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Abstract: In this paper, an impulsive conformable fractional Lotka–Volterra model with dispersion
is introduced. Since the concept of conformable derivatives avoids some limitations of the classical
fractional-order derivatives, it is more suitable for applied problems. The impulsive control approach
which is common for population dynamics’ models is applied and fixed moments impulsive perturba-
tions are considered. The combined concept of practical stability with respect to manifolds is adapted
to the introduced model. Sufficient conditions for boundedness and generalized practical stability of
the solutions are obtained by using an analogue of the Lyapunov function method. The uncertain
case is also studied. Examples are given to demonstrate the effectiveness of the established results.
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1. Introduction

The mathematical modeling and the analysis of mathematical models are crucial
objectives in the Mathematical Biology area. In fact, the establishing of mathematical
models is very important in order to study the properties of various biological phenom-
ena. Numerous researchers contributed to the development of innovative approaches to
model and study the qualitative behavior of different classes of problems in biology and
ecology. Among them, the Lotka–Volterra competitive systems are one of the most studied
phenomena since they generalize several predator-prey models [1–3]. Different classes
of Lotka–Volterra models has been proposed and investigated in the existing literature,
including systems with dispersion [4–7].

It is worth indicating that all the above considered literature only involves integer-
order Lotka–Volterra models. The development of new innovative modeling approaches is
always a challenging task, and in their attempts to create more adequate models, recently
the researchers considered fractional order dynamics. Due to the universality and flexibility
provided and the wide range of applications in science, medicine and technologies, a great
progress in fractional-order modeling has been made [8–11]. Fractional-order modeling
approach has been applied to some important systems in biology and neuroscience [12–14].
The advantage of fractional-order models justified recent research activities in fractional-
order formulation of Lotka–Volterra models [15–20]. Concerning fractional-order Lotka–
Volterra dispersal models, the existing results are very seldom [21].

Another beneficial line of research is considering the effects of some short-term pertur-
bations during the evolution of biological and ecological models. Impulsive differential
equations are widely used to design and study the state behavior in such models [22–24],
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including impulsive fractional-order differential equations [25]. Also, due to the advantages
of the impulsive control strategies [26], they have been proposed to mathematical models
in biology. Indeed, impulsive effects are common in modeling biological and ecological
processes since very often their behavior can be impulsively changed in response to some
environmental fluctuations. Since random births and deaths of species may affect the
qualitative behavior of a population dynamics systems, it is highly important to study the
impulsive generalizations of the Lotka–Volterra models in which the states of the models
are changed abruptly. Many authors answered the question of how short-term (impul-
sive) perturbations can be used to create impulsive control strategies for the qualitative
properties of such systems [27–33]. There are also several existing results on impulsive
fractional-order Lotka–Volterra models, although their number is very small [25,34]

The most popular definitions for fractional derivatives are the Caputo, Riemann–
Liouville and Grunwald–Letnikov types [8,10,11]. However, the application of these deriva-
tives to the qualitative analysis of fractional-order models is related to some limitations due
to the absence of a simple chain rule formula, locality and singularity properties. These
limitations motivate the researchers to introduce new definitions and avoid the restrictions
of the existing ones [35–38].

The recently defined limit-based conformable or fractional-like derivative offers some
computational simplifications related to derivatives of compositions of functions [39,40].
For some basic results on the fundamental and qualitative theory of conformable differential
equations we refer to [41–46]. The fact that the use of such derivatives overcomes some
difficulties in evaluating fractional derivatives motivates the research interest to apply them
as innovative mathematical tools in modeling of real-world continuous systems [47–51].

In addition, some recent papers concern applications of conformable calculus on
impulsive systems. However, the results on impulsive conformable problems are very
rare [52–54]. With the little work on the application of the impulsive conformable approach,
we are interested in expanding its application to Lotka–Volterra models. In fact, the analysis
of biological processes depends on the appropriate choice of an fractional derivative. In this
regard, it seems that the impulsive conformable modelling technique will be very suitable
to be applied for models studied in population dynamics.

Stability and boundedness are two main problems in the qualitative study of mathe-
matical models. Researchers constantly extended the classical stability theory to determine
which movement mechanisms can support stability strategies that are acceptable from the
practical point of view where the classical strategies do not allow a mathematically ideal
stable behavior. One of the most used stability concept in this regard, is that of practical
stability [55–58]. The recent results on practical stability of different classes of models have
proven its remarkable importance [59–61].

The modification of the practical stability notion considering manifolds’ practical
stability instead of that of single solutions is even more powerful [24,25]. It is applied to
some integer-order impulsive systems [62,63]. For impulsive conformable systems the
concept has been studied in the papers [53,64]. Given the long history and vast literature
on the practical stability with respect to manifolds notion, the problem of applying it to
conformable Lotka–Volterra models with dispersion deserves our attention and this is one
of the main goals of our study.

In this paper, we apply the impulsive conformable approach in modelling of Lotka-
Volterra systems. We adapt the practical stability concept accompanied by the stability
with respect to manifold notion as an extended combined stability strategy to study the
behavior of the introduced model.

The novelty of the paper lies within the following few points:
1. A novel impulsive conformable Lotka–Volterra type model is introduced. Disper-

sion effects are also considered. The intraspecific coefficients are not neglected.
2. The modelling approach is a combination of the use of conformable derivatives

with impulsive control perspective.
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3. The concept of practical stability with respect to manifolds is adapted for studying
the boundedness and stability manner of the introduced model.

4. The established conditions are new and include estimations of the model’s parame-
ters and impulsive control functions. As such they are uncomplicated for applications.

5. Finally, two examples are provided to demonstrate the correctness of the pro-
posed results.

Through the text we will use the following basic notations: R+ = [0, ∞), R denotes
the set of all real numbers, Rn is the n-dimensional real space with the Euclidean norm ||x||
of an x ∈ Rn. For a continuous function k(t) which is defined on J, J ⊆ R, we denote

kL = inf
t∈J

k(t), kM = sup
t∈J

k(t).

2. Problem Establishment and Preliminaries
2.1. Conformable Calculus

We will start this section with some definitions related to the conformable calculus
from [39,40,44,53,54]. Let t0 ∈ R+. Consider the points t1, t2, . . . ,

t0 < t1 < t2 · · · < tk < tk+1 < . . . , lim
k→∞

tk = ∞,

which will be considered as impulsive control instances for our model.

Definition 1. [53,54] For any t̄ ≥ t0, Dq
t̄ u(t) is the generalized conformable derivative of order q,

0 < q ≤ 1 with the lower limit t̄ for a function u(t) : [t̄, ∞)→ Rn and is defined as

Dq
t̄ (u(t)) = lim

{
u(t + θ(t− t̄)1−q)− u(t)

θ
, θ → 0

}
.

For t̄ = tk, k = 1, 2, . . . , we have

Dq
tk

u(tk) = lim
t→t+k
Dq

tk
u(t).

Remark 1. Since t0 will not be considered as an impulsive point, for t̄ = t0 Definition 1 is
reduced to

Dq
t0

u(t) = lim
{

u(t + θ(t− t0)
1−q)− u(t)

θ
, θ → 0

}
,

which is applied in [39,40,44].

The class of all functions that have q-generalized conformable derivatives for any
t ∈ (t̄, ∞) is denoted by Cq((t̄, b),Rn). Such functions are known [53] as q-generalized
conformable differentiable on (t̄, ∞).

Definition 2. [53] The generalized conformable integral of order 0 < q ≤ 1 with a lower limit
t̄, t̄ ≥ t0, of a function u : [t̄, ∞)→ Rn is defined as

Iq
t̄ u(t) =

t∫
t̄

(σ− t̄)q−1u(σ)dσ.

Throughout this paper, we will use the following properties of the generalized con-
formable derivatives [53,54].
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Lemma 1. [53] Let x(u(t)) : (t̄, ∞) → R and 0 < q ≤ 1. If x(·) is differentiable with respect
to u(t) and u(t) is q-generalized conformable differentiable on (t̄, ∞), then for any t ∈ [t̄, ∞) and
u(t) 6= 0, we have

Dq
t̄ x(u(t)) = x′(u(t))Dq

t̄ (u(t)),

where x′ is the derivative of x(·).

Remark 2. Lemma 1 demonstrates the reasonableness of the use of the conformable fractional
approach. Note that a similar result related to a simple application of the chain rule does not exist
for the classical fractional-order derivatives.

Lemma 2. Let the function u(t) : (t̄, ∞) → R be q-generalized conformable differentiable on
(t̄, ∞) for 0 < q ≤ 1. Then for all t > t̄

Iq
t̄ (D

q
t̄ u(t)) = u(t)− u(t̄).

2.2. Model Formulation

In this paper we introduce a non-autonomous n-dimensional impulsive conformable
Lotka–Volterra competitive system with dispersion and fixed moments of impulsive per-
turbations 

Dq
tk

ui(t) = ui(t)

[
ri(t)− aii(t)ui(t)−

n

∑
j=1,j 6=i

aij(t)uj(t)

]
+

n

∑
j=1

bij(t)
(
uj(t)− ui(t)

)
, t 6= tk, k = 0, 1, . . . ,

∆ui(tk) = dikui(tk), k = 1, 2, . . . ,

(1)

where i = 1, 2, . . . , n, n ≥ 2, ui(t) represents the population density of the i-th species at
time t, the functions ri, aii, aij, bij ∈ C[R,R], i, j = 1, 2, . . . , n are the system’s parameters,
ri denotes the intrinsic growth rate of the i-th species at time t, aii are the intraspecific
coefficients, aij represent interspecific coefficients for species such that i 6= j, bij are dis-
persion rates, ∆ui(tk) = ui(t+k )− ui(t−k ), the quantities ui(tk) and ui(t+k ) are, respectively,
the population densities of species i before and after an impulsive jump at the moment tk
and the constants dik ∈ R represent the affect of the impulse perturbation on the species i
at the moments tk.

Remark 3. The above model generalizes numerous existing integer-order Lotka–Volterra
models [1–6], impulsive Lotka–Volterra models [27,29,30,32], as well as, Lotka–Volterra mod-
els with classical fractional-order derivatives [16–20,34] to the impulsive conformable case. In fact,
the use of generalized conformable derivatives is motivated by their advantages in applications related
to the simplifications in the use of the chain rule. Also, different from some existing conformable
models [53], the effect of dispersion on the species which is an important subject in ecological models,
and in population biology, more generally, is considered.

Let u0 ∈ Rn. The solution of the model (1) which satisfies an initial condition of
the type

u(t0) = u0 (2)

will be denoted by u(t) = u(t; t0, u0), where u(t) = (u1(t), u2(t), . . . , un(t)).
At the moments tk the following relations are satisfied:

ui(t−k ) = ui(tk), ui(t+k ) = ui(tk) + dikui(tk). (3)

It follows from (3) that the functions u(t) that describe the states of the generalized
conformable model (1) for different initial data are piecewise continuous functions with
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points of discontinuity of the first kind at which they are left continuous [53,54]. All
such functions that are q− generalized conformable differentiable on R+ form the space
PCq(R+,Rn).

In order to demonstrate the solutions of an impulsive conformable model, we will
consider the next impulsive scalar generalized conformable equation

Dq
tk

x(t) = −ζx(t) + o(t), t 6= tk, k = 0, 1, . . . ,

∆x(tk) = dkx(tk), k = 1, 2, . . . .
(4)

where x ∈ R, ζ > 0, o ∈ C(R,R+), dk ∈ R, k = 1, 2, . . . . Then, after application of the
Definition 1 and the properties of the generalized conformable derivatives, for t > tk
we have

x(t) = x(t0)∏k
j=1(1 + dj)Eq(−ζ, tj − tj−1)Eq(−ζ, t− tk)

+
∫ t

tk
Wq(t− tk, σ− tk)(σ− tk)

q−1o(σ)dσ

+∑k
j=1 ∏k

l=k−j+1(1 + dl)Eq(−ζ, tl − tl−1)
∫ tk−j+1

tk−j
Wq(t− tk, σ− tk−j)(σ− tk−j)

q−1o(σ)dσ,

(5)

where Wq(t − tk, σ − tk) = Eq(−ζ, t − tk)Eq(ζ, σ − tk) and Eq(ν, σ) is the conformable
exponential function given as [46]

Eq(ν, σ) = exp
(

ν
σq

q

)
, ν ∈ R, σ ∈ R+.

We will further assume that any solution u(t; t0, u0) of the initial value problem
(IVP) (1), (2) corresponding to the initial data (t0, u0) ∈ int(R+ × Rn) exists on [t0, ∞),
and u(t; t0, u0) ∈ PCq([t0, ∞),Rn), t ≥ t0.

A solution u(t) = col(u1(t), u2(t), . . . , un(t)) of the model (1) is said to be strictly
positive, if for i = 1, 2, . . . , n,

0 < inf
t∈R

ui(t) ≤ sup
t∈R

ui(t) < ∞.

2.3. Practical Stability with Respect to Manifolds Technique

In our qualitative analysis, we will adopt the powerful practical stability with respect
to manifolds strategy [53,62–64] to the formulated model (1). To this end, we will define a
manifold by a specific function.

Let H : [t0, ∞)×Rn → Rm, H = (H1, H2, . . . , Hm), m ≤ n, be a continuous function.
We will study the practical stability of the next (n−m)-dimensional manifold which we
will call a H-manifold:

MH
t = {u ∈ Rn : H1(t, u) = H2(t, u) = · · · = Hm(t, u) = 0, t ∈ [t0, ∞)}. (6)

Consider, also

MH
t (ε) = {u ∈ Rn : ||H(t, u)|| < ε, t ∈ [t0, ∞)}, ε > 0,

and adopt the following notions [53,62–64].

Definition 3. The manifoldMH
t is said to be:

(a) practically stable for the model (1), if given (λ, A) with 0 < λ < A, we have u0 ∈ MH
t0
(λ)

implies u(t; t0, u0) ∈ MH
t (A), t ≥ t0 for some t0 ∈ R+;

(b) uniformly practically stable for the model (1), if (a) holds for every t0 ∈ R+;
(c) practically asymptotically stable for the model (1), if (a) holds and

lim
t→∞
||H(t, u(t; t0, x0))|| = 0;
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(d) practically exponentially stable for the model (1), if given (λ, A) with 0 < λ < A, we
have u0 ∈ MH

t0
(λ) implies

u(t; t0, u0) ∈ MH
t (A + µ||H(t0, u0)||Eq(−ζ, t− t0)), t ≥ t0, for some t0 ∈ R+,

where 0 < q < 1, µ, ζ > 0.

Remark 4. It is seen from Definition 3, that the extended practical stability with respect to a
manifold concept generalizes several essential practical stability notions. Hence, it is a powerful
technique which combine the benefits of the practical stability strategy with the stability with respect
to manifolds techniques. In the case when H(t, u) = 0 only for u = 0 (for example if H(t, u) = u),
then Definition 3 is reduced to the practical stability of the zero solution of the model (1). Similar
case is the case, when H(t, u) = 0 only for u = u∗, where u∗ is any state of interest to the model (1),
such as equilibrium state, periodic or almost periodic state. The arbitrariness of the function H
admits the consideration of several other particular cases of Definition 3. Also, since the practical
stability concept allows the study of the states that are not mathematically ideally stable, it is more
suitable for applied models that have manifolds (not single solutions) as asymptotic attractors.

2.4. Conformable Lyapunov Functions Method

Consider the sets Gk = (tk−1, tk)×Rn, k = 1, 2, . . . , G =
⋃∞

k=1 Gk and Conr = {u ∈
Rn : 0 < ui < r}, i = 1, 2, . . . , n, r > 0.

In the further considerations, we apply a modified conformable Lyapunov function
approach. A class of Lyapunov-like functions Lq

k is defined as [53,62–64] a manifold of
functions L(t, u) : G → R+ that are continuous on G, q-generalized conformable differen-
tiable in t, locally Lipschitz continuous with respect to u on each of the sets Gk, L(t, 0) = 0
for t ≥ t0, and for each k = 1, 2, . . . and u ∈ Rn, there exist the finite limits

L(t−k , u) = lim
t→tk
t<tk

L(t, u), L(t+k , u) = lim
t→tk
t>tk

L(t, u),

with L(t−k , u) = L(tk, u).
For a function L ∈ Lq

tk
, t > tk, the next is its upper right conformable derivative [53]

+Dq
tk

L(t, u) = lim sup
{

L(t + θ(t− tk)
1−q, u(t + θ(t− tk)

1−q; t, x))− L(t, u)
θ

, θ → 0+
}

. (7)

Let for simplicity f (t, u) = ( f1(t, u), f2(t, u), . . . , fn(t, u)), be

fi(t, u) = ui(t)

[
ri(t)−

n

∑
j=1

aij(t)uj(t)

]
+

n

∑
j=1

bij(t)
(
uj(t)− ui(t)

)
for i = 1, 2, . . . , n.

Then, the generalized conformable derivative of the function L(t, u) with respect to
the solution u(t; tk, uk) of the problem (1) and (2) is given by [53]

+Dq
tk

L(t, u) = lim sup
{

L(t + θ(t− tk)
1−q, u + θ(t− tk)

1−q f (t, u))− L(t, u)
θ

, θ → 0+
}

. (8)

For more information about the conformable modifications of the Lyapunov functions
approach for impulsive control models, see [53,62–64].

We will also need the next Lemma from [53].

Lemma 3. If for the function L ∈ Lq
tk

and for t ∈ [t0, ∞), u ∈ Conr, we have:
(i)

L(t+k , u) ≤ L(tk, u), k = 1, 2, . . . ,
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(ii)
+Dq

tk
L(t, u) ≤ −ζL(t, u) + o(t), t 6= tk, k = 0, 1, . . .

for ζ = const > 0, o ∈ Cq(R,R+), then

L(t, u(t)) ≤ L(t+0 , u0)Eq(−ζ, t− t0) +
∫ t

tk

Wq(t− tk, σ− tk)o(σ)
(σ− tk)

1−q dσ

+
k

∑
j=1

k

∏
l=k−j+1

Eq(−ζ, tl − tl−1)
∫ tk−j+1

tk−j

Wq(t− tk, σ− tk−j)o(σ)
(σ− tkj

)1−q dσ, t ≥ t0.

3. Comparison Results and Boundedness

In order to obtain practical stability results with respect to the manifoldMH
t related

to system (1), firstly, we must prove some comparison results and boundedness criteria for
all positive solutions of system (1).

We introduce the following basic hypotheses:

Hypothesis 1. For the functions ri(t), aii(t), 1 ≤ i ≤ n and aij(t), bij(t), 1 ≤ i, j ≤ n, i 6= j,
rL

i > 0, rM
i < ∞, aL

ii > 0, aM
ii < ∞, aL

ij ≥ 0, aM
ij < ∞, bL

ij ≥ 0, bM
ij < ∞ for 1 ≤ i, j ≤ n, i 6= j.

Hypothesis 2. For any i = 1, 2, . . . , n and k = 1, 2, . . . ,

1 + dik > 0.

Lemma 4. If H1 and H2 hold, and ui(t+0 ) > 0, i = 1, 2, . . . , n, then ui(t) > 0 for i = 1, 2, . . . , n.

Proof. Let us denote

pi(t) = ri(t)−
n

∑
j=1

aij(t)uj(t)

and

oi(t) =
n

∑
j=1

bij(t)
(
uj(t)− ui(t)

)
.

Then, we can rewrite the system (1) in the form{
Dq

tk
ui(t) = ui(t)pi(t) + oi(t), t 6= tk, k = 0, 1, . . . ,

∆ui(tk) = dikui(tk), k = 1, 2, . . . ,
(9)

i = 1, 2, . . . , n, and the proof follows from (5) and H1, H2.

Lemma 5. Assume that:
1. Hypotheses H1 and H2 hold and ui(t+0 ) > 0, i = 1, 2, . . . , n.
2. U (t) = col(U1(t),U2(t), . . . ,Un(t)) is the maximal solution of

Dq
tk
Ui(t) = Ui(t)

[
rM

i − aL
iiUi(t)

]
+

n

∑
j=1,j 6=i

bM
ij Uj(t), t 6= tk, k = 0, 1, . . . ,

∆Ui(tk) = dM
k Ui(tk), k = 1, 2, . . . ,

where dM
k = max{dik} for i = 1, 2, . . . , n and k = 1, 2, . . . .
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3. W(t) = col(W1(t),W2(t), . . . ,Wn(t)) is the minimal solution of
Dq

tk
Wi(t) =Wi(t)

[
rL

i −
n

∑
j=1,j 6=i

bM
ij − aM

ii Wi(t)−
n

∑
j=1
j 6=i

aM
ij sup

t≥t0

Uj(t)
]
, t 6= tk, k = 0, 1, . . . ,

∆Wi(tk) = dL
kWi(tk), k = 1, 2, . . . ,

where dL
k = min{dik} for i = 1, 2, . . . , n and k = 1, 2, . . . .

4. For each i = 1, 2, . . . , n,

0 ≤ Wi(t+0 ) ≤ ui(t+0 ) ≤ Ui(t+0 ).

Then,
Wi(t) ≤ ui(t) ≤ Ui(t), t ≥ t0, 1 ≤ i ≤ n. (10)

Proof. Let t > tk. From Lemma 4 for the system (1) it follows

Dq
tk

ui(t) = ui(t)

[
ri(t)− aii(t)ui(t)−

n

∑
j=1,j 6=i

aij(t)uj(t)

]
+

n

∑
j=1

bij(t)
(
uj(t)− ui(t)

)

≤ ui(t)

[
ri(t)− aii(t)ui(t)−

n

∑
j=1,j 6=i

aij(t)uj(t)

]
+

n

∑
j=1,j 6=i

bij(t)uj(t)

≤ ui(t)

[
ri(t)− aii(t)ui(t)

]
+

n

∑
j=1,j 6=i

bij(t)uj(t)

and then
Dq

tk
ui(t) ≤ ui(t)

[
rM

i − aL
iiui(t)

]
+

n

∑
j=1,j 6=i

bM
ij uj(t), t 6= tk, k = 0, 1, . . . ,

∆ui(tk) ≤ dM
k ui(tk), k = 1, 2, . . . .

By analogy, we get
Dq

tk
ui(t) ≥ ui(t)

[
rL

i −
n

∑
j=1,j 6=i

bM
ij − aM

ii ui(t)−
n

∑
j=1
j 6=i

aM
ij sup

t≥t0

uj(t)
]
, t 6= tk, k = 0, 1, . . . ,

∆ui(tk) ≥ dL
k ui(tk), k = 1, 2, . . . .

Then, using Lemma 4, the properties of the generalized conformable derivatives,
and Conditions 2, 3 and 4 of Lemma 5 we obtain (1) for t ≥ t0 and 1 ≤ i ≤ n.

Lemma 6. If, in addition to the conditions of Lemma 5, we have

rL
i ≥

n

∑
j=1,j 6=i

1
aL

j
aM

ij

(
rM

j +
n

∑
j=1,j 6=i

bM
ij

)
+

n

∑
j=1,j 6=i

bM
ij , i = 1, 2, . . . , n,

then,

min
{

ui(t+0 ),
1

aM
i

[
rL

i −
n

∑
j=1,j 6=i

bM
ij −

n

∑
j=1,j 6=i

1
aL

j
aM

ij

(
rM

j +
n

∑
j=1,j 6=i

bM
ij

)]}

≤ ui(t) ≤ max
{

ui(t+0 ),
1
aL

i

(
rM

j +
n

∑
j=1,j 6=i

bM
ij

)}
, i = 1, 2, . . . , n

for any t ∈ [t0, t1] ∪ (tk, tk+1], k = 1, 2, . . . .
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Proof. From Lemma 5 it follows that the inequalities (9) hold for t ≥ t0 ∈ R+ and
i = 1, 2, . . . , n.

We will prove that

1
aM

i

[
rL

i +
n

∑
j=1,j 6=i

bL
ij −

n

∑
j=1,j 6=i

1
aL

j
aM

ij

(
rM

j +
n

∑
j=1,j 6=i

bM
ij

)]
≤ Wi(t)

≤ Ui(t) ≤
1
aL

i

(
rM

j +
n

∑
j=1,j 6=i

bM
ij

)
,

for all t ∈ [t0, t1] ∪ (tk, tk+1], k = 1, 2, . . . and i = 1, 2, . . . , n.
First, we will prove the inequality

Ui(t) ≤
1
aL

i

(
rM

j +
n

∑
j=1,j 6=i

bM
ij

)
, t ∈ [t0, t1] ∪ (tk, tk+1], k = 1, 2, . . . , i = 1, 2, . . . , n. (11)

If we suppose that exists a t ∈ [t0, t1] ∪ (tk, tk+1], k = 1, 2, . . . such that for some i with
i = 1, 2, . . . , n, we have

Ui(t) >
1
aL

i

(
rM

j +
n

∑
j=1,j 6=i

bM
ij

)
,

then using Definition 1 and Lemma 4, we will get

Dq
tk
Ui(t) < Ui(t)

[
rM

i − aL
iiUi(t)

]
+ sup

t
Uj(t)

n

∑
j=1,j 6=i

bM
ij < 0,

which is a contradiction. Hence, the inequality (11) holds for all i, 1 ≤ i ≤ n and all
t ∈ [t0, t1] ∪ (tk, tk+1], k = 1, 2, . . . .

The proof of the inequality

Wi(t) ≥
1

aM
i

[
rM

i −
n

∑
j=1,j 6=i

bL
ij −

n

∑
j=1,j 6=i

1
aL

j
aM

ij

(
rM

j +
n

∑
j=1,j 6=i

bM
ij

)]
for i, i = 1, 2, . . . , n and all t ∈ [t0, t1] ∪ (tk, tk+1], k = 1, 2, . . . is similar.

Next, the following boundedness result will be presented.

Theorem 1. Under the conditions of Lemma 6, if

1 + dik ≤ 1, (12)

then, there exist constants 0 ≤ αi < βi, such that

αi ≤ ui(t) ≤ βi, t ≥ t0, i = 1, 2, . . . , n.

Proof. Lemma 6 implies the existence of positive constants α∗i and β∗i such that

α∗i ≤ ui(t) ≤ β∗i

for all i, i = 1, 2, . . . , n and all t ∈ [t0, t1] ∪ (tk, tk+1], k = 1, 2, . . . .
From (12), we have

0 < ui(t+k ) = (1 + dik)ui(tk) ≤ ui(tk) ≤ β∗i .

The above inequalities lead to the assertion of Theorem 1.
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4. Practical Stability with Respect to Manifolds Results

The aim of this paper is the establishment of practical stability criteria for the manifold
MH

t . First, we will present a practical exponential stability result.
We will assume that for the continuous function H the setsMH

t ,MH
t (ε) are (n−m)-

dimensional manifolds in Rn, and each solution u(t; t0, u0) of the model (1) with an initial
condition (2) which satisfies

||H(t, u(t; t0, u0))|| ≤ Ω < ∞

is defined for t ≥ t0.

Theorem 2. For given 0 < λ < A, assume that conditions of Theorem 1 hold, there exists a
function L ∈ Lq

tk
such that for t ∈ [t0, ∞), u ∈ Conr,

||H(t, u)|| ≤ L(t, u) ≤ Θ(Ω)||H(t, u)||, Θ(Ω) ≥ 1, 0 < Ω < ∞, (13)

and for the model’s parameter we have

0 < ζ∗ <
α(1 + α)

1 + β

n

∑
j=1

aji(t), t ≥ t0, α = min
i

αi, β = max
i

βi, i = 1, 2, . . . , n, (14)

G(t) =
∫ ∞

t0

Wq(t− tk, σ− tk)

(σ− t0)1−q

(
n

∑
i=1

(
ri(σ) +

β− α

1 + α

n

∑
j=1

bij(σ)
))

dσ

+
k

∑
j=1

k

∏
l=k−j+1

Eq(−ζ∗, tl − tl−1)

×
∫ tk−j+1

tk−j

Wq(t− tk, σ− tk−j)

(σ− tkj
)1−q

(
n

∑
i=1

(
ri(σ) +

β− α

1 + α

n

∑
j=1

bij(σ)
))

dσ < ∞, (15)

then the manifoldMH
t is practically exponentially stable for the model (1).

Proof. Let 0 < λ < A. No generality is lost by making the assumption 1 < λ < G(t) < A.
Consider the following Lyapunov-like function

L(u) =
n

∑
i=1

ln(1 + ui).

From H2 and (12), we have that for tk > t0 ≥ 0, k = 1, 2, . . . ,

L(u(t+k )) =
n

∑
i=1

ln(1 + ui(t+k )) =
n

∑
i=1

ln[1 + (1 + dik)ui(tk)] ≤ L(u(tk)). (16)

From Theorem 1, for t 6= tk, k = 1, 2, . . . , we have

+Dq
tk

L(u(t)) ≤
n

∑
i=1

1
1 + ui(t)

Dq
tk

ui(t)

≤
n

∑
i=1

ui(t)
1 + ui(t)

ri(t)−
α

1 + β

n

∑
i=1

n

∑
j=1

aij(t)uj(t) +
n

∑
i=1

n

∑
j=1

1
1 + ui(t)

bij(t)
(
uj(t)− ui(t)

)
≤ −ζ∗

n

∑
j=1

ln(1 + uj(t)) +
n

∑
i=1

ri(t) +
β− α

1 + α

n

∑
j=1

bij(t)



Mathematics 2023, 11, 2221 11 of 15

= −ζ∗L(u(t)) +
( n

∑
i=1

ri(t) +
β− α

α

n

∑
j=1

bij(t)
)

.

The last inequality and Lemma 3 imply

L(u(t)) ≤ L(u(t+0 ))Eq(−ζ∗, t− t0) + G(t), t ≥ t0. (17)

If u0 ∈ MH
t0
(λ), then from the choice of the function L ∈ Lq

tk
, (13) and (17), we have

||H(t, u(t; t0, u0))|| ≤ L(u(t; t0, u0))

< A + Θ(Ω)||H(t0, u0)||Eq(−ζ∗, t− t0), t ≥ t0.

Therefore,

u(t; t0, u0) ∈ MH
t (A + Θ(Ω)||H(t0, u0)||Eq(−ζ∗, t− t0), t ≥ t0, for some t0 ∈ R+,

which means that the manifoldMH
t is practically exponentially stable for the model (1).

Finally, in order to study the effect of uncertain terms and robust practical stability
behavior of the model (1), we consider the following system

Dq
tk

ui(t) = ui(t)

[
ri(t) + r̃i(t)−

n

∑
j=1

(
aij(t) + ãij(t)

)
uj(t)

]
+

n

∑
j=1

(
bij(t) + b̃ij(t)

)(
uj(t)− ui(t)

)
, t 6= tk, k = 0, 1, . . . ,

ui(t+k ) = ui(tk) + dikui(tk) + d̃ikui(tk), k = 1, 2, . . . ,

(18)

where the functions r̃i, ãji, b̃ij ∈ C[R+,R+], i, j = 1, . . . , n, k = 1, 2, . . . and constants
d̃ik, i = 1, 2, . . . , n, k = 1, 2, . . . , represent uncertainties in the parameters [65–67].

The consideration of the model (18) with uncertain parameters is motivated by the fact
that the characteristics of an ecological model may be affected by changes in environment
or some noises. Also, since the robust stability and control theories are main optimal control
techniques, their development is important.

Definition 4. The manifoldMH
t is called practically robustly exponentially stable for the model

(1) if for t0 ∈ R+, u0 ∈ MH
t0
(λ) and for any r̃i, ãji, b̃ij, d̃ik, i, j = 1, . . . , n, k = 1, 2, . . . , the

manifoldMH
t is practically exponentially stable with respect to system (18).

Using similar technique and steps as in the proof of Theorem 2, we can verify the
next result.

Theorem 3. Assume that conditions of Theorem 2 hold, −1 < dik + d̃ik ≤ 0, i = 1, 2, . . . , n,
k = 1, 2, . . . , and for the model’s parameter we have

0 < ζ∗∗ <
α(1 + α)

1 + β

n

∑
j=1

(aji(t) + ãji(t)), t ≥ t0, α = min
i

αi, β = max
i

βi, i = 1, 2, . . . , n, (19)

G∗(t) =
∫ ∞

t0

Wq(t− tk, σ− tk)

(σ− t0)1−q

n

∑
i=1

(
ri(σ) + r̃i(σ) +

β− α

1 + α

n

∑
j=1

(
bij(σ) + b̃ij(σ)

))
dσ

+
k

∑
j=1

k

∏
l=k−j+1

Eq(−ζ∗∗, tl − tl−1)
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×
∫ tk−j+1

tk−j

Wq(t− tk, σ− tk−j)

(σ− tkj
)1−q

n

∑
i=1

(
ri(σ) + r̃i(σ) +

β− α

1 + α

n

∑
j=1

(
bij(σ) + b̃ij(σ)

))
dσ < ∞,

then the manifoldMH
t is practically robustly exponentially stable for the model (1).

5. Illustrative Examples

In this Section, examples are addressed to illustrate the usefulness of the proposed method.

Example 1. We consider the 2-dimensional impulsive dispersal Lotka–Volterra system with gener-
alized conformable derivatives

Dq
tk

u1(t) = u1(t)[r1(t)− a11(t)u1(t)− a12(t)u2(t)] + b12(t)
(
u2(t)− u1(t)

)
, t 6= tk, k = 0, 1, . . .

Dq
tk

u2(t) = u2(t)[r2(t)− a21(t)u1(t)− a22(t)u2(t)] + b21(t)
(
u1(t)− u2(t)

)
, t 6= tk, k = 0, 1, . . .

u1(t+k ) =
u1(tk)

3
, k = 1, 2, . . . , u2(t+k ) =

u2(tk)

4
, k = 1, 2, . . . ,

(20)

where tk < tk+1 < . . . , k = 1, 2, . . . , lim
k→∞

tk = ∞, r1(t) = 5 − sin t, r2(t) = 6 − sin t,

a11(t) = 0.02, a12(t) = a21 = 0.01, a22(t) = 0.05, the the dispersal rates are b12(t) = 0.3,
b21(t) = 0.5.

For the system (20), we have that d1k = − 2
3 , d2k = − 3

4 and, hence conditions H2 and (12)
are satisfied.

Also, rL
1 = 4, rM

1 = 6, rl
2 = 5, rM

2 = 7, aL
11 = aM

11 = 0.02, aL
12 = aM

12 = aL
21 = aM

21 = 0.01,
aL

22 = aM
22 = 0.05, bL

12 = bM
12 = 0.3, bL

21 = bM
21 = 0.5, and H1 and conditions of Lemma 6

are satisfied.
Therefore, by Theorem 1, we can conclude that there exist constants 0 ≤ αi < βi, such that

αi ≤ ui(t) ≤ βi, t ≥ t0, i = 1, 2.

Let us consider a solution u∗ = (u∗1 , u∗2) of the model (20), the function H : R2 → R2,
H = (H1, H2) = (u1 − u∗1 , u2 − u∗2), and the manifold

MH
t = {u ∈ R2 : H1 = H2 = 0}.

We have that (13) is satisfied, and for the values of α, β and ζ∗ for which (14) and (15) hold,
the manifoldMH

t is practically exponentially stable for the model (20).

Example 2. Keeping the parameters’ values from the model (20) we consider the following system
with uncertain parameters We consider the 2-dimensional impulsive dispersal Lotka–Volterra system
with generalized conformable derivatives

Dq
tk

u1(t) = u1(t)

[
r1(t) + r̃1(t)−

(
a11(t) + ã11(t)

)
u1(t)−

(
a12(t) + ã12(t)

)
u2(t)

]
+
(
b12(t) + b̃12(t)

)(
u2(t)− u1(t)

)
, t 6= tk, k = 0, 1, . . . ,

Dq
tk

u2(t) = u1(t)

[
r2(t) + r̃2(t)−

(
a21(t) + ã21(t)

)
u1(t)−

(
a22(t) + ã22(t)

)
u2(t)

]
+
(
b21(t) + b̃22(t)

)(
u1(t)− u2(t)

)
, t 6= tk, k = 0, 1, . . . ,

∆u1(tk) =

(
−2

3
+ d̃1k

)
u1(tk), k = 1, 2, . . . , ∆u2(tk) =

(
−3

4
+ d̃ik

)
u2(tk), k = 1, 2, . . . ,

(21)

where tk < tk+1 < . . . , k = 1, 2, . . . , lim
k→∞

tk = ∞, r̃i, ãji, b̃ij ∈ C[R+,R+], i, j = 1, 2,

k = 1, 2, . . . and d̃ik are uncertain constants, i = 1, 2, k = 1, 2, . . . .
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In fact, the model (20) is the nominal model for the uncertain system (21). Also, if all uncertain
values are bounded, and the conditions of Theorem 3 are met, this will guarantee the practical robust
exponential stability of the manifoldMH

t for the model (20).

6. Conclusions

In this paper, we introduce an impulsive Lotka–Volterra-type models using the con-
formable calculus approach. The introduced model extends and complements numer-
ous existing integer-order Lotka–Volterra models [1–6], impulsive Lotka–Volterra mod-
els [27,29,30,32], as well as, Lotka–Volterra models with classical fractional-order deriva-
tives [16–20,34] to the impulsive conformable case. The benefits of the conformable deriva-
tives make the introduced model more relevant to the real-world applications. The effect
of dispersion on the species which is an important subject in ecological models, is also
considered. The combined extended practical stability with respect to manifolds notion
is adopted to the introduced model, and sufficient conditions are derived to ensure the
boundedness and practical stability with respect to manifolds by using Lyapunov function.
The uncertain case is also studied to contribute to the development of the robust stability
and control theories. Two illustrative examples are given to demonstrate the effectiveness
of the contributed results. The application of the proposed conformable fractional calculus
approach to some neural network models is an interesting topic for a future research.
In addition, it is possible to extend the proposed results to the delayd case and study the
effect of some delay effects on the qualitative behavior of the states.
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