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ABSTRACT

This paper targets upper-level high school students and incoming college freshmen who have been less exposed to Special
Relativity (SR). The goal is to spark interest and eliminate any feelings of intimidation one might have about a topic brought
forth by world genius Albert Einstein. For this purpose, we will introduce some ideas revolving around SR. Additionally, by
deriving the relationship between the k-factor and relative velocity, we hope that students come to an appreciation for the
impact of basic mathematical skills and the way these can be applied to quite complex models. Advanced readers can directly
jump ahead to the section discussing the k-factor.
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1 Introduction
1.1 A Morsel of History
Throughout time, scientists have searched for ’just the right’ model comprised of laws, assumptions and theories that could
explain our physical world. One example of a leading physical law is: All matter in the universe is subject to the same forces. It
is important to note, this principle is agreeable to scientists, not because it is empirically true, but because this law makes for a
good model of nature. Consequently, this law unifies areas like mechanics, electricity and optics traditionally taught separate
from each other. Sir Isaac Newton (1643-1727) contributed to this principle with his ’three laws of motion.’ They were so
mathematically elegant, that the Newtonian model dominated the scientific mind for nearly two centuries. Yet, like all models,
Newtonian physics had its limitations; a number of phenomena, such as a those related to light, electricity and magnetism could
not be explained. For example, Descartes (1596–1650) first proposed the existence of an ether (field) to explain the interactions
between magnets and iron nails. He suggested that all matter resided within this ether, and that magnetic waves explained these
interactions. Newton himself added to this proposition suggesting the existence an ether containing gravitational force. The
ether concept further grew to include propagating light waves. All these suggestions of waves in an ether seemed natural, and
working out their behavior mathematically was relatively simple. However; thus far, there was no experimental evidence that
confirmed the waves behaved as expected. It was not until the Michelson-Morley experiment of 1887 which failed to confirm
the existence of such an ether, that forced dumbfounded physicists and mathematicians to reconsider the model they were
using (4, p.9). Enter Albert Einstein, who solved the Michelson-Morley puzzle with a paper entitled "The electrodynamics
of moving bodies" (see3). What sprouted out of this paper his first theory of relativity. At the time, his explanation seemed
to contradict Newton (4, section 1.6). Today, Einstein’s Special Relativity is a theory that supersedes Newton’s three laws of
motion, including objects travelling at/close to the speed of light. D’Inverno warns us not to call scientific models like the
Newtonian incorrect. Rather, he urges us to say that Newton’s model is a good model within its "range of validity" (2, p.16).

1.2 Postulates of SR
What makes special relativity ’special’? In SR, we only consider situations where observers are moving at a constant speed
relative to each other and do not feel any inertial forces, such as centrifugal force. Moreover, gravitation is not taken into
account. SR allows any object moving in this way to be its own inertial observer. Additionally, all inertial observers are
equipped with their very own reference frame, A.K.A. inertial frame (IF), and a clock (see Fig. 1). Einstein chose to found SR
on two physical postulates:

Postulate I: All inertial reference frames are equivalent.
Suppose an astronaut and a table were floating in a dark void. The only light present is the light emanating from the two bodies
so that the astronaut can see himself and the table but nothing else. The astronaut observes the table approaching him. But, what
can be set about his own motion? Without a floor, or fixed absolute frame of reference, who’s to say the astronaut is stationary?
This thought experiment unravels many more questions. Is the table stationary and the astronaut moving closer? Are they both

1



Figure 1. The IF is comprised of three orthogonal axes of equal unit lengths, a graduated ruler and a clock.

only moving closer to each other? Or are they moving closer together as they are moving in space? Postulate I asserts that all
these viewpoints are equally valid, provided the astronaut and the table approach each other with constant velocity.
Postulate II: The speed of light is constant and its velocity is invariant.
Postulate II has two implications. Imagine two inertial observers A and B. Consider this scenario from A’s reference frame. A
is stationary and B is moving past A at some constant speed. B lets off a laser beam in the direction he is heading. Firstly,
Postulate II implies, light (in a vacuum) travels a constant speed. (we denote a relative constant c = 1). Secondly, the speed of
light is c in both A and B’s IF.

2 The Notion of Time in Special Relativity
At their core, Einstein’s relativity theories (both the special theory of 1905 and the general theory of 1915) are
the modern physical theories of space and time, which have replaced Newton’s concepts of absolute space and
absolute time by Spacetime (4, p.3).

Instead of going in to what absolute space and time are and how they compare relativistic space-time, we are going to simply
throw away any perception of time and space and focus on altogether new way to like at time using world lines. Just know that,
as humans, we don’t live in space time, our understand of space and time come from the natural consequence of existing as
slow moving observers (who are non-inertial). the reader advised to expend his energy grasping this idea, but if if he were to
insist he fair better to know that understand space-time is an imaginative pursuit.

2.1 A Brief Explanation of World Lines
World lines can help us understand relativistic time. For simplicity, we assume that only one spatial direction is relevant (say
the x-axis). A world line is the trajectory of an object A, drawn in a two-dimensional coordinate system where the horizontal
axis indicates space (x) and the vertical axis indicates time (t). (t,x) are measured with respect to an arbitrarily chosen observer.
Below are some examples of space time diagrams as shown from A’s perspective. Note that the faster an object moves, the
more tilted its world-line becomes. We shall assume that nothing moves faster than the speed of light, so the angle between a
world-line and the time axis is always less than 45 degrees.
you might find this funny, but I’m artificially creating space because I couldn’t be bothered to learn overleaf before
In Fig. 2, an observer A is at a point in space as shown on the x-axis. In the space time diagram, a stationary observer A looks
like vertical line. In the interest of brevity and active learning, three illustrations are provided below to guide the understanding
of space-time scenarios. Figures 3, 4, 5 are depictions of two inertial observers A and B moving through space in A’s perspective
of time.
you might find this funny, but I’m artificially creating space because I couldn’t be bothered to learn overleaf before
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Figure 2. Space-Time Diagram showing A’s trajectory in time

Figure 3. Space-time diagram show-
ing inertial observers A and B station-
ary, or moving at the same velocity
relative to each other.

Figure 4. Space-time diagram shown
form A’s reference frame. B is moving
away from A, moving to the right of
A.

Figure 5. Space-time diagram shown
form A’s reference frame. B is moving
closer to A from the right.

In the next sections, we will see how world-lines will be elementary in finding the K-factor, and deriving its relationship with
relative velocity.

2.2 K-factor and Time Dilation
We will look at a problem adopted from Herman Bondi’s "Special Relativity and Common Sense"Bondi: p.78 to bring about
the idea of the K-factor. Consider a scenario such as that in Figure 6. According to A’s IF, B is moving away from A to the
right. Suppose A emits a light beam to B every 6 minutes. For a suitable velocity of B, B intercepts the beams every 9 minutes.
Geometrically speaking, the reader might agree with the supposition that the 6 and 9 min intervals are repeated without further
questioning. For the skeptical reader, we would like to explain this further. Since light travels at constant speed, (and because A
and B are inertial observers) the first beam, beam 1 A will take some time to reach B. Since the speed of light is of course faster
than B, a finite period of time passes before beam 1 reaches B. Meanwhile, A is timing 6 min before A emits a second beam,
beam 2. If we look at the history so far, and since we know Speedbeam2 = Speedbeam1 = Speedlight = c = 1, then the lines of
propagation of beam 1 and beam 2 are parallel (always 45◦ from the horizontal axis).
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Figure 6: Space-time diagram showing interval of emission from A (Ie) and an interval of reception to B (Ir)

Imagine B moving farther away from A, thus, after 6 minutes, B is farther and farther away from A, while A remains in the
exact same point in space. Since beam 2 has the same speed c, and B is farther away now, it follows that beam 2 reaches B after
a longer time. We leave the discussion of the opposite scenario, where B is approaching A, to the reader. It is left to the reader
to think up the converse of such a scenario by comparing the interval of transmission with interval of reception of B that is
approaching A with respect to A. The Figures below are designed to guide the reader into building an intuitive sense of the size
of intervals Ie and I2 in relation to B’s relative velocity.

Figure 7. Shows relative velocity zero.
Here the K-factor is 1.

Figure 8. Shows positive velocity of
B relative to A (distance between the
worlds is growing over time). Here,
the K-factor is < 1.

Figure 9. Shows negative velocity of
B relative to A (approaching A, di-
rection is negative and the distance
between the world-lines is shrinking).
Here the K-factor is > 1.

According to Hermann Bondi1 (p.88), all the effects of Special Relativity can be conveniently derived from the concept of the
K-factor. To introduce the concept, imagine that both A and B are carrying clocks. Whenever we are in the situation that A
sends out two successive flashes of light such that the time t > 0 is the interval on A’s clock, B can measure the time interval
between the reception of the first flash and the second flash on B’s clock. We define K to be the ration between the two time
intervals

K =
Ir

Ie
=

Time elapsed for B between reception of the two beams
Time elapsed for A between the emission of the beams
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The following exercises are to help the reader to infer that, looking on from A’s perspective, the K-factor relates the time interval
(measured with A’s clock) of two signals departing at A and the time interval of their arrival at B (measured with B’s clock).
First assume that the two observers fly away from each other and that their relative velocity leads to a k-factor of k = 3

2 .

(a) If A sends beams at 6 min intervals according to A’s clock, what is interval of reception on B according to B’s clock?

3
2
×6 = 9

B will receive the signals 9 min apart.

(b) If A sends laser beams at 12 min intervals according to A’s clock, what is the interval of reception on B according to B’s
clock?

3
2
×12 = 18

B will intercept A beams every 18 min.

Next assume that the two observers are approaching each other with the same velocity magnitude as before. It turns out that in
this case, the k-factor is the inverse of the one in (a) and (b), namely k = 2

3 .

(c) If B sends flashes to A in 18 min intervals (according to A’s clock), what is the interval of reception at A in A’s time?

2
3
×18 = 12

A will receive the the flashes in 12 min intervals on A’s clock.

Figure 10. Space-time diagram showing Ir = Kt at B depending on Ie = t in A. We say this is KA = Ir
Ir

is the k-Factor of A.

We postulate that the factor of proportionality K between the two time intervals depends only on the relative velocity of A and
B. In other words, if A sends two beams to B with a lapse of t between them, then B will measure the time interval Kt between
the reception of the first beam and the reception of the second beam.
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3 Relationship between K-value and Velocity
The key point of our discussion is to show that the precise form of the K-factor in A’s IF, KA, can be determined:

KA =

√
1+ vAB

1− vAB
,

where vAB is the relative velocity of B with respect to A. We will take vAB > 0 to mean that B is receding from A, i.e. the
distance between A and B is growing. Analogously, vAB < 0 means that B is approaching A, i.e. the distance between A and B
is shrinking over time. The question: ’... over who’s time?’ might arise. The natural answer is the time read from A’s clock.
Referring to Figure 11 below, consider the case when Brandon (B) and Adrian (A) are two inertial observers that started from
the same point O in space (neglect gravitational forces). Over time, B moves away from away A at a constant rate. Where the
world-lines of A and B met, the two observers synchronized their clocks. That is, they reset their clocks to show time equal to 0.
Adrian and Brandon also agreed to perform an experiment whereby A waits an agreed-upon amount of time t before he emits a
light beam at the point Q to B. B receives the beam at point P, holds up a mirror and reflects it back to A, who receives it at
point R. Pay attention to the fact that we are working from Adrian’s frame of reference (A’s perspective).
In this case, t is both a moment in time (emission of the signal from Adrian) and a time interval (between the instant A and
B pass each other and the emission of the signal: |0− t|= t). Adrian now deduces, using the definition of the K-factor, that
Brandon should intercept the beam at time KAt.

Figure 11. World lines showing inertial observers A and B meeting at point O, synchronizing their time. At O, both Adrian’s
(A’s) and Brandon’s (B’s) clock show the time zero.

As agreed for the experiment, at time KAt on Brandon’s watch, he anticipates the light beam by holding the mirror. At the
moment it reaches Brandon, and is immediately reflected back to Adrian. For simplicity, assume there is no time lapse between
interception and reflection of the light.
Applying KA-factor again, the reflected light will reach Adrian again at KA(KAt) = K2t. (To help with our calculations, events
such as the point of reflection are given letter names for clarity purposes.) An illustration of this experiment is found on Fig. 12.

Coincidentally, a triangle QPR is formed by the events of emission by A, reflection from B and reception of the signal by A.
Because of some assumptions we have made in this paper about SR, together with basic euclidean geometry, we discover that
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Figure 12. World lines showing A and B from A’s perspective conducting a light experiment. Q is the event of emission, OQ is
the interval of emission equal to t. P is the event and instance of reception and reflection, OP is the interval of this event and is
equal to Kt. R is the event of reception from B to A (still in A’s perspective, A.K.A. on A’s clock), hence: QR= K2t. V is the
point in time on A’s clock) where the light emitted from A reached B.

QPR is an isosceles triangle. Readers are encouraged to see this short and sweet proof found in Section 4. The interval QR, is
the time (on A’s clock) between emitting the light and receiving it back from B. QR can be written in terms of t as follows: QR=
K2

At− t. Let the time at which B reflects the incoming signal be denoted by V, as seen by Adrian. Recall properties of isosceles
triangles. Since (VP) ⊥ (QR), V is the midpoint of segment [QR]. Then the interval between synchronizing and reflection is

OV =
1
2

QR+OQ =
1
2
(K2

A−1)t + t =
1
2
(K2

A +1)t.

So, the time elapsed (on A’s clock) for the light to reflect by B is 1
2 (K

2
A +1)t.

Next, let’s find the distance between A and B at the time of reflection. This distance would be equivalent to the length of the
segment [VP]. Once again, geometric properties get the spotlight. We have VP = VQ = VR (See Section 4).
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So, VP = VQ = 1
2 (K

2
A−1)t.

We use the basic definition of velocity and adapting it to fit our idea of relative velocity of B to A

VAB =
distance travelled from A

time on A
.

We have therefore

vAB =
Distance

Time
=

V P
OV

=
1
2 (K

2
A−1)t

1
2 (K

2
A +1)t

.

We can simplify this expression further

vAB =
1
2 (K

2
A−1)T

1
2 (K

2
A +1)T

=
(K2

A−1)
(K2

A +1)
,

and then solve for KA:

vAB(K2
A +1) = (K2

A−1)
⇐⇒ vABK2

A + vAB = K2
A−1

⇐⇒ −K2
A + vABK2

A =−1− vAB

⇐⇒ −K2
A(1− vAB) =−(1+ vAB)

⇐⇒ K2
A =

(1+ vAB)

(1− vAB)

⇐⇒ KA =

√
(1+ vAB)

(1− vAB)

which is our desired expression for the k-factor.

4 Geometric Proof of the Triangle QRP being isosceles
Given:
1)Postulate II, then ]V QP = ]V PR
Additionally,
2) ]V QP = ]V PR = 45◦ (Assumption under SR) Since
3) A inertial observer, then the history is straight line, and
4) We assumed to be in A’s perspective, then the world line is vertical,
Then we have that (VP) ⊥ (QR), so ]V PQ = 45◦ (sum of angles in the triangle QPV must equate 180◦)
Now,

]QPR = QPV +V PR = 90◦

So, in triangle QPR, ]QPR = 45◦ (sum of angles in a triangle)
Therefore, QPR is an isosceles triangle.

5 Conclusion
Newton’s Three Laws of motion were expanded to include Einstein’s two postulates of SR. This resulted in important thought
experiments, one of which we covered in this paper (relationship of K-factor to relative velocity). Our aim was to encourage
students to read more about SR and create their own thought experiments about questions that inspire them. Many of the
mathematicians we look up to were also philosophers. It is remarkable to see the great thinkers of history using mathematical
models to think about their theories. What might be most important to take away from this manuscript is that mathematics,
even in its simplest tools, contains power far beyond one could expect.
After looking into some of the mathematics in this paper, we can now appreciate a relativistic view of the universe and ask
further questions such as, mathematically, how do we justify rejecting the negative result of taking the square root in the final
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stages of deriving vAB from KA in section 3. The reader can start thinking about what it means to have the negative result rather
than the positive - or if the two could somehow be equivalent.
It may serve well to mention, that there is plenty more to be said about SR and relativity. Since this paper had to be condensed,
many important concepts fell through in our light exploration of the subject. For this reason, readers are encouraged to view the
reference section for good reading material. Ultimately, we hope this paper ignited your curiosity to go further.
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