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Abstract: Since the main attenuation of solar irradiance reaching the earth’s surface is due to
clouds, it has been hypothesized that global horizontal irradiance attenuation and its temporal
variability at a given location could be characterized simply by cloud properties at that location.
This hypothesis is tested using global horizontal irradiance measurements at two stations in San
Antonio, Texas, and satellite estimates of cloud types and cloud layers from the Geostationary
Operational Environmental Satellite (GOES) Surface and Insolation Product. A modified version of
an existing solar attenuation variability index, albeit having a better physical foundation, is used.
The analysis is conducted for different cloud conditions and solar elevations. It is found that under
cloudy-sky conditions, there is less attenuation under water clouds than those under opaque ice
clouds (optically thick ice clouds) and multilayered clouds. For cloud layers, less attenuation was
found for the low/mid layers than for the high layer. Cloud enhancement occurs more frequently
for water clouds and less frequently for mixed phase and cirrus clouds and it occurs with similar
frequency at all three levels. The temporal variability of solar attenuation is found to decrease with an
increasing temporal sampling interval and to be largest for water clouds and smallest for multilayered
and partly cloudy conditions. This work presents a first step towards estimating solar energy potential
in the San Antonio area indirectly using available estimates of cloudiness from GOES satellites.

Keywords: clear sky index; solar irradiance; downward shortwave radiation; global horizontal
irradiance; solar variability; cloud categories; GOES satellites

1. Introduction

Radiation from the sun is the primary energy source for the Earth [1,2]. Accurate measurements
of broadband shortwave irradiance are crucial for renewable energy resource assessments and climate
change research [3]. There is also a growing demand for integrating solar energy into the electricity
grid with accurate characterization of solar irradiance variability in order to provide a better quality
of service. The temporal variability of solar radiation is largely due to rapid changes in atmosphere
conditions, especially clouds, which create significant fluctuations in voltage [4–9]. The insolation,
cloud amount, cloud type, cloud height, and surface properties determine whether clouds cause a
radiative excess or deficit in a given region. Considering the importance of the stability of an energy
distribution network and considering also that the reduction of solar radiation in the atmosphere due
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to clouds is typically larger (~30%) than that due to aerosols under clear sky (~10%) [10], it would be
useful to understand how solar energy varies under different cloud conditions.

To quantify the effects of clouds on radiation at a specific location, a clear sky index (CSI) can be
used [11–13]. The CSI is defined as the ratio of the actual ground irradiance to the irradiance under a
cloud-free sky [14]. Thus, when calculating CSI, the selection of a good clear sky model is important.
Reno et al. [15] presented an overview of clear sky models of global horizontal irradiance including
very simple models that are solely dependent upon solar zenith angle and quite complex models that
add dependencies on various atmospheric parameters. They found that the Ineichen model [16,17],
which accounts for solar zenith angle, air pressure, temperature, relative humidity, aerosol content,
Rayleigh and site elevation, compared well (error of ~5.0%) with the REST2 (Reference Evaluation of
Solar Transmittance, 2-bands) model developed by Gueymard [18,19].

Cloud properties including cover, transmittance, moving velocity, type, and height, all influence
solar irradiance and its variability on the ground [8,20–24]. Udelhofen and Cess [25] applied spectral
analysis to cloud cover anomalies over the United States for the period 1900–1987 and found that
the coherence between cloud cover and sun spots numbers (which is a proxy for solar variability)
at a period of 11 years was significant (~0.7). Reno and Stein [23] hypothesized that the variability
of cloud properties at a given location and time could be used to model the variability of ground
solar irradiance at that location. Using global horizontal irradiance observations at two locations in
Las Vegas, Nevada and cloud types from Geostationary Operation Environmental Satellites (GOES),
they found that the temporal variability of ground irradiance is higher with water clouds and generally
lower with opaque ice clouds. Nguyen et al. [26] validated the sky-imager-based global horizontal
irradiance variability with ground observations using the temporal variability index introduced by
Stein et al. [22] and found a high correlation (0.91).

Previously, we compared satellite-derived global solar irradiance from GOES with ground
observations at two stations in San Antonio, Texas and found overall a good agreement on hourly and
daily timescales [27]. The irradiance data from these two ground stations are used here to study the
temporal variability of global horizontal irradiance on sub-hourly time scales. The specific objective
of this study is to use the global horizontal irradiance measured at these two San Antonio sites and
simultaneous GOES-derived cloud properties (i.e., cloud type and height) to test the hypothesis of
Reno and Stein [23], namely that the global horizontal irradiance variability at these stations could be
characterized by satellite-derived cloud properties at those locations. In addition, a modified version
of the global horizontal irradiance variability index of Reno and Stein [23], but bearing a more physical
foundation, is used here. In this paper, the datasets used are presented in Section 2, the analysis
methods in Section 3, and the results in Section 4. The paper ends with a discussion in Section 5 and
conclusions in Section 6.

2. Data

2.1. Ground Observations of Solar Irradiance

In situ measurements of global horizontal irradiance (Gh) come from the two ground stations
shown in Figure 1, namely the main campus of the University of Texas at San Antonio (UTSA) and
Alamo 1 Solar Farm (ASF). At the UTSA station (29.5833◦ N, 98.6199◦ W, 305 m elevation above sea
level), instantaneous values of Gh were recorded every 5 min from 1 May to 25 October 2015 by a
LI-200R pyranometer (0.4–1.1 µm). At the ASF site (29.7010◦ N, 98.4432◦ W, 164 m elevation above
sea level), instantaneous values of Gh were recorded at irregular time intervals which is against best
practices. The distribution of the sampling has a mean of 0.16 min and standard deviation of 0.23 min
from July to September 2014 by a CMP11_L pyranometer (0.285–2.8 µm). A second ASF dataset based
on temporal averages is used for the period September 2015–October 2016 in which the raw data was
averaged every 15 min. The uncertainties of the instruments, LI-200R and CMP11_L, are respectively
3% and <2%, according to the manufacturer specifications. The bandwidth of the LI-200R pyranometer
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is much narrower than that of the CMP11_L pyranometer. Slight sensor differences in offset and/or
gain and the pyranometer calibration at the UTSA station might have induced some errors, resulting in
slightly smaller Gh than that recorded at the ASF station [27]. Since at large zenith angles the accuracies
of radiative transfer models and pyranometers degrade rapidly [27], and slight changes in actual
radiance can cause large changes in the clear sky index, observations with solar zenith angles >75◦

were, therefore, not included in this study.
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Figure 1. Map of the state of Texas showing the City of San Antonio (left panel). The expanded
region (right panel) shows the sites of the ground observing points (University of Texas at San Antonio
[UTSA] and Alamo 1 Solar Farm [ASF]) for solar irradiance (black solid dots) relative to the city’s main
roads (reproduced from Reference [27]).

2.2. Satellite Observations of Clouds

The satellite cloud data used in this paper comes from the GOES Surface and Insolation Products
(GSIP) available from the National Oceanic Atmospheric Administration (NOAA). The GSIP dataset is
based on remote sensing measurements obtained using the visible and infrared channels of the GOES
satellites. Both GOES-East and GOES-West satellites are used, which respectively provide hourly
instantaneous snapshots 45 min past the hour and on the hour since January 1996 [28]. The approach of
GSIP for computing solar radiation is to first retrieve cloud properties and then use these properties as
inputs to the Satellite Algorithm for Shortwave Radiation Budget (SASRAB) model [29]. The algorithm
used to determine the dominant cloud types is the AVHRR Pathfinder Atmospheres-Extended
(PATMOS-X) model [29–31]. In this study, hourly cloud property data (classified by cloud types
and cloud layers, as defined in Table 1) with a resolution of 2.3 km (longitude) × 4.9 km (latitude) for
San Antonio, Texas are obtained from GSIP.

Table 1. Cloud categories for National Oceanic Atmospheric Administration (NOAA) cloud-types
(same categories used in Reference [23]) and cloud-layer classifications from Geostationary Operational
Environmental Satellite (GOES) surface and insolation products.

Classification Categories Description

Cloud type

0 clear
1 partly (partly cloudy/fog)
2 water (water cloud)
3 mixed (supercooled/mixed-phase cloud)
4 opaque ice (optically thick ice cloud)
5 cirrus (optically thin ice cloud)
6 multilayered (cirrus over lower cloud)

Cloud layer
1 low (0–2 km)
2 mid (2–7 km)
3 high (5–13 km)
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3. Methods

Ground measurements of Gh with various sub-hourly temporal sampling intervals were used
in this study. For UTSA, the sampling intervals considered were 5, 10, and 15 min and for ASF
the sampling intervals were 1, 5, 10, and 15 min. For the UTSA data, the 10 and 15 min datasets
(instantaneous data) were generated by decimating the original 5-min datasets so that the resulting
grids match the times of the satellite imagery, as illustrated in Figure 2. For ASF, the 1, 5, and 10
min datasets were based on instantaneous data while the 15 min dataset was a combination of an
instantaneous and a temporally averaged dataset. These four regularly gridded ASF datasets were
generated in a similar way to the UTSA datasets by decimating the irregularly sampled high resolution
(~0.16 min mean sampling rate) dataset using the nearest data to the desired regular grid which was
chosen to match the times of the satellite imagery. When generating the 10-min gridded dataset one
can choose to match the time of the satellite image 15 min before the hour or indistinctively the one on
the hour, we chose the latter.
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Figure 2. Graphical representation of the decimation procedure used to create UTSA datasets with
10-min and 15-min time intervals from the original 5-min dataset. The time of the GOES satellite images
are also indicated in the figure.

To quantify the impact of clouds on solar irradiance, a clear sky index (CSI) [11,14,32] was used
as follows:

CSI =
Gh
Ghc

, (1)

where Ghc is the global horizontal clear-sky irradiance. Thus, CSI should be approximately equal to 1
under clear-sky conditions and typically smaller than 1 when clouds are present. In this paper, Ghc was
calculated from the following model based on Reference [15]:

Ghc = a1·I0· sin(h)· exp(−a2·AM·(fh1 + fh2·(TL − 1)))· exp
(

0.01·AM1.8
)

, (2)

where I0 is the normal incidence extraterrestrial irradiance; h is the solar elevation angle, AM is the
altitude corrected air mass [33], a1 = 5.09 × 10−5 × altitude + 0.868, a2 = 3.92 × 10−5 × altitude +
0.0387, fh1 = exp(−altitude/8000), fh2 = exp(−altitude/1250), and TL is Linke turbidity available from
the Solar Radiation Data website (www.soda-pro.com). For every decimated Gh dataset (i.e., 1, 5, 10,
or 15 min sampling rate), a corresponding Ghc dataset was generated by calculating Ghc only for those
times when Gh was available. The CSI was then calculated from Equation (1) for all sampling rates
and averaged over a 60-min period centered on the time of each satellite image.

A variation of the CSI, but for evaluating the impact of clouds on energy rather than irradiance and
for comparisons using the satellite retrieved cloudiness, is introduced here. The new index is referred
to as the clear-sky energy index (CEI) and is defined as the ratio of two integrals. The numerator is the
integral over one hour centered around the time of each satellite image of an array of n global-horizontal
radiant energy values observed at a temporal sampling interval ∆t and the denominator is the same
integral but computed using the calculated global-horizontal clear-sky irradiance from Equation (2),
as follows:

CEI =
∑n

k=2(((Gh)k + (Gh)k−1) ∗ ∆t/2)
∑n

k=2(((Ghc)k + (Ghc)k−1) ∗ ∆t/2)
. (3)

www.soda-pro.com
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To evaluate the impact of clouds on the temporal variability of solar irradiance, the following
variability index (VI) was used [22,23] which was calculated from an equation similar to Equation (3),
as follows:

VI =
∑n

k=2

√
((Gh)k − (Gh)k−1)

2 + ∆t2

∑n
k=2

√
((Ghc)k − (Ghc)k−1)

2 + ∆t2
. (4)

As seen in Equation (4), the definition of VI involves adding variables with different units
(i.e., energy flux for irradiance and time for the temporal sampling interval) which does not have any
physical basis. To avoid this inconsistency, we proposed a modified version of the variability index
(VInew) defined as follows:

VInew =
∑n

k=2
∣∣(Gh)k − (Gh)k−1

∣∣/∆t

∑n
k=2
∣∣(Ghc)k − (Ghc)k−1

∣∣/∆t
. (5)

This variability index was thus based on the ratio of the sum of the changes of global horizontal
irradiance (in absolute value) over each time ∆t taken over one hour centered on the time of each
satellite image to the same sum quantity except computed for clear sky. The numerator one of the
absolute value of the changes of observed ground global horizontal irradiance over each ∆t and the
other integral same quantity but based on the global horizontal irradiance under clear sky. The VInew

in Equation (5) is thus a modified version of the VI proposed by Reno and Stein [23]. This definition is
very similar to the previous one given in Equation (4) but avoids the inconsistency of adding values
with different units.

All solar radiation indices (CSI, CEI, VI, and VInew) were then paired with simultaneous satellite
estimates of clouds for further analysis [23].

4. Results

4.1. Solar Attenuation under Different Cloud Conditions

Figure 3 presents the histograms of CSI at the UTSA (left panel) and ASF (right panel) study sites
using all available ground data and their original sampling rates. The means of these CSI distributions
are 0.74 and 0.87 for UTSA and ASF, respectively, and are indicated with red vertical dashed lines in
Figure 3. The modes of CSI are, respectively, 0.96 and 1.02 for UTSA and ASF. In principle, the maximum
value of CSI would be equal to 1 which represents clear-sky conditions, i.e., solar irradiance should not
be attenuated when passing through a clear atmosphere. The fact that some CSI values in Figure 3 are
greater than 1 may be associated with (1) a possible underestimation of the clear sky global radiation
(Ghc) from Equation (2) and/or (2) a possible overestimation of the ground measurements (Gh) at
both stations due to cloud enhancement [34,35]. Both CSI distributions peak at 1 and are left-skewed
indicating that there were more clear-sky than cloudy conditions at both locations.
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The histograms of the averaged CSI values calculated using all available ground station data and
the original sampling rates at the two study locations and for each cloud type are shown in Figure 4.
Similar histograms, but for each cloud layer, are shown in Figure 5. Overall, two main conclusions can
be drawn from these figures: (1) the distributions of CSI under clear-sky conditions in the upper panels
of Figure 4 (>61% of all cases in both UTSA and ASF) peak at 1 and their average is greater than that
for any cloud type or layer and (2) the mean of CSI is higher at ASF than at UTSA for all corresponding
cloud types and layers. Among the various cloud types, water clouds have the larger CSI values,
as shown in Figure 4. Values of CSI greater than 1 for clear-sky conditions reflect uncertainties in the
CSI estimates since aerosols cannot enhance solar radiation. For cloudy conditions, CSI values greater
than 1 are found more frequently for water clouds and less frequently for mixed and cirrus clouds
suggesting that these cloud types are the most effective at producing cloud enhancement.
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Among the three different cloud layers, CSI values are larger for low- and mid-level clouds
than for high-level clouds, as shown in Figure 5. The water clouds are composed of liquid water
droplets and the mixed clouds composed of supercooled water droplets or both ice and supercooled
water. The water clouds absorb more visible and near-infrared radiation, resulting in lower CSI as
compared to the clear-sky conditions [36–38]. Compared to water clouds, mixed clouds consist of water
vapor, liquid droplets, and ice particles, and thus reflect more solar radiation and result in lower CSI.
Cirrus clouds are higher-altitude, thinner clouds which are highly transparent to shortwave radiation.
Partly cloudy conditions, in contrast, occur at the lower layer and are much thicker than cirrus clouds.
The mean CSI, therefore, is higher under cirrus clouds than under partly cloudy conditions. The opaque
ice clouds are composed of ice crystals or opaque clouds which are non-transmissive. The multilayer
clouds consist of clouds from different layers. Both opaque ice and multilayer clouds reflect or absorb
most of the solar energy, resulting in lower CSI than any other cloud type. It was also found that the
distributions of CSI under clear and water cloud conditions are left skewed, while under cirrus clouds
the distribution appears to be bimodal. Regarding cloud enhancement, the ASF data indicates that
cloud enhancement occurs with similar frequency at all three levels.

Figure 6 shows the mean CSI and CEI with their standard deviation error bars under each cloud
type and cloud layer for both stations. Similar to Figures 4 and 5, CSI averages vary more as a function
of cloud types than cloud layers and are higher at ASF than at UTSA. CSI is larger under clear-sky
conditions (type 0) followed by water clouds (type 2) and lower under opaque ice (type 4) and
multilayered (type 6) clouds. For cloud layers, CSI is larger for low and mid clouds (layers 1 and 2)
and smaller for high clouds (layer 3). As expected, the pattern of CEI is similar to that of CSI. One
difference, however, is that CEI is not always larger at ASF.

Figure 7 shows the mean CSI and CEI with their ± 1 standard deviation error bars for various sky
conditions as a function of solar zenith angles at the ASF station. The distributions of CSI and CEI
means and standard deviations in Figure 7 show both similarities and differences. Both CSI and CEI
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means are larger for clear than for cloudy conditions and they do not vary much with solar zenith
angles. For cloudy conditions, the larger values of CSI and CEI means are for water clouds and the
lower values for opaque ice and multilayered clouds. For CSI under partly, water, mixed, and cirrus
type clouds, the means are generally lower at high solar zenith angles except for opaque ice clouds
which have the lowest value of CSI at the lowest solar zenith angle (0–15◦). For CEI under water,
mixed, opaque ice, and cirrus, the means show smaller values for intermediate solar zenith angles.
For cloud layers, as shown in the lower panel of Figure 7, the mean CSI decreases with increasing solar
zenith angle for zenith angles greater than 0–15◦. This pattern is similar for CEI which is overall higher
at low, compared to high, solar zenith angles.

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 14 

 

angles. For cloudy conditions, the larger values of CSI and CEI means are for water clouds and the 
lower values for opaque ice and multilayered clouds. For CSI under partly, water, mixed, and cirrus 
type clouds, the means are generally lower at high solar zenith angles except for opaque ice clouds 
which have the lowest value of CSI at the lowest solar zenith angle (0–15°). For CEI under water, 
mixed, opaque ice, and cirrus, the means show smaller values for intermediate solar zenith angles. 
For cloud layers, as shown in the lower panel of Figure 7, the mean CSI decreases with increasing 
solar zenith angle for zenith angles greater than 0–15°. This pattern is similar for CEI which is overall 
higher at low, compared to high, solar zenith angles. 

 
Figure 6. The mean CSI and clear-sky energy index (CEI) indices with their ±1 standard deviation 
error bars derived from all available data with the 5-min sampling interval as a function of cloud 
types (left panels) and cloud layers (right panels) (see Table 1) at the two sites. 

 
Figure 7. The averaged CSI (left panel) and CEI (right panel) indices (at 1-min time scale) for cloud 
types (upper panel) and cloud layers (lower panel) all plotted against solar zenith angle at the ASF 
station (not all cloud types have data over a 1-min interval at each solar zenith angle range). 

Figure 6. The mean CSI and clear-sky energy index (CEI) indices with their ±1 standard deviation
error bars derived from all available data with the 5-min sampling interval as a function of cloud types
(left panels) and cloud layers (right panels) (see Table 1) at the two sites.

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 14 

 

angles. For cloudy conditions, the larger values of CSI and CEI means are for water clouds and the 
lower values for opaque ice and multilayered clouds. For CSI under partly, water, mixed, and cirrus 
type clouds, the means are generally lower at high solar zenith angles except for opaque ice clouds 
which have the lowest value of CSI at the lowest solar zenith angle (0–15°). For CEI under water, 
mixed, opaque ice, and cirrus, the means show smaller values for intermediate solar zenith angles. 
For cloud layers, as shown in the lower panel of Figure 7, the mean CSI decreases with increasing 
solar zenith angle for zenith angles greater than 0–15°. This pattern is similar for CEI which is overall 
higher at low, compared to high, solar zenith angles. 

 
Figure 6. The mean CSI and clear-sky energy index (CEI) indices with their ±1 standard deviation 
error bars derived from all available data with the 5-min sampling interval as a function of cloud 
types (left panels) and cloud layers (right panels) (see Table 1) at the two sites. 

 
Figure 7. The averaged CSI (left panel) and CEI (right panel) indices (at 1-min time scale) for cloud 
types (upper panel) and cloud layers (lower panel) all plotted against solar zenith angle at the ASF 
station (not all cloud types have data over a 1-min interval at each solar zenith angle range). 

Figure 7. The averaged CSI (left panel) and CEI (right panel) indices (at 1-min time scale) for cloud
types (upper panel) and cloud layers (lower panel) all plotted against solar zenith angle at the ASF
station (not all cloud types have data over a 1-min interval at each solar zenith angle range).
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With respect to CSI and CEI under clear-sky conditions, their values are nearly 1 and do not
change much with zenith angle. For cloud types and layers, CSI may increase (e.g., opaque ice) or
decrease (e.g., mixed) with increasing solar zenith angle. For CEI under cloudy conditions (both for
cloud types and layers), the attenuation is generally higher at higher solar zenith angles (>45◦).

4.2. Temporal Variability of Solar Attenuation under Different Cloud Conditions

Figure 8 shows the histograms of the temporal variability indices VI and VInew calculated using all
data available at the two stations with the 5-min sampling interval, indicating that these distributions
are quite similar to each other. The means of VI are, respectively, 7.64 and 7.77 for UTSA and ASF
stations, while the means of VInew are, respectively, 8.40 and 8.96 for UTSA and ASF. The modes of VI
and VInew for the two stations are all equal to 1. Both means of VI and VInew are somewhat higher
at the ASF station compared to the UTSA station. This is consistent with the results of Xia et al. [27]
which found that the measured Gh values at the UTSA station were overall biased low, due in part to
improper calibration of the pyranometer at that site. The right-skewed distribution of the variability
indices peaking close to 1 indicates that there were more cases with low temporal variability than those
with high temporal variability in the study sites.
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Figure 8. Histograms of the variability index (VI) (upper panels) and the modified version of the
variability index (VInew) (lower panels) at the 5-min time interval using all observations available at
each of the two ground stations, UTSA (left panels) and ASF (right panels). The red dashed line in
each panel indicates the average value of the index.

Figure 9 shows the means ±1 standard deviation error bars of the temporal variability indices
(VI and VInew) in terms of cloud types and layers under different time intervals (1-min, 5-min, 10-min,
and 15-min). Clearly, the temporal variability as represented by both indices decreases with the increase
of time interval. In addition, VI shows smaller values than VInew under different cloud types and
layers, especially at the 10-min and 15-min time intervals. It appears that the physically based VInew

is more sensitive to cloud type changes than VI for the four time intervals in this study and is thus
recommended for future use. For cloud types, VInew shows high temporal variability under water
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clouds (type 2) and low solar variability under clear sky (type 0), opaque ice (type 4), and multilayered
clouds (type 6). For cloud layers, VInew shows high solar variability under mid clouds and low solar
variability under low clouds, which are reasonable results.
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5. Discussion

Different approaches have been used in the literature to study solar variability and its impact on
the electricity grid [22,23,26,39–41]. For a review that includes various definitions of solar variability
indices, the reader is referred to Reference [24]. In this study, we followed an approach similar to Reno
and Stein [23] who used global horizontal irradiance at two ground stations in Las Vegas, Nevada and
cloud types from GOES satellites. Here, the relationship between ground observations of global
horizontal irradiance at two stations in San Antonio, Texas and satellite-derived cloud types and
cloud layers from GOES satellites was investigated using both the same and modified attenuation and
attenuation variability indices used in Reference [23].

This study found similar distributions of CSI at the two ground stations, namely ASF and
UTSA, but the mean of these distributions differed slightly in magnitude with the ASF means being
somewhat larger than those at UTSA, as shown in Figures 3–5. These differences were attributed by
Xia et al. [27] to the larger spectral band of the ASF pyranometer compared to the one at UTSA and
to potential improper calibration of the pyranometer at the UTSA site. It is worth noticing that the
CSI distributions in Figures 3–5 show some values that are greater than 1, which may be attributed
to possible underestimation of Ghc and/or overestimation of Gh due cloud enhancement [34,42,43].
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Assuming that the CSI values greater than 1 for cloudy conditions in the ASF data represent cloud
enhancement, more cloud enhancement is produced by water clouds and in lesser degree by mixed
phase and cirrus clouds. In addition, cloud enhancement occurs at all three levels.

In Figures 3–5, opaque ice and multilayered clouds have smaller CSI means because they contained
ice crystals and opaque clouds resulting in high attenuation of solar radiation. The thin characteristics
of cirrus clouds resulted in a lower ability to attenuate solar radiation as compared to opaque ice and
multilayered clouds. Since there are more water clouds occurring at the lower layer and more opaque
ice clouds at the high layer, the mean CSI is higher at the lower layer than at the higher layer.

Reno and Stein [23] found that at two locations in Las Vegas, Nevada the attenuation of solar
radiation when arranged by cloud types according to CSI values from highest to lowest was clear,
partly, water, cirrus, mixed, opaque ice, and multilayered. This organization is overall similar to the
results of this study, except for partly-cloudy conditions. This study shows that the mean CSI for partly
cloudy conditions is intermediate between mixed and opaque ice clouds, while for Reno and Stein [23]
it is between clear sky and water clouds. These differences could be in part because their analysis was
based on a coarser window of four by four GOES pixels, which could mix cloud types.

As expected, the attenuation indices CSI and CEI for clear-sky conditions, as shown in Figure 7,
had larger values than for cloudy conditions and were nearly constant at all solar zenith angles due to
the smaller attenuation of solar radiation in a cloud-free atmosphere compared to a cloudy atmosphere.
Under cloudy-sky conditions, there was generally a decrease in CSI and CEI with increasing solar
zenith angles. This effect was also expected since the longer the path that solar radiation travels
through the cloudy atmosphere, the more the attenuation that would result.

The temporal variability of solar attenuation, as shown in Figure 9, is found to be dependent
upon the temporal sampling interval with the mean variability indices (VI and VInew) decreasing
with the increase of the temporal sampling interval, consistent with Stein et al. [22]. The sampled
ASF dataset at 15-min time interval could introduce errors due to the irregular temporal resolution.
The variability indices of solar attenuation were lower under clear, partly, opaque ice, and multilayered
clouds compared to those under water, mixed, and cirrus clouds. Of these last three, solar attenuation
variability indices were higher for water clouds followed by mixed and cirrus clouds. All in all,
these effects of clouds on attenuation variability are consistent with Reference [23].

6. Conclusions

Solar variability is considered a growing concern when it comes to the integration of the power
from solar panel systems into the electric grid. Variation of solar irradiance at ground level results in
variations of the harnessed solar power. The characterization of solar variability is thus very important
for grid-connected solar photovoltaics and its impact on the power grid. A good understanding of
short-term and long-term solar variability could contribute to grid reliability, power output forecast,
and cost reduction.

In this paper, ground-based Gh observations and satellite-derived cloud properties were combined
using attenuation (CSI, CEI) and attenuation variability (VI, VInew) indices with the purpose of
determining how solar radiation variability relates to cloud types and layers in San Antonio,
Texas. As expected, it was found that on average solar radiation is attenuated the least under
clear-sky conditions, followed by water clouds and cirrus clouds, and it is attenuated the most
under opaque ice and multilayered clouds. Regarding cloud enhancement, the results suggest that
it occurs more frequently under water clouds and less frequently for mixed phase and cirrus clouds.
Cloud enhancement also appears to occur at all levels in the atmosphere. A new method was
proposed for calculating the attenuation variability index (VInew), which could be interpreted as
the ratio of the rate of change of the observed global horizontal irradiance at some temporal sampling
interval to the same quantity but computed from the global horizontal irradiance under clear sky.
This definition makes more physical sense than the “length” approach posed by Reno and Stein [23],
although gives similar results. The variability indices were found to decrease with increasing temporal
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sampling interval and were higher under water and mixed clouds and lower under opaque ice and
multilayered clouds.

The results from this analysis illustrate how cloud classification from GOES satellites relates to
solar attenuation and its temporal variability in San Antonio, Texas. It remains to be determined if these
results could be extended to other regions. It remains also to be seen if similar results could be obtained
using cloud products from other geostationary satellites like Meteosat or Himawari. The results of this
study are overall consistent with the study of Reno and Stein [23] for Las Vegas, Nevada, but there
are some differences. These differences, however, may be due to the different spatial resolution of
the cloud datasets in the two studies rather than differences in optical properties of the clouds at the
two sites.

The attenuation of solar radiation due to clouds has many uncertainties. This study, therefore,
makes assumptions that are not able to be quantified, like cloud enhancement. An alternative way
of studying the impact of clouds on solar irradiance would be using the optical properties of clouds
in terms of optical thickness. The GOES dataset used here, if fact, uses the cloud optical thickness to
parameterize the clouds. Some examples of studying the impact of clouds on solar irradiance using
optical thickness include References [44–46].
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