
Research Article
An Improved Apriori Algorithm Based on an
Evolution-Communication Tissue-Like P System with
Promoters and Inhibitors

Xiyu Liu,1 Yuzhen Zhao,1 and Minghe Sun2

1College of Management Science and Engineering, Shandong Normal University, Jinan, Shandong, China
2College of Business, The University of Texas at San Antonio, San Antonio, TX, USA

Correspondence should be addressed to Yuzhen Zhao; 723567558@qq.com

Received 4 November 2016; Revised 6 January 2017; Accepted 30 January 2017; Published 19 February 2017

Academic Editor: Stefan Balint

Copyright © 2017 Xiyu Liu et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Apriori algorithm, as a typical frequent itemsets mining method, can help researchers and practitioners discover implicit
associations from large amounts of data. In this work, a fast Apriori algorithm, called ECTPPI-Apriori, for processing large datasets,
is proposed, which is based on an evolution-communication tissue-like P systemwith promoters and inhibitors.The structure of the
ECTPPI-Apriori algorithm is tissue-like and the evolution rules of the algorithm are object rewriting rules. The time complexity of
ECTPPI-Apriori is substantially improved from that of the conventional Apriori algorithms.The results give some hints to improve
conventional algorithms by using membrane computing models.

1. Introduction

Frequent itemsets mining, as a subfield of data mining,
aims at discovering itemsets with high frequency from huge
amounts of data. Interesting implicit associations between
items then can be extracted from these data, which can help
researchers and practitioners make informed decisions. One
famous example is “beer and diapers” [1]. The supermarket
management discovered a significant correlation between
the purchases of beer and diapers which had nothing to do
with each other ostensibly through frequent itemsets mining.
Consequently, they put diapers next to beer. Through this
layout adjustment, sales of both beer and diapers increased.

The Apriori algorithm is a typical frequent itemsets min-
ing algorithm, which is suitable for the discovery of frequent
itemsets in transactional databases [2]. To process large
datasets, many parallel improvements have been made to
improve the computational efficiency of the Apriori algo-
rithm [3–6]. How to implement the Apriori algorithm in
parallel to improve its computational efficiency is still an on-
going research topic. Given the extremity of the technology
and theory of the silicon-based computing, new non-silicon-
based computing devices P systems are used in this study.

P systems are new bioinspired computing models of
membrane computing, which focus on abstracting comput-
ing ideas from the study of biological cells, particularly of
cellular membranes [7, 8]. This study uses an evolution-
communication tissue-like P system with promoters and
inhibitors (ECPI tissue-like P systems) for computation. P
systems are powerful distributed and parallel bioinspired
computing devices, being able to do what Turing machines
can do [9–11], and have been applied to many fields. The
applications of P systems are based on two types ofmembrane
algorithms, the coupled membrane algorithm and the direct
membrane algorithm. The coupled membrane algorithm
combines the traditional algorithm with some structural
characters of P systems, such as dividing the whole system
into several relatively independent computing units, where
the computing units can communicate with each other,
the computing units can be dynamically rebuilt, and rules
can be executed in parallel [12–16]. The direct membrane
algorithm designs the algorithm based on the structure, the
objects, and the rules of P systems directly [17–21]. The final
goal of membrane computing is to build biocomputers and
the direct membrane algorithm can be transplanted to the
biocomputers directly, which is more meaningful from this

Hindawi
Discrete Dynamics in Nature and Society
Volume 2017, Article ID 6978146, 11 pages
https://doi.org/10.1155/2017/6978146

https://doi.org/10.1155/2017/6978146

2 Discrete Dynamics in Nature and Society

perspective. However, the direct membrane algorithm needs
to transform the whole traditional algorithm into P system,
which is complex and difficult. Up to date, a few simple
studies on the direct membrane algorithm focus on the
arithmetic operations, the logic operations, the generation of
graphic language, and clustering [17–21].

In this study, a novel improved Apriori algorithm based
on an ECPI tissue-like P system (ECTPPI-Apriori) is pro-
posed using the parallel mechanism in P systems. The infor-
mation communication between different computing units
in ECTPPI-Apriori is implemented through the exchange of
materials between membranes. Specifically, all itemsets are
searched in parallel, regulated by a set of promoters and
inhibitors. For a database with 𝑡 fields, 𝑡 + 2 cells are used
in the algorithm, where 1 cell is used to enter the data in the
database into the system, 𝑡 cells are used to detect the frequent
itemsets, and one specific cell, called output cell, is used to
store the results. The time complexity of ECTPPI-Apriori is
compared with those of other parallel Apriori algorithms to
show that the proposed algorithm is time saving.

The contributions of this study are twofold. From the
viewpoint of data mining, new bioinspired techniques are
introduced into frequent itemsets mining to improve the
efficiency of the algorithms. P systems are natural dis-
tributed parallel computing devices which can improve the
time efficiency in computation. Besides the hardware and
software implementations, P systems can be implemented
by biological methods. The computing resources needed
are only several cells, which can decrease the computing
resource requirements. From the viewpoint of P systems, the
application areas of the new bioinspired devices P systems are
extended to frequent itemset mining. The applications based
on the direct membrane algorithms are limited. This study
provides a new application of P systems in frequent itemsets
mining, which expands the application areas of the direct
membrane algorithms.

The paper is organized as follows. Section 2 introduces
some preliminaries about the Apriori algorithm and about
the ECPI tissue-like P systems. The ECTPPI-Apriori algo-
rithm using the parallel mechanism of the ECPI tissue-like P
system is developed in Section 3. In Section 4, one illustrative
example is used to show how the proposed algorithm works.
Computational experiments using two datasets to show the
performance of the proposed algorithm in frequent itemsets
mining are reported in Section 5. Conclusions are given in
Section 6.

2. Preliminaries

In this section, some basic concepts and notions in Apriori
algorithm [2] and ECPI tissue-like P system [7] are intro-
duced.

2.1. The Apriori Algorithm. TheApriori algorithm is a typical
frequent itemsetsmining algorithmproposed byAgrawal and
Srikant [2], which aims at discovering relationships between
items in transactional databases.

Definitions
(i) Item: a field in a transactional database is called

an item. If one record contains a certain item “1,”
otherwise “0,” is placed in the corresponding field of
the record in the transactional database.

(ii) Itemset: a set of items is called an itemset. For nota-
tional convenience, an itemset with 𝑛 items 𝐼1, 𝐼2, . . .,
and 𝐼𝑛 is represented by {𝐼1, 𝐼2, . . . , 𝐼𝑛}.

(iii) h-itemset: a set containing ℎ items is called a ℎ-
itemset.

(iv) Transaction: a record in a transactional database
is called a transaction, and each transaction is a
nonempty itemset.

(v) Support count: the number of transactions containing
a certain itemset is called the support count of the
itemset. Support count is also called the frequency or
count of the itemset.

(vi) Frequent itemset: if the support count of an itemset is
equal to or larger than the given minimum support
count threshold 𝑘, this itemset is called a frequent
itemset.

The general procedure of Apriori from Han et al. [1] is as
follows.

Input. The database contains 𝐷 transactions and the support
count threshold 𝑘.

Step 1. Scan the database to compute the support count of
each item, and obtain the frequent 1-itemsets 𝐿1. Let ℎ = 2.

Step 2. Obtain the candidate frequent ℎ-itemsets 𝐶ℎ by
joining two frequent (ℎ − 1)-itemsets with only one item
different.

Step 3. Prune those itemsets which have infrequent subset of
length (ℎ − 1) from the candidate frequent ℎ-itemsets.

Step 4. Scan the database to compute the support count
of each candidate frequent ℎ-itemset. Delete those itemsets
which do not meet the support count threshold 𝑘 and obtain
the frequent ℎ-itemsets 𝐿ℎ.

Step 5. Let ℎ = ℎ + 1. Repeat Steps 2 to 4 until no itemset
meets the support count threshold 𝑘.

Output. The collection of all frequent itemsets is represented
by 𝐿.

2.2. Evolution-CommunicationTissue-Like P Systemswith Pro-
moters and Inhibitors. Membrane computing is a new branch
of natural computing, which abstracts computing ideas from
the construct and the functions of cells or tissues. In the
nature, each organelle membrane or cell membrane works
as a relatively independent computing unit. The amount
and the types of materials in each organelle or cell change
through chemical reactions. Materials can flow between dif-
ferent organelle or cell membranes to transport information.

Discrete Dynamics in Nature and Society 3

Reactions in different organelles or cells take place in parallel,
while reactions in the same organelle or cell take place also
in parallel. These biological processes are abstracted as the
computing processes of membrane computing. The internal
parallel feature makes membrane computing a powerful
computing method which has been proven to be equivalent
to Turing machines [7–11].

The ECPI tissue-like P system, composed of a network
of cells linked by synapses (channels), is a typical membrane
computing model. The whole P system is divided into
separate regions through these cells, each forming one region.
Each cell has two main components, multisets of objects
(materials) and rules, also called evolution rules (chemical
reactions). Objects, as information carriers, are represented
by characters.

Rules regulate the ways objects evolve to new objects
and the ways objects in different cells communicate through
synapses. Rules are executed in nondeterministic flat maxi-
mally parallel in each cell. That is, at any step, if more than
one rule can be executed but the objects in the cell can only
support some of them, then a maximal number of rules will
be executed, and each rule can be executed for only once [22].

The computation halts if no rule can be executed in the
whole system. The computational results are represented by
the types and numbers of specified objects in a specified cell.
Because objects in a P system evolve in flatmaximally parallel,
regulated by promoters and inhibitors, the systems compute
very efficiently [10, 22]. Păun [7] provided more details about
P systems.

A formal description of the ECPI tissue-like P system is
as follows.

An ECPI tissue-like P system of degree𝑚 is of the form

Π = (𝑂, 𝜎1, 𝜎2, . . . , 𝜎𝑚, syn, 𝜌, 𝑖out) , (1)

where (1) 𝑂 represents the alphabets including all objects of
the system. (2) syn ⊆ {1, 2, . . . , 𝑚}×{1, 2, . . . , 𝑚} represents all
synapses between the cells. (3) 𝜌 defines the partial ordering
relationship of the rules; that is, rules with higher orders are
executed with higher priority. (4) 𝑖out represents the subscript
of the output cell where the computation results are placed.
(5) 𝜎1, . . . , 𝜎𝑚 represent the𝑚 cells. Each cell is of the form

𝜎ℎ = (𝑤ℎ,0, 𝑅ℎ) , for 1 ≤ ℎ ≤ 𝑚. (2)

In (2),𝑤ℎ,0 represents the initial objects in cell ℎ. A𝑤ℎ,0 =
𝜆 means that there is no object in cell ℎ. If 𝑎 represents
an object, 𝑎𝑛 represents the multiplicity of 𝑛 copies of such
objects. 𝑅ℎ in (2) represents a set of rules in cell ℎ with the
form of 𝑤𝑧 → 𝑥𝑦go, where 𝑤 is the multiset of objects
consumed by the rule, 𝑧 in the subscript is the promoter or
the inhibitor of the form 𝑧 = 𝑧󸀠 or 𝑧 = ¬𝑧󸀠, and 𝑥 and 𝑦 are
the multisets of objects generated by the rule. A rule can be
executed only when all objects in the promoter appear and
cannot be executed when any objects in the inhibitor appear.
Multiset of objects 𝑥 stay in the current cell, and multiset
of objects 𝑦 go to the cells which have synapses connected
from the current cell. The 𝑞th subset of rules in cell ℎ having
similar functions is represented by 𝑟ℎ𝑞, and the rules in the
same subset are connected by ∪.

0

1 2

· · ·

t

t + 1

Input

Figure 1: Cell structure for the ECTPPI-Apriori algorithm.

3. The ECTPPI-Apriori Algorithm

In this section, the structure of the P system used in the
ECTPPI-Apriori algorithm is presented first, the computa-
tional processes in different cells are then discussed in detail,
a pseudocode summarizing the operations is presented, and
an analysis of the algorithm complexity is provided.

3.1. Algorithm and Rules. Assume a transactional database
contains𝐷 records and 𝑡 fields. An object 𝑎𝑖𝑗 is generated only
if the 𝑖th transaction contains the 𝑗th item 𝐼𝑗 (i.e., there is a
1 in the corresponding field in the transactional database). In
this way, the database is transformed into objects, a form that
the P system can recognize.The support count threshold is set
to 𝑘. A cell structure with 𝑡 + 2 cells, labeled by 0, 1, . . . , 𝑡 + 1,
as shown in Figure 1, is used as the framework for ECTPPI-
Apriori. The evolution rules are not shown in this figure due
to their length. Transactional databases are usually sparse.
Therefore, the number of objects, represented by 𝑎𝑖𝑗, to be
processed in this algorithm is much smaller than𝐷𝑡.

When computation begins, objects 𝑎𝑖𝑗 encoded from the
transactional database and object 𝜃𝑘 representing the support
count threshold 𝑘 are entered into cell 0. Objects 𝑎𝑖𝑗 and
𝜃𝑘 are passed to cells 1, 2, . . . , 𝑡 in parallel, using a parallel
evolution mechanism in tissue-like P systems. The auxiliary
objects 𝛽𝑘𝑗 are generated in cell 1. Next, the frequent 1-
itemsets are produced and objects representing frequent 1-
itemsets are generated in cell 1 by executing the evolution
rules in parallel. The objects representing the frequent 1-
itemsets are passed to cells 2 and 𝑡 + 1. Cell 𝑡 + 1 is
used to store the computational results. The frequent 2-
itemsets and the objects representing the frequent 2-itemsets
are produced in cell 2 by executing the evolution rules in
parallel. The objects representing the frequent 2-itemsets are
passed to cells 3 and 𝑡 + 1. This process continues until all
frequent itemsets have been produced. As compared with
that of the conventional Apriori algorithm, the computational
time needed by ECTPPI-Apriori to generate the candidate
frequent ℎ-itemsets 𝐶ℎ and to compute the support count
of each candidate frequent ℎ-itemset can be substantially
reduced.

4 Discrete Dynamics in Nature and Society

The ECPI tissue-like P system for ECTPPI-Apriori is as
follows.

ΠApriori = (𝑂, 𝜎0, 𝜎1, . . . , 𝜎𝑡+1, syn, 𝜌, 𝑖out) , (3)

where (1) 𝑂 = {𝑎𝑖𝑗, 𝛽𝑗, 𝛽𝑗1𝑗2 , . . . , 𝛽𝑗1 ⋅⋅⋅𝑗𝑡 , 𝛿𝑗, 𝛿𝑗1𝑗2 , . . . , 𝛿𝑗1 ⋅⋅⋅𝑗𝑡 , 𝛼𝑗,
𝛼𝑗1𝑗2 , . . . , 𝛼𝑗1 ⋅⋅⋅𝑗𝑡} for 1 ≤ 𝑖 ≤ 𝐷, 1 ≤ 𝑗, 𝑗1, . . . , 𝑗𝑡 ≤ 𝑡; (2)
syn = {{0, 1}, {0, 2}, . . . , {0, 𝑡}; {1, 𝑡 + 1}, {2, 𝑡 + 1}, . . . , {𝑡, 𝑡 + 1};
{1, 2}, {2, 3}, . . . , {𝑡 − 1, 𝑡}}; (3) 𝜌 = {𝑟𝑖 > 𝑟𝑗 | 𝑖 < 𝑗}; (4) 𝜎0 =
(𝑤0,0, 𝑅0), 𝜎1 = (𝑤1,0, 𝑅1), 𝜎2 = (𝑤2,0, 𝑅2), . . . , 𝜎𝑡 = (𝑤𝑡,0, 𝑅𝑡);
(5) 𝑖out = 𝑡 + 1.

In 𝜎0 = (𝑤0,0, 𝑅0), 𝑤0,0 = 𝜆 and
𝑅0:
𝑟01 = {𝑎𝑖𝑗 → 𝑎𝑖𝑗,go} ∪ {𝜃𝑘 → 𝜃𝑘go}

for 1 ≤ 𝑖 ≤ 𝐷 and 1 ≤ 𝑗 ≤ 𝑡.

In 𝜎1 = (𝑤1,0, 𝑅1), 𝑤1,0 = 𝜆 and
𝑅1:
𝑟11 = {𝜃𝑘 → 𝛽𝑘1 ⋅ ⋅ ⋅ 𝛽

𝑘
𝑡 }.

𝑟12 = {𝛿𝑝𝑗 𝛽
𝑘−𝑝
𝑗 → 𝜆} ∪ {(𝛿𝑘𝑗)¬𝛽𝑗 → 𝛼𝑗,go}

for 1 ≤ 𝑗 ≤ 𝑡 and 1 ≤ 𝑝 ≤ 𝑘.
𝑟13 = {𝑎𝑖𝑗𝛽𝑗 → 𝛿𝑗}

for 1 ≤ 𝑖 ≤ 𝐷 and 1 ≤ 𝑗 ≤ 𝑡.

In 𝜎2 = (𝑤2,0, 𝑅2), 𝑤2,0 = 𝜆 and
𝑅2:
𝑟21 = {()𝛼𝑗1𝛼𝑗2𝜃

𝑘¬𝛽𝑘𝑗1𝑗2
→ 𝛽𝑘𝑗1𝑗2}

for 1 ≤ 𝑗1 < 𝑗2 ≤ 𝑡.
𝑟22 = {𝛼𝑗 → 𝜆} (1 ≤ 𝑗 ≤ 𝑡).

𝑟23 = {𝛿𝑝𝑗1𝑗2𝛽
𝑘−𝑝
𝑗1𝑗2

→ 𝜆} ∪ {(𝛿𝑘𝑗1𝑗2)¬𝛽𝑗1𝑗2
→ 𝛼𝑗1𝑗2 ,go}

for 1 ≤ 𝑗1 < 𝑗2 ≤ 𝑡 and 1 ≤ 𝑝 ≤ 𝑘.
𝑟24 = {(𝛽𝑗1𝑗2)𝑎𝑖𝑗1𝑎𝑖𝑗2

→ 𝛿𝑗1𝑗2}

for 1 ≤ 𝑖 ≤ 𝐷 and 1 ≤ 𝑗1 < 𝑗2 ≤ 𝑡.

...

In 𝜎ℎ = (𝑤ℎ,0, 𝑅ℎ), 𝑤ℎ,0 = 𝜆 and
𝑅ℎ:

𝑟ℎ1 = {()𝛼𝑗1⋅⋅⋅𝑗ℎ−2𝑗ℎ1 𝛼𝑗1⋅⋅⋅𝑗ℎ−2𝑗ℎ2 𝜃
𝑘¬𝛽𝑘𝑗1⋅⋅⋅𝑗ℎ−2𝑗ℎ1 𝑗ℎ2

→𝛽𝑘𝑗1 ⋅⋅⋅𝑗ℎ−2𝑗ℎ1 𝑗ℎ2
}

for 1 ≤ 𝑗1 < ⋅ ⋅ ⋅ < 𝑗ℎ−2 ≤ 𝑡 and 1 ≤ 𝑗ℎ1 , 𝑗ℎ2 ≤ 𝑡.
𝑟ℎ2 = {𝛼𝑗1 ⋅⋅⋅𝑗ℎ−1 → 𝜆}

for 1 ≤ 𝑗1 < ⋅ ⋅ ⋅ < 𝑗ℎ−1 ≤ 𝑡.

𝑟ℎ3 = {𝛿𝑝𝑗1 ⋅⋅⋅𝑗ℎ−2𝑗ℎ1 𝑗ℎ2
𝛽𝑘−𝑝𝑗1 ⋅⋅⋅𝑗ℎ−2𝑗ℎ1 𝑗ℎ2

→ 𝜆} ∪

{(𝛿𝑘𝑗1 ⋅⋅⋅𝑗ℎ−2𝑗ℎ1 𝑗ℎ2
)¬𝛽𝑗1⋅⋅⋅𝑗ℎ−2𝑗ℎ1 𝑗ℎ2

→ 𝛼𝑗1⋅⋅⋅𝑗ℎ−2𝑗ℎ1 𝑗ℎ2 ,go
}

for 1 ≤ 𝑗1 < ⋅ ⋅ ⋅ < 𝑗ℎ−2 ≤ 𝑡, 1 ≤ 𝑗ℎ1 , 𝑗ℎ2 ≤ 𝑡 and
1 ≤ 𝑝 ≤ 𝑘.

𝑟ℎ4 = {(𝛽𝑗1 ⋅⋅⋅𝑗ℎ−2𝑗ℎ1 𝑗ℎ2
)𝑎𝑖𝑗1 ⋅⋅⋅𝑎𝑖𝑗ℎ−2𝑗ℎ1 𝑗ℎ2

→ 𝛿𝑗1 ⋅⋅⋅𝑗ℎ−2𝑗ℎ1 𝑗ℎ2
}

for 1 ≤ 𝑖 ≤ 𝐷, 1 ≤ 𝑗1 < ⋅ ⋅ ⋅ < 𝑗ℎ−2 ≤ 𝑡 and 1 ≤
𝑗ℎ1 , 𝑗ℎ2 ≤ 𝑡.

...

In 𝜎𝑡 = (𝑤𝑡,0, 𝑅𝑡), 𝑤𝑡,0 = 𝜆 and
𝑅𝑡:
𝑟𝑡1 = {()𝛼𝑗1⋅⋅⋅𝑗𝑡−2𝑗𝑡1 𝛼𝑗1⋅⋅⋅𝑗𝑡−2𝑗𝑡2 𝜃

𝑘¬𝛽𝑘𝑗1⋅⋅⋅𝑗𝑡−2𝑗𝑡1 𝑗𝑡2
→ 𝛽𝑘𝑗1 ⋅⋅⋅𝑗𝑡−2𝑗𝑡1 𝑗𝑡2

}

for 1 ≤ 𝑗1 < ⋅ ⋅ ⋅ < 𝑗𝑡−2 ≤ 𝑡 and 1 ≤ 𝑗𝑡1 , 𝑗𝑡2 ≤ 𝑡.
𝑟𝑡2 = {𝛼𝑗1 ⋅⋅⋅𝑗𝑡−1 → 𝜆}

for 1 ≤ 𝑗1 < ⋅ ⋅ ⋅ < 𝑗𝑡−1 ≤ 𝑡.

𝑟𝑡3 = {𝛿𝑝𝑗1 ⋅⋅⋅𝑗𝑡−2𝑗𝑡1 𝑗𝑡2
𝛽𝑘−𝑝𝑗1 ⋅⋅⋅𝑗𝑡−2𝑗𝑡1 𝑗𝑡2

→ 𝜆} ∪

{(𝛿𝑘𝑗1 ⋅⋅⋅𝑗𝑡−2𝑗𝑡1 𝑗𝑡2
)¬𝛽𝑗1⋅⋅⋅𝑗𝑡−2𝑗𝑡1 𝑗𝑡2

→ 𝛼𝑗1 ⋅⋅⋅𝑗𝑡−2𝑗𝑡1 𝑗𝑡2 ,go
}

for 1 ≤ 𝑗1 < ⋅ ⋅ ⋅ < 𝑗𝑡−2 ≤ 𝑡, 1 ≤ 𝑗𝑡1 , 𝑗𝑡2 ≤ 𝑡 and
1 ≤ 𝑝 ≤ 𝑘.
𝑟𝑡4 = {(𝛽𝑗1 ⋅⋅⋅𝑗𝑡−2𝑗𝑡1 𝑗𝑡2

)𝑎𝑖𝑗1 ⋅⋅⋅𝑎𝑖𝑗𝑡−2𝑗𝑡1 𝑗𝑡2
→ 𝛿𝑗1 ⋅⋅⋅𝑗t−2𝑗𝑡1 𝑗𝑡2

}

for 1 ≤ 𝑖 ≤ 𝐷, 1 ≤ 𝑗1 < ⋅ ⋅ ⋅ < 𝑗𝑡−2 ≤ 𝑡 and 1 ≤ 𝑗𝑡1 , 𝑗𝑡2 ≤
𝑡.

In 𝜎𝑡+1 = (𝑤𝑡+1,0, 𝑅𝑡+1), 𝑤𝑡+1,0 = 𝜆 and 𝑅𝑡+1 = ⌀.

The auxiliary objects 𝛽𝑘𝑗 and 𝛿𝑗, for 1 ≤ 𝑗 ≤ 𝑡, are used
to detect the frequent 1-itemsets. The auxiliary objects 𝛽𝑘𝑗
store the items in the candidate frequent 1-itemsets using their
subscripts. For example, object 𝛽𝑘1 means the itemset {𝐼1} is a
candidate frequent 1-itemset.The auxiliary objects 𝛿𝑗 are used
to identify the frequent 1-itemsets. The 𝑘 copies of 𝛽𝑗 initially
in cell 1 indicate that the 𝑗th item needs to appear in at least
𝑘 records to make the itemset {𝐼𝑗} a frequent 1-itemset. One
object 𝛽𝑗 is removed from, and one object 𝛿𝑗 is generated in
cell 1 when one more of the 𝑗th item is detected in a record.
Therefore, if there is no object 𝛽𝑗 left and 𝑘 objects 𝛿𝑗 have
been generated in cell 1, at least 𝑘 records have been found to
contain the 𝑗th item. The functions of 𝛽𝑘𝑗1𝑗2 in cells 2, 𝛽𝑘𝑗1𝑗2𝑗3
in cell 3, . . ., and 𝛽𝑘𝑗1 ⋅⋅⋅𝑗𝑡 in cell 𝑡 are similar to that of 𝛽𝑘𝑗 in cell
1. The functions of 𝛿𝑗1𝑗2 in cell 2, 𝛿𝑗1𝑗2𝑗3 in cell 3, . . ., and 𝛿𝑗1 ⋅⋅⋅𝑗𝑡
in cell 𝑡 are similar to that of 𝛿𝑗 in cell 1. The objects 𝛼𝑗, for
1 ≤ 𝑗 ≤ 𝑡, are used to store the items in the frequent 1-itemsets
using their subscript. For example, 𝛼1 means the itemset {𝐼1}
is a frequent 1-itemset. The functions of 𝛼𝑗1𝑗2 in cell 2, 𝛼𝑗1𝑗2𝑗3
in cell 3, . . ., and 𝛼𝑗1⋅⋅⋅𝑗𝑡 in cell 𝑡 are similar to that of 𝛼𝑗 in cell
1.

The evolution rules are object rewriting rules similar to
chemical reactions. They take objects, transform them into
other objects, and may transport them to other cells.

3.2. Computing Process

Input. Cell 0 is the input cell. The objects 𝑎𝑖𝑗 encoded from
the transactional database and objects 𝜃𝑘 representing the

Discrete Dynamics in Nature and Society 5

support count threshold 𝑘 are entered into cell 0 to activate
the computation process. Rule 𝑟01 is executed to put copies of
𝑎𝑖𝑗 and 𝜃𝑘 to cells 1, 2, . . . , 𝑡.

Frequent 1-ItemsetsGeneration.Frequent 1-itemsets are gener-
ated in cell 1. Rule 𝑟11 is executed to generate 𝛽

𝑘
𝑗 for 1 ≤ 𝑗 ≤ 𝑡.

Rule 𝑟13 is executed to detect all frequent 1-itemsets using the
internal flat maximally parallel mechanism in the P system.
Rule 𝑟12 cannot be executed because no object 𝛿𝑗 is in cell 1
at this time. The detection process of the candidate frequent
1-itemset {𝐼1} is taken as an example. The detection processes
of other candidate frequent 1-itemsets are performed in the
same way. Rule 𝑟13 is actually composed of multiple subrules
working on objects with different subscripts. If object 𝑎𝑖1 is in
cell 1 which means the 𝑖th record contains the first item, the
subrule {𝑎𝑖1𝛽1 → 𝛿1}meets the execution condition and can
be executed. If object 𝑎𝑖1 is not in cell 1 which means the 𝑖th
record does not contain the first item, the subrule {𝑎𝑖1𝛽1 →
𝛿1} does not meet the execution condition and cannot be
executed. Initially, 𝑘 copies of 𝛽1 are in cell 1 indicating that
the first item needs to appear in at least 𝑘 records for the
itemset {𝐼1} to be a frequent 1-itemset. Each execution of a
subrule consumes one 𝛽1. Therefore, at most 𝑘 subrules of
the form {𝑎𝑖1𝛽1 → 𝛿1} can be executed in nondeterministic
flat maximally parallel. The checking process continues until
all objects 𝑎𝑖𝑗 have been checked or all of the 𝑘 copies of 𝛽1
have been consumed. If all of the 𝑘 copies of 𝛽1 have been
consumed, the first item appeared in at least 𝑘 records and
the itemset {𝐼1} is a frequent 1-itemset. If some copies of 𝛽1
are still in this cell after all objects 𝑎𝑖𝑗 have been checked, the
itemset {𝐼1} is not a frequent 1-itemset.

Rule 𝑟12 is then executed to process the results obtained by
rule 𝑟13. The 1-itemset {𝐼1} is again taken as an example. If 𝑝
copies of 𝛽1 have been consumed by rule 𝑟13, and 𝑘−𝑝 copies
of 𝛽1 are still in this cell, subrule {𝛿𝑝1𝛽

𝑘−𝑝
1 → 𝜆} is executed to

delete the objects 𝛿𝑝1 and 𝛽
𝑘−𝑝
1 . If all of the 𝑘 copies of 𝛽1 have

been consumed, subrule {(𝛿𝑘1)¬𝛽1 → 𝛼1,go} is executed to put
an object 𝛼1 to cells 2 and 𝑡 + 1 to indicate that the itemset
{𝐼1} is a frequent 1-itemset and to activate the computation in
cell 2. If no 1-itemset is a frequent 1-itemset, the computation
halts.

Frequent 2-Itemsets Generation. The frequent 2-itemsets are
generated in cell 2. Rule 𝑟21 is executed to obtain all candidate
frequent 2-itemsets using the internal flat maximally parallel
mechanism in the P system. The pair of empty parentheses
in this subrule indicates that no objects are consumed
when this rule is executed. The detection process of the
candidate frequent 2-itemset {𝐼1, 𝐼2} is taken as an example.
The detection processes of the other candidate frequent 2-
itemsets are performed in the same way. Rule 𝑟21 is actually
composed of multiple subrules working on objects with
different subscripts. If objects 𝛼1 and 𝛼2 are in cell 2, which
means itemsets {𝐼1} and {𝐼2} are frequent 1-itemsets, subrule
{()𝛼1𝛼2𝜃𝑘¬𝛽𝑘12 → 𝛽𝑘12} is executed to generate 𝛽𝑘12. The presence
of 𝛽𝑘12 means the 2-itemset {𝐼1, 𝐼2} is a candidate frequent 2-
itemset.

Rule 𝑟22 is executed to delete the redundant objects𝛼𝑗 that
were used by rule 𝑟21 but are not needed anymore.

Rule 𝑟24 is executed to detect all frequent 2-itemsets
using the internal flat maximally parallel mechanism in the
P system. Rule 𝑟23 cannot be executed because no object
𝛿𝑗1𝑗2 is in cell 2 at this time. The detection process of the
frequent 2-itemset {𝐼1, 𝐼2} is taken as an example. Rule 𝑟24 is
actually composed of multiple subrules working on objects
with different subscripts. If objects 𝑎𝑖1 and 𝑎𝑖2 are in cell
2 which means the 𝑖th record contains the first and the
second items, subrule {(𝛽12)𝑎𝑖1𝑎𝑖2 → 𝛿12}meets the execution
condition and can be executed. If objects 𝑎𝑖1 and 𝑎𝑖2 are not
both in cell 2 which means the 𝑖th record does not contain
both the first and the second items, subrule {(𝛽12)𝑎𝑖1𝑎𝑖2 →
𝛿12} does not meet the execution condition and cannot be
executed. Initially, 𝑘 copies of 𝛽12 are in cell 2 indicating that
both the first and the second items need to appear together
in at least 𝑘 records for the itemset {𝐼1, 𝐼2} to be a frequent 2-
itemset. Each execution of these subrules consumes one 𝛽12.
Therefore, at most 𝑘 subrules of the form {(𝛽12)𝑎𝑖1𝑎𝑖2 → 𝛿12}
can be executed in nondeterministic flat maximally parallel.
The checking process continues until all objects 𝑎𝑖𝑗 have been
checked or all of the 𝑘 copies of 𝛽12 have been consumed. If
all of the 𝑘 copies of 𝛽12 have been consumed, the first and
the second items appeared together in at least 𝑘 records and
the itemset {𝐼1, 𝐼2} is a frequent 2-itemset. If some copies of
𝛽12 are still in this cell after rule 𝑟24 is executed, the itemset
{𝐼1, 𝐼2} is not a frequent 2-itemset.

Rule 𝑟23 is executed to process the results obtained by rule
𝑟24. The 2-itemset {𝐼1, 𝐼2} is again taken as an example. If 𝑝
copies of 𝛽12 have been consumed by rule 𝑟24, and 𝑘−𝑝 copies
of objects 𝛽12 are still in this cell, subrule {𝛿𝑝12𝛽

𝑘−𝑝
12 → 𝜆}

is executed to delete the objects 𝛿𝑝12 and 𝛽𝑘−𝑝12 . If all of the
𝑘 copies of 𝛽12 have been consumed, subrule {(𝛿𝑘12)¬𝛽12 →
𝛼12,go} is executed to put an object 𝛼12 to cells 3 and 𝑡 + 1 to
indicate that the itemset {𝐼1, 𝐼2} is a frequent 2-itemset and to
activate the computation in cell 3. If no 2-itemset is a frequent
2-itemset, the computation halts.

Each cell 𝑗 for 3 ≤ 𝑗 ≤ 𝑡 has 4 rules which are similar to
those in cell 2. Each cell 𝑗 performs similar functions as cell 2
does but for frequent 𝑗-itemsets.

After the computation halts, all the results, that is, objects
representing the identified frequent itemsets, are stored in cell
𝑡 + 1.

3.3. AlgorithmFlow. TheconventionalApriori algorithmexe-
cutes sequentially. ECTPPI-Apriori uses the parallel mecha-
nism of the ECPI tissue-like P system to execute in parallel. A
pseudocode of ECTPPI-Apriori is shown as in Algorithm 1.

3.4. Time Complexity. The time complexity of ECTPPI-Apri-
ori in theworst case is analyzed. Initially, 1 computational step
is needed to put copies of 𝑎𝑖𝑗 and 𝜃𝑘 to cells 1, 2, . . . , 𝑡.

Generating the frequent 1-itemsets needs 3 computational
steps. Generating the candidate frequent 1-itemsets 𝐶1 needs
1 computational step. Finding the support counts of the
candidate frequent 1-itemsets needs 1 computational step. All

6 Discrete Dynamics in Nature and Society

Input:
The objects 𝑎𝑖𝑗 encoded from the transactional database and objects 𝜃𝑘 representing the support count
threshold 𝑘.
Rule 𝑟01:
Copy all 𝑎𝑖𝑗 and 𝜃𝑘 to cells 1 to 𝑡 + 1.

Method:
{
Rule 𝑟11:
Generate 𝛽𝑘𝑗 for 1 ≤ 𝑗 ≤ 𝑡 to form the candidate frequent 1-itemsets 𝐶1.
Rule 𝑟13:
Scan each object 𝑎𝑖𝑗 in cell 1 to count the frequency of each item. If 𝑎𝑖𝑗 is in cell 1, consume one 𝛽𝑗 and
generate one 𝛿𝑗. Continue until all 𝑘 copies of 𝛽𝑗 have been consumed or all objects 𝑎𝑖𝑗 have been scanned.
Rule 𝑟12:
If all 𝑘 copies of 𝛽𝑗 have been consumed, generate an object 𝛼𝑗 to add {𝐼𝑗} to 𝐿1 as a frequent 1-itemset
and pass 𝛼𝑗 to cells 2 and 𝑡 + 1. Delete all remaining copies of 𝛽𝑗 and delete all copies of 𝛿𝑗.

For (2 ≤ ℎ ≤ 𝑡 and 𝐿ℎ−1 ̸= ⌀) do the following in cell ℎ:
{
Rule 𝑟ℎ1:
Scan the objects 𝛼𝑗1 ⋅⋅⋅𝑗ℎ−1 representing the frequent (ℎ − 1)-itemsets 𝐿ℎ−1 to generate the objects 𝛽

𝑘
𝑗1 ⋅⋅⋅𝑗ℎ

representing the candidate frequent ℎ-itemsets 𝐶ℎ.
Rule 𝑟ℎ2:
Delete all objects 𝛼𝑗1 ⋅⋅⋅𝑗ℎ−1 after they have been used by rule 𝑟ℎ1.
Rule 𝑟ℎ4:
Scan the objects 𝑎𝑖𝑗 representing the database to count the frequency of each candidate frequent ℎ-itemset
𝐶ℎ. If the objects 𝑎𝑖,𝑗1 , . . . , 𝑎𝑖,𝑗ℎ−1 and 𝑎𝑖,𝑗ℎ are all in cell ℎ, consume one 𝛽𝑗1 ⋅⋅⋅𝑗ℎ and generate one 𝛿𝑗1 ⋅⋅⋅𝑗ℎ .
Continue until all copies of 𝛽𝑗1 ⋅⋅⋅𝑗ℎ have been consumed or all objects 𝑎𝑖𝑗 have been scanned.
Rule 𝑟ℎ3:
If all 𝑘 copies of 𝛽𝑗1 ⋅⋅⋅𝑗ℎ have been consumed, generate 𝛼𝑗1 ⋅⋅⋅𝑗ℎ to add {𝐼𝑗1 , . . . , 𝐼𝑗ℎ } to 𝐿ℎ as a frequent
ℎ-itemset and put 𝛼𝑗1 ⋅⋅⋅𝑗ℎ in cells ℎ + 1 and 𝑡 + 1. Delete all remaining copies of 𝛽𝑗1 ⋅⋅⋅𝑗ℎ and delete all copies
of 𝛿𝑗1 ⋅⋅⋅𝑗ℎ .
Let ℎ = ℎ + 1.
}

Output:
The collection of all frequent itemsets 𝐿 encoded by objects 𝛼𝑗, 𝛼𝑗1𝑗2 , . . . , 𝛼𝑗1 ⋅⋅⋅𝑗𝑛 .

Algorithm 1: ECTP-Apriori algorithm.

candidate frequent 1-itemsets in the database are checked in
the flat maximally parallel. Passing the results of the frequent
1-itemsets to cells 2 and 𝑡 + 1 needs 1 computational step.

Generating the frequent ℎ-itemsets (1 < ℎ ≤ 𝑡) needs
4 computational steps. Generating the candidate frequent ℎ-
itemsets𝐶ℎ needs 1 computational step. Cleaning thememory
used by the objects needs 1 computational step. Finding the
support counts of the candidate frequent ℎ-itemsets needs 1
computational step. All candidate frequent ℎ-itemsets in the
database are checked in flat maximally parallel. Passing the
results of the frequent ℎ-itemsets to cells ℎ+1 and 𝑡 + 1 needs
1 computational step.

Therefore, the time complexity of ECTPPI-Apriori is 1 +
3 + 4(𝑡 − 1) = 4𝑡, which gives 𝑂(𝑡). Note that 𝑂 is used
traditionally to indicate the time complexity of an algorithm
and the 𝑂 used here has a different meaning from that used
earlier when ECTPPI-Apriori is described.

Some comparison results between ECTPPI-Apriori and
the original as well as some other improved parallel Apriori
algorithms are shown in Table 1, where |𝐶𝑘| is the number

Table 1: Time complexities of some Apriori algorithms.

Algorithm Time complexity
Apriori [2] 𝑂 (𝐷𝑡 󵄨󵄨󵄨󵄨𝐶𝑘

󵄨󵄨󵄨󵄨 + 𝑡 󵄨󵄨󵄨󵄨𝐿𝑘−1
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝐿𝑘−1

󵄨󵄨󵄨󵄨)

Apriori based on the boolean
matrix and Hadoop [3] 𝑂(𝐷𝑡)

Multi-GPU-based Apriori [4] 𝑂(𝑡|𝐿𝑘−1||𝐿𝑘−1|)

PApriori [5] 𝑂(𝐷𝑡|𝐶𝑘| + 𝑡|𝐿𝑘−1||𝐿𝑘−1|)

Parallel Apriori algorithm on
Hadoop cluster [6] 𝑂(𝐷𝑡|𝐶𝑘| + 𝑡|𝐿𝑘−1||𝐿𝑘−1|)

ECTPPI-Apriori 𝑂(𝑡)

of candidate frequent 𝑘-itemsets and |𝐿𝑘−1| is the number of
frequent 𝑘 − 1-itemsets.

4. An Illustrative Example

An illustrative example is presented in this section to
demonstrate how ECTPPI-Apriori works. Table 2 shows the

Discrete Dynamics in Nature and Society 7

Table 2: The transactional database of the illustrative example.

TID Items
T100 𝐼1, 𝐼2, 𝐼5
T200 𝐼2, 𝐼4
T300 𝐼2, 𝐼3
T400 𝐼1, 𝐼2, 𝐼4
T500 𝐼1, 𝐼3
T600 𝐼2, 𝐼3
T700 𝐼1, 𝐼3
T800 𝐼1, 𝐼2, 𝐼3, 𝐼5
T900 𝐼1, 𝐼2, 𝐼3

transactional database of one branch office of All Electronics
[1]. There are 9 transactions and 5 fields in this database; that
is, 𝐷 = 9 and 𝑡 = 5. Suppose the support count threshold is
𝑘 = 2. The computational processes are as follows.

Input. The database is transformed into objects 𝑎11, 𝑎12, 𝑎15,
𝑎22, 𝑎24, 𝑎32, 𝑎33, 𝑎41, 𝑎42, 𝑎44, 𝑎51, 𝑎53, 𝑎62, 𝑎63, 𝑎71, 𝑎73, 𝑎81,
𝑎82, 𝑎83, 𝑎85, 𝑎91, 𝑎92, and 𝑎93, in a form that the P system
can recognize. These objects and objects 𝜃2 representing the
support count threshold 𝑘 = 2 are entered into cell 0 to
activate the computation process. Rule 𝑟01 = {𝑎𝑖𝑗 → 𝑎𝑖𝑗,go} ∪

{𝜃𝑘 → 𝜃𝑘go} is executed to put copies of 𝑎11, 𝑎12, 𝑎15, 𝑎22, 𝑎24,
𝑎32, 𝑎33, 𝑎41, 𝑎42, 𝑎44, 𝑎51, 𝑎53, 𝑎62, 𝑎63, 𝑎71, 𝑎73, 𝑎81, 𝑎82, 𝑎83, 𝑎85,
𝑎91, 𝑎92, 𝑎93, and 𝜃2 to cells 1 ⋅ ⋅ ⋅ 5.

Frequent 1-Itemsets Generation. Within cell 1, the auxiliary
objects 𝛽2𝑗 , for 1 ≤ 𝑗 ≤ 5, are created by rule 𝑟11 to indicate
that each item 𝑗 needs to appear in at least 𝑘 = 2 records for
it to be a frequent 1-itemset. Rule 𝑟13 is executed to detect all
frequent 1-itemsets in flat maximally parallel. The detection
process of the candidate frequent 1-itemset {𝐼1} is taken as
an example. Objects 𝑎11, 𝑎41, 𝑎51, 𝑎71, 𝑎81, and 𝑎91 are in cell
1 which means the first, the fourth, the fifth, the seventh,
the eighth, and the ninth records contain 𝐼1. The subrules
{𝑎11𝛽1 → 𝛿1}, {𝑎41𝛽1 → 𝛿1}, {𝑎51𝛽1 → 𝛿1}, {𝑎71𝛽1 → 𝛿1},
{𝑎81𝛽1 → 𝛿1}, and {𝑎91𝛽1 → 𝛿1}meet the execution condition
and can be executed. Objects 𝑎21, 𝑎31, and 𝑎61 are not in cell 1,
which means the second, the third, and the sixth records do
not contain 𝐼1. The subrules {𝑎21𝛽1 → 𝛿1}, {𝑎31𝛽1 → 𝛿1}, and
{𝑎61𝛽1 → 𝛿1}donotmeet the execution condition and cannot
be executed. Initially, 2 copies of 𝛽1 are in cell 1 indicating that
the first item needs to appear in at least 2 records to make the
itemset {𝐼1} a frequent 1-itemset. Each execution of a subrule
consumes one 𝛽1. Therefore, 2 of subrules among {𝑎11𝛽1 →
𝛿1}, {𝑎41𝛽1 → 𝛿1}, {𝑎51𝛽1 → 𝛿1}, {𝑎71𝛽1 → 𝛿1}, {𝑎81𝛽1 → 𝛿1},
and {𝑎91𝛽1 → 𝛿1} can be executed in nondeterministic flat
maximally parallel.Through the execution of 2 such subrules,
both of the 2 copies of 𝛽1 are consumed and 2 copies of
𝛿1 are generated. The detection processes of other candidate
frequent 1-itemsets are performed in the same way. After the
detection processes, 𝛽21 , 𝛽

2
2 , 𝛽
2
3 , 𝛽
2
4 , and 𝛽

2
5 are consumed, and

𝛿21 , 𝛿
2
2 , 𝛿
2
3 , 𝛿
2
4 , and 𝛿25 are generated.

Rule 𝑟12 is then executed to process the results obtained by
rule 𝑟13. The 1-itemset {𝐼1} is again taken as an example. All of

the 2 copies of 𝛽1 have been consumed, subrule {(𝛿21)¬𝛽1 →
𝛼1,go} is executed to put an object 𝛼1 to cells 2 and 6 to
indicate that the itemset {𝐼1} is a frequent 1-itemset and to
activate the computation in cell 2. Subrules {(𝛿22)¬𝛽3 → 𝛼2,go},
{(𝛿23)¬𝛽3 → 𝛼3,go}, {(𝛿

2
4)¬𝛽4 → 𝛼4,go}, and {(𝛿25)¬𝛽5 → 𝛼5,go}

are also executed to put objects 𝛼2, 𝛼3, 𝛼4, and 𝛼5 to cells 2
and 6 to indicate that the itemsets {𝐼2}, {𝐼3}, {𝐼4}, and {𝐼5} are
frequent 1-itemsets and to activate the computation in cell 2.

Frequent 2-Itemsets Generation. Within cell 2, rule 𝑟21 is
executed to obtain all candidate frequent 2-itemsets. The
detection process of the candidate frequent 2-itemset {𝐼1, 𝐼2}
is taken as an example. Objects 𝛼1 and 𝛼2 are in cell 2, which
means itemsets {𝐼1} and {𝐼2} are frequent 1-itemsets. Subrule
{()𝛼1𝛼2𝜃2¬𝛽212 → 𝛽212} is executed to generate 𝛽212. The presence
of 𝛽212 means the 2-itemset {𝐼1, 𝐼2} is a candidate frequent 2-
itemset, and both 𝐼1 and 𝐼2 need to appear together in at least
2 records for the itemset {𝐼1, 𝐼2} to be a frequent 2-itemset.The
detection processes of the other candidate frequent 2-itemsets
are performed in the same way. After the detection processes,
objects 𝛽212, 𝛽

2
13, 𝛽
2
14, 𝛽
2
15, 𝛽
2
23, 𝛽
2
24, 𝛽
2
25, 𝛽
2
34, 𝛽
2
35, and 𝛽245 are

generated.
Rule 𝑟22 is executed to delete the objects 𝛼1, 𝛼2, 𝛼3, 𝛼4, and

𝛼5 that are not needed anymore.
Rule 𝑟24 is executed to detect all frequent 2-itemsets.

Objects 𝑎11 and 𝑎12, 𝑎41 and 𝑎42, 𝑎81 and 𝑎82, and 𝑎91 and 𝑎92
are in cell 2, which means the first, the fourth, the eighth,
and the ninth records contain both 𝐼1 and 𝐼2. The subrules
{(𝛽12)𝑎11𝑎12 → 𝛿12}, {(𝛽12)𝑎41𝑎42 → 𝛿12}, {(𝛽12)𝑎81𝑎82 → 𝛿12},
and {(𝛽12)𝑎91𝑎92 → 𝛿12} meet the execution condition and
can be executed. Objects 𝑎21 and 𝑎22, 𝑎31 and 𝑎32, 𝑎51 and
𝑎52, 𝑎61 and 𝑎62, or 𝑎71 and 𝑎72 are not both in cell 2, which
means the second, the third, the fifth, the sixth, and the
seventh records do not contain both 𝐼1 and 𝐼2. The subrules
{(𝛽12)𝑎21𝑎22 → 𝛿12}, {(𝛽12)𝑎31𝑎32 → 𝛿12}, {(𝛽12)𝑎51𝑎52 → 𝛿12},
{(𝛽12)𝑎61𝑎62 → 𝛿12}, and {(𝛽12)𝑎71𝑎72 → 𝛿12} do not meet
the execution condition and cannot be executed. Initially,
2 copies of 𝛽12 are in cell 2 indicating that both 𝐼1 and 𝐼2
need to appear together in at least 2 records for the itemset
{𝐼1, 𝐼2} to be a frequent 2-itemset. Each execution of these
subrules consumes one 𝛽12. Therefore, 2 subrules among
{(𝛽12)𝑎11𝑎12 → 𝛿12}, {(𝛽12)𝑎41𝑎42 → 𝛿12}, {(𝛽12)𝑎81𝑎82 → 𝛿12},
and {(𝛽12)𝑎91𝑎92 → 𝛿12} can be executed. After the execution,
2 copies of 𝛽12 are consumed and 2 copies of 𝛿12 are gener-
ated. The detection processes of other candidate frequent 2-
itemsets are performed in the same way. After the detection
processes, objects 𝛽212, 𝛽

2
13, 𝛽14, 𝛽

2
15, 𝛽
2
23, 𝛽
2
24, 𝛽
2
25, and 𝛽35 are

consumed, and objects 𝛿212, 𝛿
2
13, 𝛿14, 𝛿

2
15, 𝛿
2
23, 𝛿
2
24, 𝛿
2
25, and 𝛿35

are generated.
Rule 𝑟23 is executed to process the results obtained by rule

𝑟24. The 2-itemset {𝐼1, 𝐼2} is again taken as an example. All of
the 2 copies of 𝛽12 have been consumed by rule 𝑟24, subrule
{(𝛿212)¬𝛽12 → 𝛼12,go} is executed to put an object 𝛼12 to cells
3 and 6 to indicate that the itemset {𝐼1, 𝐼2} is a frequent 2-
itemset and to activate the computation in cell 3. Subrules
{(𝛿213)¬𝛽13 → 𝛼13,go}, {(𝛿

2
15)¬𝛽15 → 𝛼15,go}, {(𝛿

2
23)¬𝛽23 →

𝛼23,go}, {(𝛿
2
24)¬𝛽24 → 𝛼24,go}, and {(𝛿225)¬𝛽25 → 𝛼25,go} are also

executed, which put objects 𝛼13, 𝛼15, 𝛼23, 𝛼24, and 𝛼25 to cells

8 Discrete Dynamics in Nature and Society

Table 3: Generation of frequent 1-itemsets.

𝑟𝑖𝑗 Cell 0 Cell 1 Cell 6

0
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42
𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82
𝑎83𝑎85𝑎91𝑎92𝑎93𝜃

2

1
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42

(𝑟01) 𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82
𝑎83𝑎85𝑎91𝑎92𝑎93𝜃

2

2
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42
𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82
𝑎83𝑎85𝑎91𝑎92𝑎93𝛽

2
1𝛽
2
2𝛽
2
3𝛽
2
4𝛽
2
5(𝑟11)

3
𝑎32𝑎42𝑎51𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82
𝑎83𝑎91𝑎92𝑎93𝛿

2
1𝛿
2
2𝛿
2
3𝛿
2
4𝛿
2
5(𝑟13)

4
𝑎32𝑎42𝑎51𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82 𝛼1𝛼2𝛼3𝛼4𝛼5
𝑎83𝑎91𝑎92𝑎93(𝑟12)

Table 4: Generation of frequent 2-itemsets.

𝑟𝑖𝑗 Cell 2 Cell 6

4 𝛼1𝛼2𝛼3𝛼4𝛼5𝜃
2

𝛼1𝛼2𝛼3𝛼4𝛼5
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93

5 𝛼1𝛼2𝛼3𝛼4𝛼5𝛽
2
25𝛽
2
34𝛽
2
35𝛽
2
45𝜃
2

𝛼1𝛼2𝛼3𝛼4𝛼5
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 (𝑟21)

6 𝛽212𝛽
2
13𝛽
2
14𝛽
2
15𝛽
2
23𝛽
2
24𝛽
2
25𝛽
2
34𝛽
2
35𝛽
2
45𝜃
2

𝛼1𝛼2𝛼3𝛼4𝛼5
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 (𝑟22)

7 𝛿212𝛿
2
13𝛿14𝛽14𝛿

2
15𝛿
2
23𝛿
2
24𝛿
2
25𝛽
2
34𝛿35𝛽35𝛽

2
45𝜃
2

𝛼1𝛼2𝛼3𝛼4𝛼5
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 (𝑟24)

8 𝜃2 𝛼1𝛼2𝛼3𝛼4𝛼5𝛼12
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 (𝑟23) 𝛼13𝛼15𝛼23𝛼24𝛼25

3 and 6 to indicate that the itemsets {𝐼1, 𝐼3}, {𝐼1, 𝐼5}, {𝐼2, 𝐼3},
{𝐼2, 𝐼4}, and {𝐼2, 𝐼5} are frequent 2-itemsets and to activate the
computation in cell 3.

The 4 rules in each cell ℎ for 3 ≤ ℎ ≤ 5 are executed
in ways similar to those in cell 2. The rules in these cells
detect the frequent ℎ-itemsets for 3 ≤ ℎ ≤ 5. After the
computation halts, the objects 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼12, 𝛼13, 𝛼15,
𝛼23, 𝛼24, 𝛼25, 𝛼123, and 𝛼125 are stored in cell 6, which means
{𝐼1}, {𝐼2}, {𝐼3}, {𝐼4}, {𝐼5}, {𝐼1, 𝐼2}, {𝐼1, 𝐼3}, {𝐼1, 𝐼3}, {𝐼2, 𝐼3}, {𝐼2, 𝐼4},
{𝐼2, 𝐼5}, {𝐼1, 𝐼2, 𝐼3}, and {𝐼1, 𝐼2, 𝐼5} are all frequent itemsets in
this database.

The change of objects in the computation processes is
listed in Tables 3–6.

5. Computational Experiments

Two databases from the UCI Machine Learning Repository
[23] are used to conduct computational experiments. Com-
putational results on these two databases are reported in this
section.

5.1. Results on the Congressional Voting Records Database.
The Congressional Voting Records database [23] is used
to test the performance of ECTPPI-Apriori. This database

contains 435 records and 17 attributes (fields). The first
attribute is the party that the voter voted for and the 2nd
to the 17th attributes are sixteen characteristics of each voter
identified by the Congressional Quarterly Almanac. The first
attribute has two values, Democrats or Republican, and each
of the 2nd to the 17th attributes has 3 values: yea, nay, and
unknown disposition.The frequent itemsets of these attribute
values need to be identified; that is, the problem is to find the
attribute values which always appear together.

Initially, the database is preprocessed. Each attribute
value is taken as a new attribute. In this way, each new
attribute has only two values: yes or no. After preprocessing,
each record in the database has 2 × 1 + 3 × (17 − 1) = 50
attributes. ECTPPI-Apriori then can be used to discover the
frequent itemsets. In this experiment, one itemset is called
a frequent itemset if it appeared in more than 40% of all
records; that is, the support count threshold is 𝑘 = 174
(435 × 40%). The frequent itemsets obtained by ECTPPI-
Apriori are listed in Table 7.

5.2. Results on the Mushroom Database. The Mushroom
database [23] is also used to test ECTPPI-Apriori. This
database contains 8124 records. The 8124 records are num-
bered orderly from 1 to 8124. Each record represents one

Discrete Dynamics in Nature and Society 9

Table 5: Generation of frequent 3-itemsets.

𝑟𝑖𝑗 Cell 3 Cell 6

8 𝛼12𝛼13𝛼15𝛼23𝛼24𝛼25𝜃
2 𝛼1𝛼2𝛼3𝛼4𝛼5𝛼12

𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 𝛼13𝛼15𝛼23𝛼24𝛼25

9 𝛼12𝛼13𝛼15𝛼23𝛼24𝛼25𝛽
2
123𝛽
2
125𝛽
2
135𝛽
2
234𝛽
2
235𝛽
2
245𝜃
2 𝛼1𝛼2𝛼3𝛼4𝛼5𝛼12

𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 (𝑟31) 𝛼13𝛼15𝛼23𝛼24𝛼25

10 𝛽2123𝛽
2
125𝛽
2
135𝛽
2
234𝛽
2
235𝛽
2
245𝜃
2 𝛼1𝛼2𝛼3𝛼4𝛼5𝛼12

𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 (𝑟32) 𝛼13𝛼15𝛼23𝛼24𝛼25

11 𝛿2123𝛿
2
125𝛿135𝛽135𝛽

2
234𝛿235𝛽235𝛽

2
245𝜃
2 𝛼1𝛼2𝛼3𝛼4𝛼5𝛼12

𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 (𝑟34) 𝛼13𝛼15𝛼23𝛼24𝛼25

12
𝜃2 𝛼1𝛼2𝛼3𝛼4𝛼5𝛼12
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 (𝑟33) 𝛼13𝛼15𝛼23𝛼24𝛼25

𝛼123𝛼125

Table 6: Generation of frequent 4-itemsets.

𝑟𝑖𝑗 Cell 4 Cell 6

12
𝛼123𝛼125𝜃

2 𝛼1𝛼2𝛼3𝛼4𝛼5𝛼12
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 𝛼13𝛼15𝛼23𝛼24𝛼25

𝛼123𝛼125

13
𝛼123𝛼125𝛽

2
1235𝜃
2 𝛼1𝛼2𝛼3𝛼4𝛼5𝛼12

𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 (𝑟41) 𝛼13𝛼15𝛼23𝛼24𝛼25
𝛼123𝛼125

14
𝛽21235𝜃

2 𝛼1𝛼2𝛼3𝛼4𝛼5𝛼12
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 (𝑟42) 𝛼13𝛼15𝛼23𝛼24𝛼25

𝛼123𝛼125

15
𝛿1235𝛽1235𝜃

2 𝛼1𝛼2𝛼3𝛼4𝛼5𝛼12
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 (𝑟44) 𝛼13𝛼15𝛼23𝛼24𝛼25

𝛼123𝛼125

16
𝜃2 𝛼1𝛼2𝛼3𝛼4𝛼5𝛼12
𝑎11𝑎12𝑎15𝑎22𝑎24𝑎32𝑎33𝑎41𝑎42𝑎44𝑎51𝑎53𝑎62𝑎63𝑎71𝑎73𝑎81𝑎82𝑎83𝑎85𝑎91𝑎92𝑎93 (𝑟43) 𝛼13𝛼15𝛼23𝛼24𝛼25

𝛼123𝛼125

Table 7: The frequent itemsets identified by ECTPPI-Apriori for the Congressional Voting Records database.

Size of frequent
itemset The corresponding frequent itemsets

1
{2}; {3}; {5}; {6}; {8}; {9}; {12}; {14}; {15}; {17}; {18}; {21}; {23};
{24}; {26}; {27}; {29}; {30}; {32}; {35}; {38}; {39}; {41}; {42}; {45};
{47}; {48}

2

{2, 9}; {2, 14}; {2, 17}; {2, 21}; {2, 24}; {2, 27}; {2, 38}; {2, 41};
{5, 18}; {9, 14}; {9, 17}; {9, 21}; {9, 24}; {9, 27}; {9, 38}; {14, 17};
{14, 21}; {14, 24}; {14, 27}; {14, 38}; {14, 41}; {15, 18}; {15, 29};
{15, 42}; {17, 21}; {17, 24}; {17, 27}; {17, 38}; {18, 29}; {18, 39};
{18, 42}; {18, 47}; {21, 24}; {21, 27}; {21, 38}; {24, 27}; {24, 38};
{24, 41}; {29, 42}; {39, 42}; {42, 47}

3

{2, 9, 14}; {2, 9, 17}; {2, 9, 21}; {2, 9, 24}; {2, 9, 38}; {2, 14, 17};
{2, 14, 21}; {2, 14, 24}; {2, 14, 27}; {2, 14, 38}; {2, 14, 41};
{2, 17, 21}; {2, 17, 24}; {2, 21, 24}; {2, 24, 27}; {2, 24, 38}; {9, 14, 17};
{9, 14, 21}; {9, 14, 24}; {9, 14, 38}; {9, 17, 24}; {9, 21, 24}; {9, 24, 38};
{14, 17, 21}; {14, 17, 24}; {14, 21, 24}; {14, 24, 27}; {14, 24, 38};
{15, 18, 29}; {15, 18, 42}; {17, 21, 24}; {17, 24, 27}; {17, 24, 38}

4

{2, 9, 14, 17}; {2, 9, 14, 21}; {2, 9, 14, 24}; {2, 9, 14, 38}; {2, 9, 17, 24};
{2, 9, 21, 24}; {2, 14, 17, 21}; {2, 14, 17, 24}; {2, 14, 21, 24};
{2, 14, 24, 38}; {2, 17, 21, 24}; {9, 14, 17, 24}; {9, 14, 21, 24};
{14, 17, 21, 24}; {2, 9, 14, 17, 24}; {2, 9, 14, 21, 24}

5 {2, 14, 17, 21, 24}
6 ⌀

10 Discrete Dynamics in Nature and Society

Table 8:The frequent itemsets identified by ECTPPI-Apriori for the
Mushroom database.

Size of frequent
itemset The corresponding frequent itemsets

1 {1}; {2}; {3}; {4}; {5}

2
{1, 2}; {1, 3}; {1, 4}; {1, 5}; {2, 3}; {2, 4}; {2, 5}; {3, 4};
{3, 5}; {4, 5}

3 {1, 2, 3}; {1, 2, 5}; {1, 3, 5}; {2, 3, 4}; {2, 3, 5}

4 {1, 2, 3, 5}

5 ⌀

mushroom and has 23 attributes (fields). The first attribute is
the poisonousness of the mushroom and the 2nd to the 23rd
attributes are 22 characteristics of themushrooms. Each of the
attributes has 2 to 12 values. The frequent itemsets of these
attribute values need to be found; that is, the problem is to
find the attribute values which always appear together.

Initially, the database is preprocessed. Each attribute
value is taken as a new attribute. In this way, each new
attribute has only two values, yes or no. After preprocessing,
each record has 118 attributes. ECTPPI-Apriori then can be
used to discover the frequent itemsets. In this experiment,
one itemset is a frequent itemset if it appears in more than
40 percent of all records; that is, the support count threshold
is 𝑘 = 3250 (8124 × 40%). The frequent itemsets obtained by
ECTPPI-Apriori are listed in Table 8.

6. Conclusions

An improved Apriori algorithm, called ECTPPI-Apriori, is
proposed for frequent itemsets mining. The algorithm uses a
parallelmechanism in the ECPI tissue-like P system.The time
complexity of ECTPPI-Apriori is improved to𝑂(𝑡) compared
to other parallel Apriori algorithms. Experimental results,
using the Congressional Voting Records database and the
Mushroom database, show that ECTPPI-Apriori performs
well in frequent itemsets mining. The results give some hints
to improve conventional algorithms by using the parallel
mechanism of membrane computing models.

For further research, it is of interests to use some other
interesting neural-likemembrane computingmodels, such as
the spiking neural P systems (SN P systems) [8], to improve
the Apriori algorithm. SN P systems are inspired by the
mechanism of the neurons that communicate by transmitting
spikes. The cells in SN P systems are neurons that have
only one type of objects called spikes. Zhang et al. [24,
25], Song et al. [26], and Zeng et al. [27] provided good
examples. Also, some other data mining algorithms can be
improved by using parallel evolution mechanisms and graph
membrane structures, such as spectral clustering, support
vector machines, and genetic algorithms [1].

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Project is supported by National Natural Science Foundation
of China (nos. 61472231, 61502283, 61640201, 61602282, and
ZR2016AQ21).

References

[1] J. Han, M. Kambr, and J. Pei, Data Mining: Concepts and
Techniques, Elsevier, Amsterdam, Netherlands, 2012.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining associa-
tion rules in large databases,” in Proceedings of the International
Conference on Very Large Data Bases, vol. 1, pp. 487–499,
September 1994.

[3] H. Yu, J. Wen, H. Wang, and J. Li, “An improved Apriori
algorithm based on the boolean matrix and Hadoop,” Procedia
Engineering, vol. 15, no. 1, pp. 1827–1831, 2011.

[4] J. Li, F. Sun, X. Hu, and W. Wei, “A multi-GPU implementation
of apriori algorithm for mining association rules in medical
data,” ICIC Express Letters, vol. 9, no. 5, pp. 1303–1310, 2015.

[5] N. Li, L. Zeng, Q. He, and Z. Shi, “Parallel implementation
of apriori algorithm based on MapReduce,” in Proceedings of
the 13th ACIS International Conference on Software Engineer-
ing, Artificial Intelligence, Networking, and Parallel/Distributed
Computing (SNPD ’12), pp. 236–241, Kyoto, Japan, August 2012.

[6] A. Ezhilvathani and K. Raja, “Implementation of parallel
Apriori algorithm on Hadoop cluster,” International Journal of
Computer Science and Mobile Computing, vol. 2, no. 4, pp. 513–
516, 2013.

[7] G. Păun, “Computing with membranes,” Journal of Computer
and System Sciences, vol. 61, no. 1, pp. 108–143, 2000.

[8] Gh. Paun, G. Rozenberg, andA. Salomaa,TheOxfordHandbook
of Membrane Computing, Oxford University Press, Oxford, UK,
2010.

[9] L. Pan, G. Păun, and B. Song, “Flat maximal parallelism in P
systemswith promoters,”Theoretical Computer Science, vol. 623,
pp. 83–91, 2016.

[10] B. Song, L. Pan, andM. J. Pérez-Jiménez, “Tissue P systemswith
protein on cells,” Fundamenta Informaticae, vol. 144, no. 1, pp.
77–107, 2016.

[11] X. Zhang, L. Pan, and A. Păun, “On the universality of axon P
systems,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 26, no. 11, pp. 2816–2829, 2015.

[12] J. Wang, P. Shi, and H. Peng, “Membrane computing model for
IIR filter design,” Information Sciences, vol. 329, pp. 164–176,
2016.

[13] G. Singh and K. Deep, “A new membrane algorithm using the
rules of Particle Swarm Optimization incorporated within the
framework of cell-like P-systems to solve Sudoku,” Applied Soft
Computing Journal, vol. 45, pp. 27–39, 2016.

[14] G. Zhang, H. Rong, J. Cheng, and Y. Qin, “A Population-
membrane-system-inspired evolutionary algorithm for distri-
bution network reconfiguration,” Chinese Journal of Electronics,
vol. 23, no. 3, pp. 437–441, 2014.

[15] H. Peng, J. Wang, M. J. Pérez-Jiménez, and A. Riscos-Núñez,
“An unsupervised learning algorithm for membrane comput-
ing,” Information Sciences, vol. 304, pp. 80–91, 2015.

[16] X. Zeng, L. Xu, X. Liu, and L. Pan, “On languages generated
by spiking neural P systems with weights,” Information Sciences,
vol. 278, pp. 423–433, 2014.

Discrete Dynamics in Nature and Society 11

[17] X. Liu, Z. Li, J. Liu, L. Liu, and X. Zeng, “Implementation of
arithmetic operations with time-free spiking neural P systems,”
IEEE Transactions on Nanobioscience, vol. 14, no. 6, pp. 617–624,
2015.

[18] T. Song, P. Zheng, M. L. Dennis Wong, and X. Wang, “Design
of logic gates using spiking neural P systems with homogeneous
neurons and astrocytes-like control,” Information Sciences, vol.
372, pp. 380–391, 2016.

[19] L. Pan and G. Păun, “On parallel array P systems automata,”
in Universality, Computation, vol. 12, pp. 171–181, Springer
International, New York, NY, USA, 2015.

[20] T. Song, H. Zheng, and J. He, “Solving vertex cover problem by
tissue P systems with cell division,” Applied Mathematics and
Information Sciences, vol. 8, no. 1, pp. 333–337, 2014.

[21] Y. Zhao, X. Liu, and W. Wang, “ROCK clustering algorithm
based on the P system with active membranes,”WSEAS Trans-
actions on Computers, vol. 13, pp. 289–299, 2014.

[22] C. Mart́ın-Vide, G. Păun, J. Pazos, and A. Rodŕıguez-Patón,
“Tissue P systems,” Theoretical Computer Science, vol. 296, no.
2, pp. 295–326, 2003.

[23] M. Lichman, UCI Machine Learning Repository, University
of California, School of Information and Computer Science,
Irvine, Calif, USA, 2013, http://archive.ics.uci.edu/ml.

[24] X. Zhang, B. Wang, and L. Pan, “Spiking neural P systems with
a generalized use of rules,” Neural Computation, vol. 26, no. 12,
pp. 2925–2943, 2014.

[25] X. Zhang, X. Zeng, B. Luo, and L. Pan, “On some classes of
sequential spiking neural P systems,” Neural Computation, vol.
26, no. 5, pp. 974–997, 2014.

[26] T. Song, L. Pan, and Gh. Paun, “Asynchronous spiking neural P
systems with local synchronization,” Information Sciences, vol.
219, pp. 197–207, 2012.

[27] X. Zeng, X. Zhang, T. Song, and L. Pan, “Spiking neural P
systems with thresholds,”Neural Computation, vol. 26, no. 7, pp.
1340–1361, 2014.

http://archive.ics.uci.edu/ml

Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

