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Abstract: Human faces are a core part of our identity and expression, and thus, understanding
facial geometry is key to capturing this information. Automated systems that seek to make use of
this information must have a way of modeling facial features in a way that makes them accessible.
Hierarchical, multi-level architectures have the capability of capturing the different resolutions of
representation involved. In this work, we propose using a hierarchical transformer architecture as a
means of capturing a robust representation of facial geometry. We further demonstrate the versatility
of our approach by using this transformer as a backbone to support three facial representation prob-
lems: face anti-spoofing, facial expression representation, and deepfake detection. The combination
of effective fine-grained details alongside global attention representations makes this architecture an
excellent candidate for these facial representation problems. We conduct numerous experiments first
showcasing the ability of our approach to address common issues in facial modeling (pose, occlusions,
and background variation) and capture facial symmetry, then demonstrating its effectiveness on three
supplemental tasks.

Keywords: face geometry; hierarchical transformers; anti-spoofing; facial expression recognition;
deepfakes

1. Introduction

Facial representation has always been a core part of computer vision. One of its
applications, face detection, was one of the most successful image analysis tasks in the early
years of computer vision [1]. Since then, facial representation applications have grown
to include many security [2,3], forensics [4], and even medical [5] applications. Facial
representation efforts continue to motivate innovations in the computer vision field such
as federated learning advancements [6-8] or the introduction of angular softmax loss [9].
The face is a core element of identity and expression. People are identified primarily
through their faces and communicate verbally and non-verbally through facial movements.
Correspondingly, it is critical for machines attempting to interact with people to have an
effective way of representing their faces.

Unexpected changes to the environment often have an adverse effect on computer
vision tasks. Implementations that have vastly different background conditions from train-
ing data often generalize poorly [10]. These conditions can include variations in occlusion,
lighting, background, pose, and more. Mitigating this by collecting target domain data
is often costly or impractical. As a result, many efforts have been made to look for ways
to mitigate these conditions without additional data. There have been more generalized
attempts to address this domain shift [11] as well as specific models and methods tailored to
specific tasks.

As a result of these challenges, many authors have worked to overcome these difficul-
ties in various facial tasks [12-16]. Facial geometry is a representation of the physical layout
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of the face. This is a complex 3D structure that has some unique properties and can be
simplified and represented in a variety of ways. Facial ‘keypoint” detection is the process of
detecting the location of various important parts of the face. The layout of these keypoints
can be used to modify, reconstruct, or identify a face [17-19], whereas keypoint-based
modeling can be useful for many tasks such as facial expression recognition [20], the lack of
fine-grained pixel information makes it unsuitable for such tasks as spoofing or deepfake
detection. Another approach uses 3D morphable models to construct a facial geometry
representation, where a given face is represented by a combination of various template
models [17,21-23]. These models can be further modified for desired deformations. How-
ever, morphable models have difficulty when encountering occluded or angled views of
the face [24]. Although not fully symmetric, most faces have a certain degree of symmetry
that can be exploited for facial representation tasks. This can be used to compensate for
occluded information [25] or even to perform recognition with half faces [26]. We seek to
capture facial geometry to create a consistent representation irrespective of these changes.
Three use cases that can be used to further evaluate the capability of our facial geometry
learning are face anti-spoofing, facial expression recognition, and deepfake detection.

The identity component of facial representation corresponds to face recognition and
re-identification tasks. These tasks are extensively integrated into biometric security sys-
tems [27]. These systems represent an effective method of limiting access based on identity
without the need or vulnerability of physical or password-based systems, whereas current
face recognition methods generally operate at a high level of accuracy [28], these systems
present a vulnerability to spoofing attacks. Spoofing attacks come in many forms, but the
most common are photo presentation, video replay, and mask attacks. The reason for this
vulnerability is that face recognition systems are trained to differentiate between different
identities, not to identify false presentations. If an adversary can use a presentation attack
to fool systems, the security of face-recognition-dependent systems may be compromised.
The threat of these attacks has motivated many works of research into the field of face
anti-spoofing (FAS); whereas the facial domain is the same, the focus for FAS shifts from a
global identity to looking for subtle liveness cues such as fine-grained texture [29] or style
information [12].

In addition to recognizing the person’s identity, facial representations are important
for understanding the state of a person. People communicate in many more ways than just
the words that are spoken. The expressions we present while interacting shape the context
and meaning of the words we speak. To understand communication better, computer
systems must learn to capture human emotions through expression. In addition, facial
expression recognition (FER) can be used for certain medical diagnosis purposes [30,31].
The understanding of human emotion is heavily tied to multiple areas of the face: eyes,
mouth, and between the eyes [32]. A facial representation that understands these expres-
sions must be able to capture these small details while having a larger structure to localize
and relate these smaller features.

Human perception can be attacked with facial manipulation techniques. This in-
corporates many techniques through procedures such as face swapping and expression
manipulation. We will refer to this category of attacks as deepfakes. Deepfakes present a
substantial threat to various facets of our lives. False criminal or civil accusations can be
made with fabricated video as proof. Conversely, the utility of video evidence deteriorates
if false videos cannot be detected. Similarly, elections can be swayed by conjured footage of
politicians engaged in incriminating activity. Detection of these attacks can be done through
the examination of regions of abnormal distortion as well as inconsistencies in the face.
When facial manipulation algorithms replace or modify facial identities or expressions,
there are regions that span the gap between the modified content and the original content.
Deepfake algorithms are trained to make these regions as realistic as possible, but such
images are still artificial, generated content with the potential for an unnatural distribution
of pixels. Examining the image with sufficient resolution makes it possible to detect the
artifacts left by deepfake manipulations.
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We propose a deep-learning facial representation architecture that uses a multi-level
transformer model to capture fine-grained and global facial characteristics. To capture the
physical characteristics of the target in each sample, our proposed method uses a Swin trans-
former [33] which achieves state-of-the-art results in image classification tasks. The model
yields facial embeddings which are used to perform various face-related tasks. Transformer
architectures use attention mechanisms to represent relationships between model inputs.
These architectures are effective modeling tools, but they suffer from resolution trade-offs
due to their large size. The shifted window approach of our selected backbone addresses
this problem allowing for better fine-grained modeling which is key for face representation
tasks. Figure 1 shows a high-level representation of the proposed hierarchical architecture
compared to a standard ViT transformer model. To further validate this capability, we
apply this solution to three facial representation tasks: face anti-spoofing, facial expression
recognition, and deepfake detection. Our performance studies show that we are able to
robustly detect spoofing, deepfake attacks, and human facial expressions.

Hierarchical Model Standard Visual Transformer
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Figure 1. Comparison of the hierarchical model (left) to standard visual transformer such as ViT
(right). In the hierarchical model, the lower layers are embedded as a greater number of smaller
patches. Attention for these patches is only calculated within the local patch windows. As the image
embedding progresses through the model, patches are gradually merged, and patch windows are
expanded to allow for global representations.

Our contributions are summarized as follows:

*  We propose a hierarchical transformer model to learn multi-scale details of face
geometry. We structure this model to capture both fine-grained details and global
relationships.

*  We validate the geometry learning capability of our facial representation approach
with various tests. This demonstrates its resilience to rotation, occlusion, pose, and
background variation.

*  We apply and validate the model on three facial representation use cases. The three
tasks, face anti-spoofing, facial expression recognition, and deepfake detection, high-
light the robustness and versatility of facial geometry representation.
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2. Related Work

Various early works involving facial representation used Haar-like features for face
detection. The Haar sequence, proposed by Alfred Haar [34], forms the basis for Haar
wavelet functions. These functions, which take the shape of a square wave over the unit
interval, have been used to detect transitions such as tool failures [35]. Papageorgiou et al.
and others [36-38] use this property on images to find boundaries for object detection. Viola
and Jones [39] use a similar technique with a cascaded model for face detection. Various
adaptions have been made on this such as by Mita et al. [40] which addresses correlated
features and Pham et al. [41] which uses statistics for feature selection.

As convolutional neural network (CNN) models permeated computer vision, various
CNN solutions for facial representation emerged [42-45]. The increased depth and number
of parameters along with CNN strengths of locality and translation invariance have facili-
tated more sophisticated tasks such as re-identification and face recognition. The increased
depth of CNNs allowed for more robust and sophisticated tasks, but tracing gradients
through a large number of layers created an exploding/vanishing gradient effect. This
effect limited gradient transmission to deeper layers, obstructing training and convergence
of models. The introduction of residual connections [46] between layers alleviated this
issue and allowed for deeper, more sophisticated ResNet architectures. However, even
with this improvement, CNN:ss still suffer from some drawbacks. Their pooling layers can
be lossy, and the convolutional architecture makes relationships between distant image
regions more difficult to model.

In addition to their success in NLP, transformers have shown promising results for
image processing. The capability to model image relationships with attention allows the
model to focus on key regions and relationships in the image. It also better facilitates the
modeling of relationships between more distant image regions. The visual transformer
(ViT) [47] achieved state-of-the-art performance on image classification tasks. Due to
the quadratic growth of attention parameters based on the input size, Dosovitskiy et al.
structured ViT to accept relatively large patch sizes of 16 x 16. Various modifications
have been made to utilize visual transformers for tasks such as object detection [48-50].
Specifically, two problems have emerged to expand the capability of visual transformers.
The first is how to create different-scale feature maps to facilitate tasks such as segmentation
and detection. The second is how to attend to fine-grained details without losing global
relationships or overly increasing the number of parameters. The solution to both of these
problems has appeared in multi-level models. Three such models [33,51,52] have appeared
and each performs the following tasks in different ways. They attend to fine-grained
information locally, while attending to global relationships on a coarser scale.

Structure learning problems in images require learning information from granular-
level data. Transformer models provide fine-grained representation learning with attention
mechanisms. The quadratic cost of attention parameters inspires many solutions to address
the large size and unique challenges of images [53-57]. The problem distills to effectively
modeling fine-grained details while preserving global relationships.

One of the simplest and most common adaptations has been the ViT model [47]. This
model splits an image into 256 patches and feeds each patch as an input into a transformer
encoder. The large patch sizes needed to limit the number of attention parameters de-
teriorate the model’s effectiveness on finer tasks such as small object detection or FAS.
The Swin transformer [33] is able to shrink the size of these patches by limiting attention to
local areas. It then achieves global representation by shifting the boundaries of these areas
and gradually merging patches together. These smaller patch sizes make it ideal for more
fine-grained tasks as it allows the model’s parameters to attend to smaller details.

Much of the recent literature on FAS has focused on building models that achieve
domain generalization, attack type generalization, or both. Jia et al. [13] use an asymmetric
triplet loss to group live embeddings from different domains to facilitate consistent live
embeddings in new domains. Wang et al. [58] use CNN autoencoders with decoders to
separate the embedding of live and spoof features to different modules. Wang et al. [12]
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also use CNN networks to separate style features and perform contrastive learning to
suppress domain-specific features; whereas CNN architectures can capture locality in-
formation well, their global representations are limited. Similarly, certain methods such
as PatchNet [29] forgo global information entirely and opt to focus anti-spoofing efforts
on texture information from small patches of an image. On the other hand, there are a
couple of anti-spoofing methods that make use of transformer architectures for FAS tasks.
George et al. [59] use pretrained vision transformer models for zero-shot FAS capabili-
ties. Similarly, Wang et al. [60] use a transformer model modified to capture temporal
information for spoof detection. The large patch sizes of ViT [47] limit the fine-grained
representation of these ViT-based models.

The challenge of facial expression recognition (FER) comes from two directions. First,
models must ensure expression recognition is not tied to the identity of the individual with
the expression. Second, models must learn to navigate intra-expression variance and inter-
expression similarities. Zhang et al. [61] separate the identity of the face representation
from the facial expression by using a ResNet-based deviation module to subtract out
identity features. Ruan et al. [62] use a feature decomposition network and feature relation
modules to model the relationships between expressions and mitigate the challenges related
to intra-expression and inter-expression appearance. Similar to previous models, these
models lack global connections and are therefore limited in their corresponding modeling
ability. Xue et al. [32] use a CNN network to extract features and relevant patches and
then feed them through a transformer encoder to model relations between the features and
classify the image. Hong et al. [63] use a video-modified Swin transformer augmented with
optical flow analysis to detect facial microexpressions. The success of this approach on that
subset of expression recognition is promising for the broader use of multi-level transformer
models in modeling facial expressions.

Zhao et al. [64] look at the deepfake detection problem as a fine-grained texture
classification problem. They use attention with texture enhancement to improve detection.
Their work sheds light on the utility of effectively modeling fine-grained image details when
performing deepfake detection. This emphasis aligns with multiple other approaches which
rely on fine-grained artifacts for detection [65-67]. In contrast, Dong et al. [68] compare
identities of inner and outer face regions for their detection. These competing needs
highlight the value of a combined representation of fine-grained and global relationships.
There has also been some research that relates deepfake detection to expression detection.
Mazaheri and Roy-Chowdhury [69] use FER to localize expression manipulation, whereas
Hosler et al. [70] use discrepancies between detected audio and visual expressions to
detect deepfakes. These correlations indicate that a similar model and approach may be
appropriate for both problems; whereas Ilyas et al. [71] performed a combined evaluation
on the audio and visual elements of a video with a Swin transformer network, it remains to
be seen if the task can be performed effectively solely on image elements.

3. Proposed Method

Facial geometry consists of both smaller local details and larger shape and positioning.
To model these well, we implement a multi-level transformer architecture that captures
fine-grained details at lower layers and regional relationships at higher layers. These
layers are connected hierarchically to combine these features into a complete representation.
The structure of the hierarchy is determined by two factors: model depth and window
size. The model depth is composed of multiple transformer blocks divided by patch
merging layers as shown in Figure 2. Each transformer block consists of a multi-headed
self-attention (MSA) layer and a multi-layer perceptron each with layer normalization
and a skip connection. The increasing scale of these layers captures different levels of
geometry features throughout the model. The window size is the number of inputs along
one dimension which are attended to by each input. For example, with a window size
of 7, each input would attend to a 7 x 7 window of inputs. In addition, the window size
hyperparameter also determines the number of windows at each layer by virtue of it
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dividing up the number of inputs at each layer. Thus, if a layer with window size 7 receives
a 56 x 56 input, it would contain 64 attention windows arranged in an 8 x 8 pattern. This
change in window count affects how quickly the patch merging process achieves global
attention since the number of windows is quartered at every patch merging stage. Figure 3
visualizes the feature scales using a patch size of 7.

— , Shifted | ) Shifted
Patching |: Swin . Swin )
. Window || Patch Window
Input and Linear > Transformer | =1 K Transformer
; Transformer |i| Merging Transformer |
Embedding |: Block : Block !
Block Block
Patch
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; Shifted Swin Shifted Swin
Output || Window /| Patch Window
N [ Transformer [« R [+ Transformer [«
Embedding |:| Transformer | Merging Transformer ]
; Block Block
Block Block

x9

Figure 2. Diagram of the architecture of transformer backbone. Each transformer block has its
attention parameters partitioned by windows as shown in Figure 4.

As described by Vaswani et al. [72], MSA can be defined by the expression
MSA(Q, K, V) = Concat(heady, . .., head),) W® (1)

where
head; = Attention(QWiQ, KWK, Vi) )

Q, K, and V refer to the query, key, and value vectors derived from each input by matrix mul-
tiplication. Each W variable represents a different set of weights learned during training.
For each of the facial geometry tasks, the initial embeddings are created by dividing
the input image into 4 x 4 patches. All three channels of the pixel values for these patches
are concatenated into a 48-length vector. Following Dosovitskiy et al. [47], this vector is
embedded linearly and given a positional encoding according to this equation:

zZ0 = [xlE; xE;...; XNE] + Epos 3)

Each x term represents one element of the patch pixel value vector, E is the linear embedding
matrix, Eos is the positional encoding term, and z, represents the final patch embedding.
After the linear embedding and positional encoding, these patches are input into the
transformer. The attention is localized to a M x M window of patches, where M is the
window size. These windows are connected through a process in which window borders are
shifted in subsequent layers. This places previously separated nearby patches into the same
window, allowing for representation across patches, as shown in Figure 4. As the features
move through the layers, these patches are gradually merged, reducing the resolution of
the features while broadening the scope of the local windows. This continues until the
entire representation fits within one window. Algorithm 1 breaks down this process in a
step-by-step manner. Finally, the embedding is sent through a classification head according
to the task required.
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At the lowest layers, the
model learns fine-grained
geometry features such as
the shape of the eye.

As patch embeddings are merged together,

the model learns the combined geometry

of various facial features such as the This merging continues until the entire face is present in one window which can learn the
relation between the eye and nose. global geometric relationships of the face.

Figure 3. The hierarchical architecture allows the different layers to learn different parts of the facial
geometry. The illustration is based on a window size of 7.

Before window shift After window shift

Figure 4. Because of localized attention windows, a mechanism is needed to represent fine-grained
relationships across window borders. Window shifting provides this mechanism. By shifting the
attention windows borders every other layer, we can model the relationships between each image
patch and all nearby patches.

3.1. Use Cases

For the face anti-spoofing problem, we hypothesize that spoof-related features can
be found in both the fine-grained details and the global representations. The fine-grain
details include unnatural texture, reflection, or lighting. Global cues involve unnatural
bowing or skew. We use our hierarchical architecture as a backbone for binary classification.
The detailed representation layers give us the capability to detect based on fine cues,
whereas the coarser layers enable the discovery of global spoofing cues. For training and
inference, live and spoof images are sampled from their corresponding videos and classified
through the model.
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Algorithm 1 Face geometry representation using hierarchical shifted windows architecture

Input: P ={pl,p2,...,p"} where p is the nth 4 x 4 patch of image x.
= learned linear embedding matrix.
Eyos = positional encoding matrix.
MSA, SW-MSA = multiheaded self-attention and shifted window MSA.
MLP = multi-layer perceptron
N = layer normalization
Output: Face Representation Classification

1: forp € Pdo > For each patch
2: p ﬂatten(p)

3 p pfEPIE..pPE

4: pp+ Epos

5: end for

6: X P

7: for block pair in transformer blocks do

8: X + MSA(LN(X)) + X

9: X <+ MLP(LN(X)) + X
10: X < SW-MSA(LN(X)) + X
11: X < MLP(LN(X)) + X

If at block pair 1, 2, 11:

12: forxy;...xp N € X do
13: Xmn 4= MELge(Xam,2n, X2m+1,2ns X2m,2n+1s X2m+1,2n+1)
14: end for
15: end for

Similarly, deepfake detection also makes use of these diverse layers. Deepfake cues
can be found both in fine-grained textures as demonstrated by Zhao et al. [64] or in larger
representations, as shown by the regional identity discrepancy work of Dong et al. [68].
As with the FAS problem, we use a classification of image frames with our hierarchical
architecture to detect deepfake attacks.

Facial expression recognition is somewhat different as most of the clues come from
certain key regions (eyes, mouth, brow) [32]. However, these regions are not always located
exactly in the same location, and thus localizing representations are needed. Furthermore,
the combination of regional expressions is needed as different expressions can exhibit
similar facial movements [62]. By using the aforementioned hierarchical transformer in
conjunction with a multi-label classifier, we can use the various layers of features together
to address these detection challenges.

3.2. Training

For the FAS, FER, and deepfake experiments, we fine-tuned the Swin transformer
using binary and multi-class cross-entropy loss with one additional fully connected layer.
Cross-entropy is an entropy-based measurement of the difference between two inputs.
Specifically, it refers to the amount of information required to encode one input using the
other. The cross-entropy loss for a given class n can be found by the equation

_ eXpXpc

(4)
Ez 1 exp xn 1

=- 2 welog ———"—
=1

where x, y, w, and C represent the input, target, weight, and number of classes, respectively.
For binary problem:s, this simplifies to

ln = —wn[yn -log xn + (1 — yn) - log(1 — xp)] ®)

We selected the AdamW [73] optimizer with 81 = 0.9, B2 = 0.999 and weight decay = 0.01
for all training purposes.
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4. Experiments

We test the symmetry and robustness capabilities of our facial representations with
multiple experiments. The effect of pose and occlusion variance is tested by comparing the
embeddings using one quantitative and one qualitative experiment. We also perform one
separate experiment measuring the effect of background variation. Then, we examine the
capability of our facial geometry modeling on three use cases, FAS, FER, and deepfake de-
tection. Finally, we further explore and test the limits of the symmetry modeling capability
through two occlusion-based experiments.

4.1. Machine Specification and Parameters

Experiments were performed on a Tesla V100-SXM2 GPU with the assistance of up to
16 Intel(R) Xeon(R) Gold 6152 CPU @ 2.10 GHz processors. For embedding experiments,
and pretraining for additional experiments, we used a model pretrained on facial recogni-
tion from the FaceX-Zoo suite [74]. This locked the layer count to 2, 2, 18, 2, and the window
size to 7. When training, we varied the number of frozen pretrained layers, the learning rate,
and the number of training epochs. Testing was performed using train/test splits either
built into the dataset (SiW) or created. Deepfake detection experiments were performed
with 150 frozen layers, with a learning rate of 0.0001, and a training time of 40 epochs.
Facial expression recognition was performed with 200 frozen layers, a learning rate of 0.001,
and 30 training epochs. All SiW protocols were performed with a learning rate of 0.0001.
Protocol 1 used 200 frozen layers and 10 epochs, protocol 2 used 200 frozen layers and
30 epochs, and protocol 3 used 200 frozen layers and 20 epochs.

4.2. Data Preparation

Pose and occlusion variance experiments were performed using selected images
sampled from the SiW dataset [75] because of the accessibility of varied facial poses. Details
of the selected frames are available in the code. Background variation experiments were
performed using selected images sampled from the OULU-NPU datset [76], due to the
variation in the image backgrounds.

For the use case of the facial representation capabilities of our approach, we tested our
approach on three additional face-related tasks: face anti-spoofing, deepfake detection, and
facial expression recognition. For the face anti-spoofing task, we used the SiW dataset [75].
SiW consists of 4478 videos of 165 subjects divided between live and spoofing videos.
For the deepfake detection task, we tested the FaceForensics++ (FF++) dataset [77]. FF++
has 9431 videos consisting of 8068 attack videos as well as 1363 benign videos. The at-
tack videos are split into five categories based on the technique used to generate them:
DeepFake, Face2Face, FaceShifter, FaceSwap, and NeuralTextures. Finally, for the facial ex-
pression recognition task, we used CK+ dataset [78]. The CK+ dataset contains 593 emotion
frame sequences, but we only use the 327 sequences which have labels associated with
them. These images exhibit 8 emotion categories: neutral, anger, contempt, disgust, fear,
happiness, sadness, and surprise. Details of these three datasets can be found in Table 1.

Table 1. Dataset descriptions: * Recorded actors only. YouTube video count not included.

Dataset  Subjects  Dataset Type # Samples  Distribution

Siw 165 FAS 4620 1320 Live 3300 Spoof

FF++ 26 * DeepFake Detection 9431 1363 Live 8068 Manipulated
CK+ 123 FER 10,735 8 Expression Categories

For testing on the video datasets, four frames were selected at random from each
video. Each sequence in the CK+ dataset progresses from a neutral expression to the most
expressive. The final three frames of each sequence were selected for the corresponding
emotion category, and the first frame was used as the neutral category. The dataset was
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divided into train and test sets with a roughly 70/30 split. The frames were cropped to
each subject’s face using the facial detection and cropping code in the FaceX-Zoo [74] suite.
Detecting and cropping the face with this method narrows the scope of the problem to
images with a single centered face image. This helps reduce the effect of multiple objects in
the input image. The resulting images contained 224 x 224 pixels.

4.3. Results

To evaluate the pose and occlusion variance quantitatively, we compare the cosine
similarity of four embeddings. The first embedding is one generated from an ordinary
frontal image of a person. The second embedding comes from an askance image of the
same person’s face. The third is from the original face with the occlusion mask placed over
one eye. For comparison, we select the fourth image from a different person. The simi-
larity among these embeddings is presented in Table 2. Note the large numbers relating
images of the same person compared to that of another individual; whereas the askance
embeddings show some variance from the originals, it is far less than the comparison to
another individual.

Table 2. Correlation matrix comparing average embedding distance between individuals, including
occlusions and varying pose. Note the high correlation between representations of the same person
and the low correlation between different people.

Subject Askance Occluded Second Subject

Subject 0.0995
Askance 0.109
Occluded 0.6694 0.0944
Second Subject 0.0995 0.109

For a qualitative measure of pose and occlusion variance, Figure 5 presents some
examples from these occluded and askance samples. Figure 6 gives a tSNE visualization of
the closeness of the intra-person embeddings for these images compared to the inter-person
distances. Here you can see groupings of points representing original and alternative
images of the same person labeled as the same color. The alternatives are produced either
by occluding the original image (represented by the +) or selecting an image with a different
pose (represented by x). The grouping of intra-person embeddings and the separation
of inter-person embeddings demonstrate the robustness of our approach to occlusion
and pose.

Table 3 shows a comparison between embeddings across individuals and backgrounds.
The high correlation between embeddings generated from the same person with differ-
ent backgrounds shows the robustness of the proposed approach to background varia-
tion. The vastly lower correlation to embeddings from other people of the same back-
ground confirms its ability to filter out background information when performing facial
geometry modeling.

Table 3. Testing robustness to changes in the background. Compares the cosine similarity of
embeddings from each image to itself, an image from the same person with different background,
an image from a different person with the same background, and an image from a different person
and background. Used a selection of 60 images from 20 different actors in 3 background scenes.
Each score represents the average of the comparisons taken. Images were taken from the OULU-
NPU dataset [76].

Cosine Similarity

Self 1
Different Background 0.76
Different Person 0.12

Different Person and Background 0.11
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Figure 5. We test facial representations and symmetry capability with various modifications such as
occlusions and varying facial poses. Here are examples of individuals both with eye occlusions as
well as askance facial poses.
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Figure 6. tSNE of facial embeddings from 69 individuals to show robustness to pose and occlusion.
Frontal face images are represented with dots, askance images with +, and occluded images with
x. Images from the same individual are shown as the same color (with some color reuse due to a
limited color palette). Note the clustering of points relating to single identities regardless of occlusion
or pose.
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Table 4 compares our results with existing works on deepfake and expression recogni-
tion. Table 5 compares anti-spoofing capability on the three protocols of the SiW dataset.
Protocol 1 tests pose invariance, training on frontal views, and testing on a variety of poses.
Protocol 2 performs a four-part leave-one-out strategy for the replay device. Protocol 3 tests
the capability of unseen attack types by training on either print or video attacks and testing
on the other.

Table 4. Comparing AUC results (left) on FF++ [77] dataset and accuracy results (right) on CK+ [78]
dataset against existing methods. Our approach shows its effectiveness in both deepfake detection
and facial expression recognition.

Method AUC Method Accuracy
MADD [64] 0.998 Ruan et al. [62] 0.995
Nirkin et al. [79] 0.997 PPDN [80] 0.973
Face X-ray [81] 0.984 IPA2LT [82] 0.924
Chen et al. [83] 0.984 DeRL [84] 0.974
SPSL [85] 0.969 FN2EN [86] 0.986
SMIL [87] 0.968 DDL [88] 0.992
Ours 0.943 Ours 0.957

Table 5. Comparison on SiW protocols for face anti-spoofing task. Protocol 1 tests anti-spoofing with
unseen poses, protocol 2 tests it with varying replay mediums, and protocol 3 tests on unseen attack
types (print vs. video). Our facial geometry representation is sensitive enough to transfer to fine tasks
such as anti-spoofing.

Protocol Method APCER (%) BPCER (%) ACER (%)
ResNet(CeFA) [89] 1.03 0.83 0.93
Yang et al. [90] - - 0.30
Wang et al. [91] 0.64 0.17 0.40
1 Wang et al. [58] 0.00 0.00 0.00
PatchNet [29] 0.00 0.00 0.00
Wang et al. [60] 0.00 0.00 0.00
Ours 0.96 0.67 0.82
ResNet(CeFA) [89] 0.20 +0.11 0.25 +.022 0.23 +0.15
Yang et al. [90] - - 0.15+0.05
Wang et al. [91] 0.00 +0.00 0.04 +0.08 0.02 +0.04
2 Wang et al. [58] 0.00 £ 0.00 0.00 £ 0.00 0.00 +0.00
PatchNet [29] 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
Wang et al. [60] 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
Ours 1.73+1.29 1.60 +0.86 1.67 +0.81
ResNet(CeFA) [89] 6.35 £ 3.67 6.72 +3.75 6.57 +3.46
Yang et al. [90] - - 5.85 +0.85
Wang et al. [91] 2.63+3.72 292 +3.42 2.78 +3.57
3 Wang et al. [58] 4.77 £5.04 244 +274 3.58 +3.93
PatchNet [29] 3.06 +=1.10 1.83 +0.83 2.45 +0.45
Wang et al. [60] 2.69 + 2.05 2.67 +2.00 2.68 +2.03
Ours 16.81 + 1.66 5.03 +4.24 10.92 +1.29

5. Discussion
5.1. Strengths

The experiments have shown that a hierarchical transformer architecture learns a
robust facial geometry representation. As shown in Figure 7, we prepare our approach to
give a consistent performance with different poses and occlusions. The pose and occlusion
experiments demonstrate that our model is robust against missing information and that it
can extrapolate information using facial geometry representations. Similarly, the occlusion
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experiments demonstrate that it can use facial symmetry to work around missing informa-
tion to form a consistent representation. To explore the symmetry and occlusion robustness
of our approach, we performed a gradual horizontal occlusion of an image and captured
the embedding outputs. Figure 8 graphs the cosine similarity between the embedding of
the original and the occluded image as occlusion increases. The ability to effectively use
symmetry to model facial geometry is shown by the stark contrast before and after the
50% occlusion mark. This is validated by a similar experiment performed with vertical
occlusion in Figure 9. When symmetry is not present, the similarity drops far more rapidly
than in the previous experiment. This shows the role that symmetry plays in accounting
for missing facial geometry information.
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Figure 7. We structure and train our model to be robust to variance in pose, lighting, and occlusion.
Occlusions and expressions are illustrated in (a), and different Yaw, Pitch, and Roll variations are
illustrated in (b).
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Figure 8. Test of the limit of occlusion robustness and symmetry capture capability. The embeddings
of an original image and an occluded image are compared at various levels of horizontal occlusion.
The y-axis represents the cosine similarity between the embeddings whereas the x-axis represents the
percent of the image occluded
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The additional use cases further highlight the versatility of the approach. Anti-
spoofing, expression recognition, and deepfake detection examine more specialized and
localized regions. The demonstrated capability on these tasks in addition to the global iden-
tity representation shows the hierarchical transformer’s ability to pivot to more specialized
facial representation applications without much alteration.

0.8 1

o
o

o
~
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Image Occlusion (%)
Figure 9. Testing gradual vertical occlusion robustness. Note the cosine similarity falls off far sooner
than the horizontal occlusion experiment

5.2. Limitations and Future Work

The third SiW protocol for the FAS task showed comparatively poor results. This pro-
tocol involves testing on unseen attack types (print vs. video). This domain generalization
problem is a common and difficult problem that often requires specialized model augmen-
tation to address it. Investigating how the hierarchical transformer can be augmented to
deal with this domain generalization problem is a topic of further study.

The facial geometry modeling of this method is generated from a single image or video
frame. This speeds up computation and makes the model usable with a larger variety of
inputs. However, it loses the ability to capture time-related facial features such as motion.
Various facial representation tasks involve motion that could be useful for classification,
such as the movement of the mouth or eyes in expression recognition. To extend the
functionality of this method to capture these details, our approach could be expanded to
include temporal features in its decision-making. It may be worth exploring the merits
of either a direct temporal expansion of the model or some augmented approach such as
optical flow.

6. Conclusions

In this paper, we proposed a hierarchical architecture for capturing facial geometry
features. This model’s ability to model both fine-grained details and global relationships
makes it versatile in addressing a wide range of facial representation tasks. We demon-
strated its symmetry and robust modeling capability through a series of experiments. First,
we compared embeddings of various circumstances (occlusions, pose variation, and dif-
ferences in the background). The consistency of the embeddings generated demonstrated
the robustness of our approach to disturbances. Next, we tested symmetry modeling with
a sliding window experiment. The sharp contrast between occluding less than half the
face and more than half illustrated the facial symmetry modeling capabilities. Finally,
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we further demonstrated the flexibility of the approach by applying it to various facial
representation tasks. These tasks, anti-spoofing, facial expression recognition, and deepfake
detection, showcase the different ways this facial geometry modeling can be applied to
problems. The results on anti-spoofing and deepfake detection showed its ability on fine-
grained details whereas facial expression recognition demonstrated its ability on broader
facial representation.
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