy, we propose a new multi-layer k-means++ (MLKM) method that integrates the
DNN’s multi-layer structure with the clustering capabilities of k-means++ to overcome the
complex boundary challenge.
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Figure 3. Example of preprocessed X1 for a single road segment.

The proposed MLKM algorithm is performed via 3 layers: (i) Data segmentation
and clustering–the dataset is sequentially partitioned into smaller groups for the purpose
of creating sparse data samples for k-means++; (ii) error detection and correction–check
the clustered data by searching for errors through predefined rules and re-cluster the
data using nearest neighbor concepts [24] if an error is found. Note that the k-means++
associates the data closer to the optimally placed centroid based on the Euclidean distance
between data point and centroid, which is a scalar quantity; and (iii) cluster matching–
match the clusters of each segment by preprocessing the cluster centroids of all segments
to the cluster centroid of the first segment and again grouping them based on k-means++.
A detail explanation for these three layers are given as follows.

3.3.1. Layer 1 (Data Segmentation & Clustering)

Without loss of generality, we assume that there are K sensors per segment. The dataset
X1 ∈ Rm1×N1 (m1 and N1 are the maximum number of measurements and the total sensor
number in sensor set S1, respectively) is sequentially partitioned into E segments, such that:

E =

{
N1/K, N1%K = 0,
N1/K + 1, otherwise.

In other words, when N1%K 6= 0, the last segment will contain measurements from
less than K sensors. In the following of the paper, we assume that N1%K = 0 in the
following sections of this paper for the simplicity of presentation. When N1%K 6= 0, we can
add some extra artificial sensors with all zero measurements. Then the data segment can
be defined as X1e =

⋃eK
j=(e−1)K+1 X̄1j, where e = 1, 2, · · · , E. K-means++ algorithm is then

applied to each X1e by excluding all zero elements. By aggregating the clustering results,
we can obtain a set of centroids forX1e, e = 1, 2, · · · , E, defined as C1e = {ce

11, ce
12, · · · , ce

1m1
},

and the associated measurements with each ce
1k centroid are represented as Te

1k, where
k ∈ {1, 2, · · · , m1}.

3.3.2. Layer 2 (Error Detection & Correction)

The first layer seeks to associate data for each data segment. Since the clustering
standard used in k-means++ is a scalar quantity while the actual measurements are given
by vectors, there are potential data association errors in Te

1k. Hence an additional layer
to perform error detection and correction is needed. The error detection is to verify logic
rules to determine if wrong data association appears in Te

1k. The error correction will
conduct data re-association on the identified wrong associations. To avoid the same wrong
reassociation again, the global nearest neighbor standard is chosen as the re-association
technique instead of k-means++ given the assumption that the target’s velocity does not
change rapidly within two adjacent sensors.
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We here proposed the following logic rules for error detection:

• |Te
1k| > K;

• ∃n1 6= n2, xn1
1l ∈ Te

1k, xn2
1j ∈ Te

1k ⇒ l = j;
• ∃l ≥ j, xn1

1l 6=0 ∈ Te
1k, xn2

1j ∈ Te
1k ⇒ tn1

1l ≤ tn2
1j ,

where |Te
1k| indicates the cardinality of Te

1k. The first rule means that more than K measure-
ments appear in Te

1k. The second rule means that more than one sensory measurements
from the same sensor are associated with one target in T̄e

1k. The third rule means that
target is recorded in a later time by a previous sensor. If one or more rules are satisfied,
the corresponding Te

1k is then considered to be an erroneous data association and will be
stored in Y∗1e, where Y∗1e refers to the wrong data associations in X1e.

The error correction is to re-associate data in Y∗1e for the purpose of breaking all the
logic rules listed above. We propose to use the global nearest neighbor approach. Specifi-
cally, elements in Y∗1e that belongs to measurements of sensor S1` are selected sequentially
to be evaluated against with every measurement in Y∗1e that belongs to measurements of
sensor S1(`+1) to obtain the best match. The evaluation is accomplished via the following
optimization process:

arg min
κ

tκ
1(`+1) −

t1` +

∥∥∥d1(`+1) − d1`

∥∥∥
v1`

,

s.t. xκ
1(`+1) ∈ Y

∗
1e.

With this procedure, all Te
1k are updated with the corrected clusters and all ce

1k are
re-calculated based on the updated Te

1k. The new corrected set of centroids C1e is updated
for all segments and grouped into C1 = {C11 C12 ... C1E}. The position of the centroid set
C1e is defined as:

d1e =
eK

∑
j=(e−1)K+1

d1j/K. (9)

3.3.3. Layer 3 (Cluster Matching)

Through the preceding two layers, data-target association can be accomplished for
each data segment X1e independently. However, the target associations are uncorrelated
among each data segment. In particular, the unsupervised k-means++ only groups data
samples that belong to the same target while the clusters of each target are anonymous.
Hence, it is still unclear how to associate the clusters among different segments.

In Layer 3, we project C1e, e = 1, · · · , E, using the preprocessing technique that is
stated in Section 3.2. More precisely, the time component in ce

1k ∈ C1e is preprocessed as:

t̂e
1k = te

1k −
d1e − d11

ve
1k

, ∀e ∈ {1, · · · , E}, ∀k ∈ {1, · · · , m1},

where ce
1k = [ve

1k, te
1k], and d1e is the position of centroid set C1e defined in (9). Then k-

means++ is applied to the preprocessed C1 to find the clusters that group cluster centroids
in different data segments. Accordingly, the associated measurements Te

1k with respect to
each centroid are merged together as T1k and, hence, provides the complete data-target
association result for the entire road segment.

Note that the proposed MLKM method may not be applied directly to the case when
L > 1 (i.e., more than one road segments). Therefore, we propose a more general method,
named G-MLKM, to solve the general data-target association problem for a general road
network in the next section.
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4. G-MLKM for a General Road Network

In this section, we consider the general case when the road network consists of
multiple road segments. To solve the data-target association problem, we propose a new
graph-based multi-layer k-means++ (G-MLKM) algorithm. In particular, G-MLKM uses
graph theory to represent the road network as a graph, and then links data from different
road segments at each intersection of the road network by analyzing the graph structure.
The data-target association problem for a general road network is then solved by merging
the clustering results at intersections with the MLKM results on each road segment.

We first briefly introduce graph theory and the representation of road networks
using graphs as preliminaries. Then the procedures for G-MLKM are explained in detail.
In particular, we begin with a new graph representation for the road network. Then the
procedures for linking measurements at intersections (Task 2) are described. After that, we
unify the results on road segments and intersections, and complete the data merging task
(Task 3).

4.1. Preliminaries
4.1.1. Graph Theory

For a system of L connected agents, its network topology can be modeled as a directed
graph G = (V , E), where V = {v1, v2, · · · , vL} and E ⊆ V × V are, respectively, the set of
agents and the set of edges that connect the agents. An edge (vi, vj) in set E means that
the agent vj can access the state information of agent vi, but not necessarily vice versa [25].
The adjacency matrix A ∈ RL×L of the directed graph G is defined by A = [aij] ∈ RL×L,
where aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise.

4.1.2. Graph Representation of Road Networks

There are mainly two strategies to represent road networks using a graph, namely
a primal graph and dual graph [26]. In a primal graph representation, road intersections
or end points are represented by agents and road segments are represented by edges [27],
while in a dual graph representation, road segments are represented by agents and an
edge exists if two roads are intersected with each other [28]. Compared with a primal
graph, dual graph concerns more on the topological relationship among road segments.
As the data-target associations for each road segment can be solved by the MLKM method,
the focus here is to cluster data at each intersection. As a consequence, the dual graph is a
better option. However, the geometric properties such as road length are neglected by a
dual graph. Hence, some further modification to the dual graph is needed.

4.2. G-MLKM Algorithm

In this subsection, we will provide the detail procedures for the G-MLKM algorithm
that are composed of the following three steps.

4.2.1. Modified Graph Representation for Road Networks

Considering the cases when targets may stop in a road segment or data collection
process may terminate before targets pass through a road segment, the total number of
measurements collected by sensor SiNi (locates near the ending point of road segment Ri)
may be less than the one collected by sensor Si1 (locates near the starting point of road
segment Ri). If the entire road segment is abstracted as one single agent, the inequality
of measurements in the road segment may create issues for the subsequent data-target
associations process. Here, we modify the dual graph by incorporating the primal graph
for the representation of the road segment. In other words, we propose to replace each
road segment node in the dual graph by two agents with one directed edge connecting
them and the direction of the edge is determined by the traffic direction. In particular, we
use the sensor nodes Si1 and SiNi as the two agents. We may neglect the edge between Si1
and SiNi because we focus on data-target associations at intersections while the data-target
associations within the road segment can be accomplished by the MLKM method without



Sensors 2021, 21, 2069 10 of 21

the need for the knowledge of the graph. Moreover, the connection between Si1 and SiNi is
unidirectional when the traffic is unidirectional. We call the new graph the“p-dual graph”,
i.e., prime-based dual graph. An example of how to derive the p-dual graph is shown in
Figure 4, where the original six agents in the dual graph are replaced by 12 agents and the
edges between Si1 and SiNi are removed in the p-dual graph.

Figure 4. (a) Dual graph representation for the road network in Figure 1 with the nodes and arrows
representing, respectively, the agents and directed edges. (b) P-dual graph representation for the
road network in Figure 1, where two sensor nodes represent one road segment and the edge within
the two sensor nodes are ignored. In this example, there exist 3 subgraphs which are denoted as a, b,
and c.

For a general road network with L edge segments, the edges of the new p-dual graph
is given by V∗ = {S11, S1N1 , S21, · · · , SL1, SLNL} with the corresponding adjacency matrix,
A∗ ∈ R2L×2L, given by:

A∗ = [a∗ij] ∈ RL×L, a∗ij =
[

0 0
aij 0

]
. (10)

4.2.2. Graph Analysis for Data Pairing at Intersections

From A∗ defined in (10), we can observe that the adjacency matrix A∗ has L columns
and L rows that are all zeros. Hence, the sparse matrix A∗ can be further analyzed and
decomposed to extract subgraphs related to different intersections. Then the task of linking
the trajectories of targets at road intersections can be equivalently solved via pairing
measurements of sensor Si1/SiNi from road segments in the subgraphs, which is further
decomposed into the following three procedures.

i. Subgraph Extraction

The first procedure is to extract subgraphs from A∗. Let the letters in alphabet
{a, b, c, ...} denote the names for different intersections. The subgraph extraction procedure
begins with an intersection name as a, follows by b, c, and so on. For any intersection
ints, the subgraph extraction is conducted by cross-searching the non-zero entries of the
matrix A∗ in a repeated row and column pattern. The corresponding indices of row and
column containing non-zero entries, indicating the agents and edges that are included
in that subgraph, are stored in the sets Oints

T and Iints
T , respectively. More precisely, Oints

T
denotes the index set of road segments that have outgoing targets related to intersection
ints and Iints

T denotes the index set of road segments that have ingoing targets related to
the same intersection. The index storing processes are defined as Oints

T = Oints
T ∪ {i}, and

Iints
T = Iints

T ∪ {j}, where i, j are the corresponding row index and column index, respectively.
The iterative search process will terminate and return (Oints

T , Iints
T ) when there is no more

non-zero element in the recorded row and column indices. Algorithm 1 is the pseudo code
for the subgraph extraction procedure. The extracted results are denoted as (Oints

T , Iints
T ),

where ints ∈ {a, b, c, · · · }.
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Algorithm 1 Subgraph Extraction

1: Input: ∀bij ∈ A∗;
2: Output: (Oints

T , Iints
T ), ints ∈ {a, b, c, · · · }

3: Idxrow = Idxcol = {1, 2, · · · , |A∗|};
4: i = 0;
5: for ints in {a, b, c, · · · } do
6: Oints

T = Iints
T = ∅;

7: if |Idxrow| ≥ 1 then
8: procedure INCREMENT(i)
9: i = i + 1;

10: if i ∈ Idxrow then
11: return i;
12: else
13: INCREMENT(i);
14: procedure RECURSION(i)
15: if ∑∀j∈Idxcol

bij ≥ 1 then

16: Oints
T = Oints

T ∪ {i};
17: procedure EXTRACT(i)
18: for j in Idxcol do
19: if bij 6= 0 then
20: Iints

T = Iints
T ∪ {j};

21: Idxcol = Idxcol\Iints
T ;

22: Idxrow = Idxrow\{i};
23: for j ∈ Iints

T do
24: if ∑∀l∈Idxrow bl j ≥ 1 then
25: for l in Idxrow do
26: if bl j 6= 0 then
27: Oints

T = Oints
T ∪ {l};

28: if Idxrow ∩Oints
T 6= ∅ then

29: EXTRACT(∃l ∈ (Idxrow ∩Oints
T ));

30: else
31: return (Oints

T , Iints
T );

32: else
33: Idxrow = Idxrow\{i};
34: i = i + 1;
35: RECURSION(i);
36: else
37: break;

ii. Data Preprocessing at Intersections

Given that the subgraph that describes an intersection, ints, is available from the
preceding subgraph extraction procedure, datasets of Xi1/XiNi which are subjected to the
pairing task for the corresponding intersection can be pinpointed. In particular, (3) and (4)
define the dataset for the intersection ints as an incoming dataset Qints

I and an outgoing
dataset Qints

O , respectively. As we assume that (1) no false alarm in the measurements, and (2)
the target’s velocity does not change rapidly within two adjacent sensors, data pairing
at intersections may interpret as data clustering. A potential machine learning technique
for data clustering is the k-means++. However, the sensors Si1/SiNi from different road
segments are not guaranteed to locate near each other for a road intersection, which may
contribute to a relatively large time difference in two sensors’ measurements for one target.
Hence, before applying k-means++, data preprocessing on Qints

I and Qints
O is necessary.
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Based on the proposed preprocessing definition in (8), we here propose a new data
preprocessing technique that first selects a virtual reference at the center of the intersection
ints and then recomputes t̂k

ij via projecting each element in Iints
T and Oints

T to the virtual
reference as:

t̂k
ij =


tk
i1 −

r+di1
vk

i1
, i ∈ Iints

T & j = 1

tk
iNi

+
Di−diNi

+r

vk
iNi

, i ∈ Oints
T & j = Ni

, (11)

where k ∈ {1, 2, · · · , mij} and r is the radius of the intersection circle centered at the virtual
reference. An example of locating the virtual reference is shown in Figure 5, where the
intersection consists of three road segments denoted as Ri, Rj, and Rk.

Figure 5. An intersection consists of three road segments denoted as Ri, Rj, and Rk. The virtual
reference for data preprocessing is in the center of the intersection with a radius of r to each road
segment ending point.

iii. Data Pairing at Intersections and Error Correction

Denote the preprocessed datasets for Qints
I and Qints

O as Q̂ints
I and Q̂ints

O . Then k-means++
can be applied to the preprocessed intersection datasets {Q̂ints

I , Q̂ints
O } for data pairing.

Similar to the development of MLKM for the case of one road segment, errors may arise
when conducting the data pairing/clustering. Error detection and correction are needed to
further improve accuracy.

For an intersection ints, the cardinalities of the preprocessed Q̂ints
I and Q̂ints

O remain
the same as those of Qints

I and Qints
O . As defined in (5), |Q̂ints

I | = nI and |Q̂ints
O | = nO,

where nI ≥ nO. The set of centroids is denoted as Cints = {cints1, cints2, · · · , cintsnI}, and the
associated measurements with each centroid cints j, j ∈ {1, 2, · · · , nI}, are given as Yints j.
The error correction is similar to Layer 2 in the MLKM method described in Section 3.3.2,
and defines three logic rules for error detection:

• |Yints j| > 2;
• |Yints j ∩ Q̂ints

I | 6= 1;
• xiNi ∈ Yints j, xl1 6=0 ∈ Yints j ⇒ tl1 ≤ tiNi ,

where |Yints j| is the cardinality of Yints j. The first rule means more than two measurements
are associated in Yints j. Error can be determined in this case because each target has at
most two measurements in one intersection. The second rule means either none or more
than one sensory measurements can be found from the incoming dataset Q̂ints

I . The third
rule means that the outgoing measurement in Yints j is recorded earlier than the incoming
measurement. If one or more rules are satisfied, the corresponding Yints j is then considered
to be an erroneous data association and will be stored in Yints . The error correction is
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to re-associate data in Yints for the purpose of breaking all three logic rules listed above.
To achieve this goal, we separate Yints into two subsets denoted as Y I

ints
and YO

ints
given by:

Y I
ints

= {xiNi | ∀xiNi ∈ Yints},Y
O
ints

= {xl1| ∀xl1 ∈ Yints},

where Y I
ints

and YO
ints

store all measurements xiNi and xl1 in Yints , respectively. Re-associate
data in Yints becomes a linear assignment problem [29] between Y I

ints
and YO

ints
. The optimal

pairing between Y I
ints

and YO
ints

can be found when the matching score reaches to the
minimum via solving the optimization problem of arg minM ||M × Y I

ints
− YO

ints
||, where

Y I
ints
∈ RmI×1 and YO

ints
∈ RmO×1 are column vectors converted from subsets Y I

ints
and

YO
ints

, respectively. M ∈ RmO×mI is a special binary matrix with the summation of each
row being 1. After the error correction is accomplished, all Yints j will be updated to
complete Task 2. Furthermore, a permutation matrix Gints ∈ RnI×nI can be created to record
the pairing relationship between incoming dataset Qints

I and outgoing dataset Qints
O for

each intersection.

4.2.3. Group Merging in the Road Network

K-means++ clustering on the preprocessed dataset at each intersection solves the
task of linking the trajectories of targets at road intersections (Task 2) while the proposed
MLKM method solves the task of data associations for each road segment (Task 1). If the
clustering results at all intersections are combined with the MLKM results on all road
segments, trajectory awareness for each target in the road network is achieved. This is valid
for situations when targets only pass the same road segment once. However, when targets
pass the same road segment and intersection multiple times, one target can be assigned
to multiple associated data groups on the road segment. To determine the connections
among all associated data groups, an extra task (Task 3) for merging data groups in the
road network is needed. Given that the datasets at intersections are extracted from the L
matrices collected from all road segments, clusters at the intersections can be classified
based on the data groups for all road segments. Therefore, the task of determining the
connections among the associated data groups in the road network can be focused on
connections of T̄iz defined in (2) for each road segment.

Let the symmetric matrix GRi ∈ Rmi×mi denote the connections among the mi associa-
tion groups in road segment Ri given by GRi = [bij] ∈ Rmi×mi where:

bpq = bqp =

{
1, if T̄ip, T̄iq belong to the same target,
0, otherwise.

To determine the entries in GRi , the depth-first search (DFS) [30] is implemented to
detect cycles in the adjacency matrix A. If cycles do not exist, the non-diagonal entries
are set to 0 and hence GRi is an identity matrix. Otherwise, further analysis on the connec-
tions among data groups at each road segment is operated sequentially in the following
three steps.

i. Node Analysis on Dual Graph

The analysis starts with identifying road segments that have only outgoing flow, i.e.,
source nodes in the graph. The source nodes can be identified from the adjacency matrix
A by checking the sum of each column. In particular, road segment Ri is a source node

when the sum of the ith column of A satisfies
L
∑

l=1
ali = 0, where ali is the (l, i)th entry of

the adjacency matrix, which represents the edge (Rl , Ri).
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ii. Trajectory Flow for Data Groups from Source Nodes

If the road segment Ri is a source node, the mi data groups in Ri resulting from the
MLKM method are considered to be mi unique targets. Then the trajectories of these mi
targets are traced in the road network. In particular, if T̄iz ∩ XiNi = ∅, the target associated
with data group T̄iz does not contain any measurement from sensor SiNi , which corresponds
to the case when target stops in the road segment or the data collection terminates before
the target could approach to sensor SiNi . The trajectory tracking for this target is then
completed. Otherwise, the permutation matrix Gi of intersection i that is consisted of
sensor SiNi is utilized to pinpoint the trajectory of the same target in the intersection, and its
data group T̄lz in the subsequent node or sink node Rl where it is heading to. The trajectory
tracking of the same target on the new road segments will keep on until the target stops or
leaves the road network. The same process is used for tracing the flow of other targets.

iii. Matrix Description of Intermediate Nodes

After the trajectories of all targets from the road segments have been confirmed,
data points for each target on different road segments can be merged. More precisely,
the corresponding entry (p, q) in GRl that is assigned as 1 means that data groups T̄lp and
T̄lq belong to one target. Consequently, the corresponding matrix GRl can be determined.

5. Simulation

In this section, the performance of the proposed G-MLKM algorithm is evaluated. We
first introduce the testing datasets generation process. Then the performance of the MLKM
method on one road segment is evaluated and compared with k-means++ and DNN. Then
the complete G-MLKM algorithm performance is evaluated. A detailed example presenting
the output via using G-MLKM is given to show how matrices Gints and GRi are created for
data pairing at intersections and group merging.

5.1. Testing Data Generation

In order to obtain a quantitative performance evaluation of the data association
techniques, labeled data is needed to obtain the percentage of true association between
targets and their measurements. One convenient way to have accurate labeled dataset for
data-target association is to generate it artificially. Let the generated testing dataset from
the road network be Mt = {T1, T2, · · · , TL}, where Ti ∈ Rmi×mi has the same data structure
as Ti defined in (1). In particular, each element in Ti is a data group that belongs to one
target. Moreover, for any Ti collected from road segments that have both incoming and
outgoing flows, multiple rows may belong to the same target.

We utilize the road network structure shown in Figure 1 as a prototype for testing
data generation. Moreover, NS sensors are assumed to be equally distributed on each
road segment, where the length of the road segment is NS × d. The position set for
sensors is selected as Pi = {d, 2d, · · · , NSd} with respect to the starting point of road
segment Ri. The intersections are considered to have the same radius with the value of
d/2. Hence, the distance between any two adjacency sensors is d. To further simplify
the data generation process, we assume road segment R1 is the only entrance of the road
network during the data collection period with incoming targets number NA, and targets
have equal possibilities of valid heading directions at each intersection. The targets are
assumed to move with a constant velocity and the velocity is also discretely affected by
Gaussian noise, such that, vij = v0 +N (µ, σ), where vij is one velocity measurement at
sensor Sij and v0 is the velocity measurement at the previous sensor. The corresponding
time measurement is calculated as tij = t0 + vij/(j · d). The initial velocity and time for the
NA targets are uniformly selected from the range (vmin, vmax) and (tmin, tmax), respectively
(refer to Table 2). The testing dataset generating process stops when all targets move out of
the road network.

With the generated testing datasets, we may evaluate the performance of the data-
target association techniques by calculating the data association accuracy, which is defined
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as the ratio between correctly classified number of data (Mcr) and the total number of
data (Mt), such that, numel(Mcr)

numel(Mt)
× 100%, where numel(M) returns the number of elements

in M. As multiple testing datasets are generated, the provided statistical information
about performance includes the minimum (left - blue bar), average (middle - orange bar),
and maximum (right - yellow bar) accuracies.

5.2. MLKM Performance and Comparisons

Before evaluating the entire accuracy of the proposed G-MLKM algorithm, the MLKM
method is evaluated and compared with the other two common data clustering machine
learning techniques, in particular, k-means++ and DNN, based on the collected dataset in
road segment R1.

5.2.1. K-means++

The first set of simulations evaluate the performance of k-means++ based on two
criteria: (i) Unprocessed vs. preprocessed data, and (ii) using different values of NA and
NS. When the values of NA and NS increase, more data points are introduced into the
dataset, leading to more overlapping among these data points. Figures 6 and 7 show the
performance of K-means++ using the parameters listed in Table 2.

Table 2. Simulation parameters.

Simulation 1 Simulation 2

NA 10 50

NS 10 20

(vmin, vmax) U(10, 50) U(10, 50)

(tmin, tmax) U(0, 40) U(0, 40)
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Figure 6. K-means++ accuracy for Simulation 1 parameters on unprocessed (UP) and preprocessed
(P) data.
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Figure 7. K-means++ accuracy for Simulation 2 parameters on unprocessed (UP) and preprocessed
(P) data.

As can be observed, a higher accuracy is achieved using the preprocessed data than
that using the unprocessed data. This can be seen by comparing the average, and maximum
and minimum accuracy for the two methods that use the preprocessed data versus unpro-
cessed data, as shown in Figure 6. Using the raw data, the measurements associated with a
specific target are sparse along the time axis. However, the velocity measurements from
the same sensor are closely grouped along the velocity axis. These conditions contribute to
incorrect clustering of the data. The preprocessing technique reduces the distance between
target related measurements, therefore reducing the effect of the velocity measurements on
the clustering.

A low accuracy is obtained for large values of NA and NS. This can be observed by
comparing average, maximum and minimum accuracy for different NA and NS, as shown
in Figures 6 and 7. Similar to the unprocessed data, a large number of sensors/targets
increases the density of measurement points. The concentration of measurements in-
creases the probability that k-means/k-means++ clusters the data incorrectly (even with
preprocessing).

5.2.2. DNN

The k-means++ fails to correctly cluster data when overlapping of measurements
occurs. A deep neural networks (DNN) is used as an alternative approach because it has
been shown to provide good results to uncover patterns for large dataset classification. One
necessary condition for DNN is the availability of labeled datasets for training. To meet the
requirements of DNN, it is assumed that labeled data is available for training.

The results for DNN are obtained using NA = 50 targets and NS = 50 sensors.
Assuming that a portion of the data association has already been identified, the objective is
to train a neural network to label the unidentified measurements. The number of ‘training’
sensors that provide labeled information and ‘testing’ sensors that provide unlabeled
information are provided in Table 3. The accuracy is obtained for various proportions of
‘training’ sensors to ‘testing’ sensors. Table 3 also shows the accuracy obtained for different
dataset configuration.
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Table 3. DNN with different training and testing datasets.

Train Sensors Test Sensors Train Accuracy Test Accuracy

20 30 98% 68%

25 25 97.8% 68%

30 20 99% 72%

40 10 98.6% 84.4%

45 5 98.9% 91.6%

It can be observed that the training (respectively, testing) accuracy is high (respectively,
low), when the testing dataset is relatively small. However, when the testing dataset is
relatively high, the testing performance increases significantly (up to 91%). A high training
accuracy with a low testing accuracy means that DNN suffers from overfitting due to the
small size of the training dataset. Given this comparison, DNN is applicable when a large
portion of a training dataset is available to train the network for classifying a relatively
small amount of measurements.

5.2.3. MLKM

K-means++ does not provide good accuracy for a high number of measurements but
performs well when clustering small amounts of data. DNN can cluster large datasets but
requires a large training dataset. MLKM combines the multi-layer back-propagation error
correction from DNN and the clustering capabilities of k-means++. The DNN-inspired error
correction significantly improves the performance of MLKM by preventing the clustering
errors in layer 1 to propagate to the cluster association in layer 3.

The results for the MLKM method are obtained using NA = 50 number of targets
and NS = 20 number of sensors. In addition, the time and velocity parameters are set to
(tmin, tmax) = U (−10, 30) and (vmin, vmax) = N (50, 40), receptively. Figure 8 shows the
performance of the MLKM method with and without error correction, as well as results
using the standard k-means++ method with preprocessing.
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Figure 8. K-means++ for preprocessed data (P:K-means++), multi-layer k-means++ (MLKM) without
error correction (MLKM w/o EC) and MLKM with error correction (MLKM w/ EC).

It can be observed that a higher accuracy is achieved using MLKM than that using
k-means++. Figure 8 shows the average, and maximum and minimum accuracy for both
methods. The error correction performed in layer 2 improves the average accuracy of
MLKM by approximately 7% (MLKM w/ EC 91.65%; MLKM w/o EC 84.3%).
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5.3. G-MLKM Overall Performance

The results for the G-MLKM method are obtained using NA = 20 number of targets
and NS = 10 number of sensors. In addition, the time and velocity parameters are set
to (tmin, tmax) = U(0, 40) and (vmin, vmax) = U(10, 50), respectively. Figure 9 shows the
performance of the G-MLKM algorithm with and without error correction.
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Figure 9. Accuracy obtained for graph based multi-layer k-means++ (G-MLKM) w/ EC and w/o EC.

It can be observed that a higher accuracy is achieved using G-MLKM with error cor-
rection than the result without error correction. Figure 9 shows the average, and maximum
and minimum accuracy for both methods. The second error correction performed in the
algorithm improves the average accuracy of G-MLKM by approximately 11% (G-MLKM
w/ EC 92.2%; G-MLKM w/o EC 81%).

5.4. Matrix Output of the G-MLKM Algorithm

The proposed G-MLKM algorithm implements multiple (determined by the structure
of road networks) permutation matrices Gints and L symmetric matrices GRi to represent the
data cluster classification results at intersections and road segments, respectively. A detail
example is illustrated to show the use of the proposed G-MLKM matrix output.

Suppose 5 targets (named as N1, N2, N3, N4, N5, respectively) go through the road
network as shown in Figure 1 during a certain time. The trajectory ground truth is listed in
Table 4. In particular, road segment R1 has three data groups denoted as {1, 2, 3}, R2 has six
data groups denoted as {1, 2, 3, 4, 5, 6}, R3 has five data groups denoted as {1, 2, 3, 4, 5}, R4
has three data groups denoted as {1, 2, 3}, R5 has one data groups denoted as {1}, and R6
has two data groups denoted as {1, 2}.

Take target N1 as an example, it travels through road segment R1, R2, then heads
to road segment R5. After that, it keeps on moving through road segment R4, R2 and
finally leaves the road network through road segment R3. The connections among asso-
ciated data groups in each road segment that are related to target N1 is represented as
{11, 12, 62, 15, 34, 53}, which means data group 1 in road segment R1, data groups 1 and 6
in road segment R2, data group 1 in road segment R5, data group 3 in road segment
R4, and data group 5 in road segment R3 all belong to the measurements extracted from
target N1.
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Table 4. Ground truth for five targets trajectories. The representation of Ai denotes the associated
data group A in road segment Ri.

Target Trajectory Representation

N1
R1 → R2 → R5
→ R4 → R2 → R3

{11, 12, 15, 34, 62, 53}

N2 R1 → R2 → R3 {21, 22, 13}
N3 R1 → R2 → R3 {31, 32, 23}
N4 R6 → R4 → R2 → R3 {16, 14, 42, 33}
N5 R6 → R4 → R2 → R3 {26, 24, 52, 43}

As the road segment R2 has two data groups belong to one target, the ideal matrix
GR2 ∈ R6×6 should be:

GR2 =



1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 1

,

with respect to its data groups {1, 2, 3, 4, 5, 6}. For the other road segments, the correspond-
ing matrix GRi is an identity matrix related to its own data groups. Especially, GR1 = I3×3,
GR3 = I3×3, GR4 = I3×3, GR5 = I1×1, and GR6 = I2×2.

Let the intersection formed by road segments R6, R5, and R4 be denoted as a. The in-
coming dataset Qa

I ∈ R3×1 can be stored in the sequence of {15, 16, 26} and the outgoing
dataset Qa

O ∈ R3×1 can be stored in the sequence of {14, 24, 34}. Therefore, the permutation
matrix Ga may be determined as:

Ga =

0 0 1
1 0 0
0 1 0

.

Similarly, for the intersection formed by road segment R1, R2, and R4 (named as
intersection b), matrix Gb may be determined as:

Gb =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

,

with Qb
I ∈ R6×1 stored in the sequence of {11, 21, 31, 14, 24, 34} and the outgoing dataset

Qb
O ∈ R6×1 in the sequence of {12, 22, 32, 42, 52, 62}. For the intersection formed by road

segment R2, R3, and R5 (named as intersection c), Gc may be determined as:

Gc =



0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

,
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with Qc
I ∈ R6×1 stored in the sequence of {12, 22, 32, 42, 52, 62} and the outgoing dataset

Qc
O ∈ R6×1 in the sequence of {13, 23, 33, 43, 53,15}.

With these matrices determined, the output result from G-MLKM can be
clearly presented.

6. Conclusions and Future Work

This paper studied data pattern recognition for multi-targets in a constrained space,
where the data were the minimal information provided by spatially distributed sensors.
In contrast to the existing methods that rely on probabilistic hypothesis estimation, we
proposed to utilize the machine learning approach for the data correlation analysis. Two
common data clustering algorithms, namely, k-means++ and deep neural network, were
first analyzed for data association given a simplified constrained space. Then the MLKM
method was proposed via leveraging the structure advantage of DNN and the unsuper-
vised clustering capability of k-means++. After that, graph theory was introduced in the
purpose of extending the scope of MLKM for a general constrained space. In particular, we
proposed a p-dual graph for data association at intersections and merged the results from
local spaces and intersections through the dual graph of the constrained space. Simulation
studies were provided to demonstrate the performance of the MLKM method and the
proposed G-MLKM. Our future work will focus on releasing the assumptions in this paper
to improve G-MLKM in the scenarios of false alarms.

Some interesting future work includes experimental verification of the proposed new
approach in real-world environments and the consideration of constraints such as packet
dropout, communication limitations, and other quality of service (QoS) parameters in
sensor networks.
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