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Abstract:  With increasing use of photovoltaic (PV) power generation by utilities and their
residential customers, the need for accurate intra-hour and day-ahead solar irradiance forecasting
has become critical. This paper details the development of a low cost all-sky imaging system
and an intra-hour cloud motion prediction methodology that produces minutes-ahead irradiance
forecasts. The Skylmager is designed around a Raspberry Pi single board computer (SBC) with a fully
programmable, high resolution Pi Camera, housed in a durable all-weather enclosure. Our software
is written in Python 2.7 and utilizes the open source computer vision package OpenCV. The Skylmager
can be configured for different operational environments and network designs, from a standalone
edge computing model to a fully integrated node in a distributed, cloud-computing based micro-grid.
Preliminary results are presented using the imager on site at the National Renewable Energy
Laboratory (NREL) in Golden, CO, USA during the fall of 2015 under a variety of cloud conditions.

Keywords: solar forecasting; global horizontal irradiance; single board computer; optical flow;
cloud motion vectors; ray tracing; micro-grid

1. Introduction

To enable higher renewable energy penetration into the world electric power grid with high
reliability, variable resources such as photovoltaic (PV) power plants and wind farms will require
development of new technologies. In the case of PV, it will become necessary to accurately forecast
the Global Horizontal Irradiance in time and space to manage variability [1]. Novel technologies
being developed at the University of Texas at San Antonio will integrate distributed, High Dynamic
Range (HDR) sky imaging systems and feature-based cloud advection models to produce accurate
geospatial high-resolution irradiance forecasts in the intra-hour time scale. The knowledge of predicted
solar irradiance minutes-ahead can allow inverters to intelligently regulate power into the grid,
even during intermittent cloudy conditions with attendant ramping events, thereby allowing the
utility to satisfy constraints for curtailment, frequency regulation, and active power control. This task
involves integration of new hardware for data acquisition and software for image processing, using
both physics-based and statistics-based machine learning strategies for intelligent cloud tracking
and prediction.

A recent report from the California Independent System Operator Corporation (CAISO) and the
North American Electric Reliability Corporation (NERC) [2] states that California has set a target of
33% renewable electric generation in utility portfolios by the end of the decade. Achieving this goal
will require changes to existing practices of balancing supply and demand by CAISO. In addition,
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as the popularity of residential rooftop solar grows, a better understanding of distributed PV power
generation and its interconnection with the environment and load is needed. Improvements in
renewable energy forecasting will allow system operators to procure energy and ancillary services
in the intra-hour to day-ahead time frames, thereby minimizing costs and improving service to their
customers. Satellite and numerical weather prediction are the preferred methods [2] for longer duration
solar forecasting (one hour to a few days). In the case of intra-hour or site-specific forecasts, the use of
satellite data is uncommon due to the infrequent sampling interval (30-60 min) and the low image
resolution, when compared to sky imaging cameras that acquire high resolution images at much
shorter intervals (1-15 s).

1.1. UTSA Skylmager

The UTSA Skylmager is the culmination of three years of work by the authors and former
graduate students Jaro Nummikoski and Alejandro Camargo. The path was evolutionary and several
bifurcations occurred along the way. Initially, it was thought that existing hardware would suffice to
meet our solar forecasting needs [3] and our emphasis was on software. When it became apparent
that new hardware was needed, the UTSA Macroscope was conceived [4]. While a significant advance
in technology, a price tag in the tens of thousands of dollars precluded widespread deployment in
a distributed environment. As solar power moves from megawatt generating plants to distributed
residential rooftop arrays, there will be an increasing need for active grid management [5] which entails
accurate forecasting of the ramps in power output caused by low level cloud movement. In addition,
there are islanded micro-grids and situations in Africa and Latin America [6] where solar may well be
the dominant power source. There is a pressing need for a low cost all-sky imager that provides GHI
prediction and micro-grid control [7-9] in real time. Enter the ubiquitous ARM-architecture chip that
is found in a cell phone. A single board computer, such as the Raspberry Pi or the Hardkernel Odroid,
runs the Linux operating system, takes high-resolution images, allows for a variety of external sensors
to be added through the general purpose input-output (GPIO) pins, and can fill a significant role in the
Internet of Things (IoT), all for less than $50. We decided to make the SBC a central theme of the new
UTSA SkyImager [10]. The components of the Skylmager described in this paper cost close to $500,
mainly due to the security camera enclosure. However, work is currently underway on a leaner model
with a price tag under one hundred dollars.

In this paper, we introduce a novel technology that significantly expands capabilities for
forecasting intra-hour GHI and distributed PV power. The primary focus is the newly designed,
low cost all-sky UTSA Skylmager (patent pending) shown in Figure 1a. It was deployed at the
National Renewable Energy Laboratory in Golden, Colorado, as shown in the satellite photo in
Figure 1b. In terms of hardware, the Skylmager is designed around a Raspberry Pi SBC with a
fully programmable, high resolution Pi Camera, housed in a durable all-weather enclosure. Our
software is written in Python 2.7 and utilizes the open source computer vision package OpenCV
[11,12]. The Skylmager can be configured for different operational environments and networks, from a
standalone edge computing model to a fully integrated, distributed system utilizing cloud-computing.
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Figure 1. (a) UTSA SkyImager deployed on the rooftop of the ESIF building at The National Renewable
Energy Laboratory in Golden, CO, USA; (b) satellite photo showing the location of the solar arrays
and imager.

1.2. State of the Art in Solar Forecasting

As PV assumes a larger role in the Smart Grid, accurate solar forecasting will require a network
of low cost, distributed sensors to acquire and process large amounts of image and weather data as
inputs to machine learning algorithms. Existing commercial sky imaging systems often prove to be
too costly or are constrained by the proprietary nature of ancillary software licenses. This has led
several groups to develop their own sky imaging systems for research purposes in solar forecasting.
A large group at UC San Diego [13-16] has done pioneering work in this field. In [17], Coimbra et al.
proposed DNI forecasting models that combined data from a Yankee TSI 880 sky imager with a
hemispherical mirror and Artificial Neural Network (ANN) optimization schemes. The TSI has high
capital and maintenance costs, uses a shadowband mechanism, and requires proprietary software
for image acquisition and transfer. The UCSD Sky Imager or USI is described in Yang et al. [18] and
captures images using an upward facing charge-coupled device (CCD) image sensor from Panasonic
and a 4.5 mm focal length circular fisheye lens. Advantages over the TSI include higher resolution,
dynamic range, and lossless PNG compression. The Universitit Erlangen-Niirnberg [19] used a five
megapixel C-mount camera also equipped with a fisheye lens. Thirions “daemons” algorithm for
image registration was implemented for cloud-motion estimation, not unlike the optical flow described
later in this paper. The paper by West et al. [20] presents a nice overview of solar forecasting research
at CSIRO in Canberra, Australia. They used off-the-shelf IP cameras such as the Mobotix Q24 and the
Vivotek FE8172V, and while inexpensive compared to the TSI, the cost is still in the range of 800 euros.
They used a dense optical flow algorithm to estimate the movement of each pixel, rather than a
feature-tracking strategy. Several groups in China are working on solar irradiance forecasting [21,22],
generally with a TSI, but another uses Geostationary Statellite data [23]. Recent developments in
GOES-R (geostationary satellite with high spatial and temporal resolution) may well make the satellite
approach to minutes-ahead irradiance prediction more attractive.

1.3. Problem Statement and External Inputs

The fundamental problem in short-term solar irradiance forecasting is predicting the location
of shadows cast on PV arrays when low level cumulus clouds come between them and the sun.
This causes a sudden, large drop in power output, called a “ramp”, which lasts until the cloud moves
out of the sun-to-panel path. This process occurs at scales (space and time) that are below the resolution
of numerical weather prediction or machine learning approaches that are applicable to day-ahead
forecasting. Our approach is physics-based in that it determines the current position of the base of
a cumulus cloud, and then extrapolates that position into the future. The model necessarily simplifies
reality as it attempts to capture the dominant causes of ramping. Meteorologists classify clouds into
three levels (low, middle, high), and we consider only low level clouds. The Skylmager only “sees” to
the horizon and cannot predict the arrival of a cold front until it begins to be visible on the horizon.
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Moreover, low level stratus and cumulus clouds can have considerable vertical development. They are
not static objects, but constantly evolving, growing and dissipating with time. Other approaches are
certainly possible. One would be a strategy based upon statistics or machine learning that predicts
the grayscale value of each pixel into the future without trying to track individual clouds or assign
cause-and-effect. This will form an area of future research.

In order to predict cloud movements and make GHI forecasts, our methodology requires several
types of external input data besides the high resolution, 1024 x 768 pixel images acquired from the Pi
camera: current cloud base height (CBH) obtained from ceilometer measurements, true north in image
pixel coordinates, zenith angles of the sun position for the particular time of day and year, and specific
optical properties of the camera and fish eye lens. CBH refers to the distance from the ground to the
base of observed cumulus clouds. These clouds are formed by adiabatic cooling as the air parcel is
lifted, and the CBH is the lifting condensation level from meteorology. These heights are obtained from
a device called a ceilometer, usually located at a nearby city airport where weather observations are
taken at least hourly. Ceilometer data for the NREL site was obtained from the Denver International
Airport using the Internet and the Automated Surface Observing System (ASOS) (see Table 1).

Table 1. Sample data from the METAR Observations for Denver International Airport on 27 October
2015. Time is Mountain Standard (7 h behind UTC) and the heights of cloud bases at the Low, Middle,
and High Levels are in feet above ground level. Note the very low stratus deck at 15:08 MST that
resulted in a special oberservation and was likely caused by a rain shower. The Denver airport is 36 mi
from the NREL site.

Time Low Middle High Time Low Middle High

12:53 7000 18,000 22,000 15:08 200 7000 12,000
13:53 7000 12,000 22,000 15:53 3000 7000 12,000
14:53 8000 12,000 18,000 16:38 7000 12,000 17,000

Zenith angles are determined from NREL’s program SOLPQOS, the solar position and intensity
calculator, with data calculated at 1-min intervals using NREL's latitude and longitude (39.742,
—105.170). This is done at the beginning of each day’s data run. Parameters determined by a camera
calibration are used to correct for the nonlinear distortion caused by the fish eye lens. The angle of
deviation is utilized to rotate and align the image to “True North”. Knowing the CBH and zenith angle
of the sun, the predicted locations of the cumulus cloud base minutes ahead are used together with ray
tracing and a satellite photo of the region of interest surrounding the site, to find the shadows cast on
the ground by those clouds. Figure 2 shows the results of these computations for the NREL complex in
Golden, CO, USA on the morning of 23 October 2015.

11:08

10:51

Figure 2. Forecast cloud shadows from the ray-tracing algorithm in the SkyImager for three times
on 23 October 2015. Shadow-free areas are light against the background, while the dark regions
depict shadows.

2. Materials and Methods

Images are acquired using a Raspberry Pi 2 B (Raspberry Pi Foundation: Cambridge, UK, 2015)
equipped with the Pi Camera. Pictures taken in direct sunlight suffer from overexposure in regions
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close to the sun and underexposure in areas of dark shade. This is because the complementary
metal-oxide semiconductor (CMOS) image sensor (SONY IMX219PQ in the Camera Module V2) lacks
the dynamic range of the human eye. To compensate for this, our software incorporates an exposure
fusion operation [24,25]. Three images at different exposure times are captured and fused together to
produce the HDR image shown in Figure 3a.

Figure 3. (a) fused raw image captured by the Raspberry Pi Camera on 27 October 2015 at 11:23;
(b) transformed image after the distortion caused by the fisheye lens has been removed.

2.1. Functions: Undistort, Crop, Mask, and Segment

The first step in preprocessing a raw image is to remove distortion caused by the fish eye lens.
Due to its very wide field-of-view (>180°), a fish eye lens produces severe nonlinearities, particularly
near its edges. Mathematical transformations can be applied to correct for this distortion, but the
problem is similar to that encountered by the cartographer who desires to map the sphere to a plane.
One must choose the properties of greatest interest to preserve in the transformation—straight lines,
angles, areas, etc.—knowing that others will be sacrificed in the process. The projective transformation
model for a pin-hole camera [26] takes a 3D point (X, Y, Z) in world coordinate space and projects it
to the point (1, v) in pixel coordinates. The matrix—vector equation describing the transformation is
s m’ = A[R[t{M/, which in component form is

u fxr 0 cx| | r2 rz h
s|lv| = 0 fy Cy Tp1 T2 o3 I
1 0 0 1 r31 Tr3p 133 I3

)

e

A is the “camera matrix” of intrinsic parameters, (cx, cy) is the image center, and fy, f; are focal lengths
in pixels. The following equations are used to correct for radial and tangential distortions introduced
by the fisheye lens:

=X (1 +kr? + kzr4) +2pxy + pa(r? +2x'7), ()
v = Y (kP kart) + (P 2y%) + 2paxy. ®)

The calibrateCamera function in the Open Computer Vision package was used to perform the
calibration of the camera using a standard checkerboard test pattern, which is positioned at various
locations in the camera’s field of view. An optimization algorithm is then utilized to find the best fit for
a nonlinear model of the distortion produced by the lens. The results are shown in Table 2.

As seen in Figure 3b, the undistorted image contains extraneous pixels outside the circular disk
of active pixels—an artifact of the rectangular (not square) area of the CCD chip used to acquire the
image. A simple crop produces a square output image with a centered disk of active pixels. A mask is
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then applied to eliminate that part of the image close to the horizon that may contain clutter such as
buildings, trees, and terrain. For accurate forecasting of cloud motion, it is necessary that the image
includes only sky and clouds.

Table 2. Parameters used by the undistort function.

K1 K2 P1 P2 FX FY <X CY
—0.3498788  0.09006071 0.00364227 0.00254462 440 440 478 376

The next step in the image processing sequence is critical: differentiating between clouds and clear
sky. On some days, this is relatively easy with air mass cumulus clouds moving through an otherwise
clear blue sky as background. At other times, the problem is more complex [27] with multiple cloud
layers above the cumulus, such as altostratus and cirrostratus. Because the most important output of
the intra-hour solar forecast is to predict cloud movements and ramping, the algorithm focuses on
low-level cumulus clouds, which move between the sun and the solar array.

To detect which pixels represent low level clouds, the “Red-to-Blue Ratio” (RBR) method
developed at the Scripps Institute of Oceanography [28] is used. It is based upon the different
scattering mechanisms for light hitting air molecules versus water vapor in clouds. Clear sky is
Rayleigh scattering, which scatters more blue light than red, whereas water molecules in clouds scatter
blue and red light almost equally. Details appear in Algorithm 1, in which rbr is the red to blue ratio in
the range [0,255] and red (blue) represents the value of the corresponding color channel in the pixel.
The output of this step is a grayscale image with low intensity values representing clear sky and high
intensities likely to be clouds. Figure 4a shows the resulting image.

Algorithm 1: Calulating the Red-to-Blue Ratio for determining Cloud vs. Clear Sky

1 if red > blue then

_ d /bl .
‘ rbr =129 +- (max(r:‘ed/bluuee)fl> x127;

if red < blue then

— d /bl .
| rbr =127 — (it ) < 127;

N

(%)

'S

5 else
| rbr=128;

[=2)

(a) (b)

Figure 4. (a) initial transformation into a grayscale image using the Red-to-Blue Ratio that will
determine the presence or absence of clouds; (b) binary image in which white represents cloud and
black denotes no-clouds.
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After calculating the RBR for the current image and its clear sky counterpart, the two images are
subtracted to isolate the clouds. Although not a perfect cloud detector, the methodology does identify
the majority of cumulus clouds and accurately delineates their boundaries. Because the resulting rbr
images contain jagged edges around cloud boundaries, a median filter [29] is applied to the grayscale
image. Finally, thresholding transforms the image from grayscale to binary, with clouds represented
by white and clear sky by black. The binary image, ready for cloud motion forecasting, is shown in
Figure 4b.

2.2. Geometric Transformation

The physical model of a cumulus cloud used in our forecasting software is an idealization of
the actual cloud. First, we assume that the base for all low level clouds is the lifting condensation
level or CBH as measured by a ceilometer at the nearest airport. The second assumption is more
questionable: the cloud is essentially flat with little or no vertical development. By definition,
cumulus clouds are formed by convection, when a parcel of air is lifted, cooled, and water vapor
condenses. The process is evolutionary, constantly building and dissipating, but there is always vertical
development. The extreme case is a cumulonimbus cloud which may tower many kilometers into
the sky. Any system for capturing sky images must necessarily involve projections from 3D objects
to the 2D image plane. This can be the perspective projection of a pinhole camera or the equidistant
transformation of a fish eye lens. Our current technology does not permit accurate measurement of a
cloud’s vertical development, only a perspective projection of the entire cloud (note, however, that by
using a pair of Skylmagers separated by a reasonable distance, one could obtain depth information
as happens in stereo vision). For this reason, a geometric transformation [3] is applied to the binary
image. It projects the 2D cloud pixel locations to a physical plane parallel to the tangent plane to the
earth, but at a height equal to the CBH. A Python scraper program downloads the CBH from the ASOS
database [30]. Extreme distortion occurs at the fringes of the lens, so there is a user-defined minimum
sky altitude measured from the horizontal. Pixels below this are simply discarded. With these two
parameters, the maximum cloud base radius and the linear distance per pixel value on the elevated
plane can be calculated. These, in turn, define a coordinate transformation which is applied to the
binary image. The result is shown in Figure 5a. For the ray-tracing algorithms described later, the
image must then be rotated to “True North” as indicated in Figure 5b.

(@) (b)

Figure 5. (a) binary image after transformation to CBH; (b) image rotated to True North in preparation
for ray-tracing. In the case of the NREL site, this was —195°.
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2.3. Persistence and Percentage of Cloud Cover

For minutes-ahead predictions, particularly on days with no clouds or completely overcast
conditions, it is hard to beat persistence. The persistence forecasting method is based upon the simple
assumption that the current GHI value will not change over the time interval of interest, except for
the diurnal changes under clear sky conditions. Hence, the next step in the pipeline is to classify the
binary image according to the percentage of white pixels in the disk. The three categories are: clear sky,
overcast sky, or moderately cloudy. The percentage of cloud cover for each sky condition are shown in
Table 3.

Table 3. Assigning sky condition—clear, overcast, or moderately cloudy.

Sky Condition Clear Sky Overcast Sky Moderately Cloudy
Percentage <15% White Pixels = >70% White Pixels = 15%-70% White Pixels

After classification of the current image, a decision is made as to which forecasting method to
use. For clear and overcast sky conditions, our algorithm uses persistence. A moderately cloudy sky
condition with 15%-70% cloud cover is likely to indicate the presence of air-mass cumulus clouds.
In this case, cloud motion tracking by optical flow is used to predict future cloud locations, and then
ray-tracing is employed to forecast shadows and GHI.

2.4. Optical Flow & Cloud Motion Vectors

The term optical flow in image processing refers to the apparent motion of the brightness pattern
in a time sequence of images. An old, but important problem in computer vision [31], it generally
corresponds to the motion field itself: objects moving through the field of view of the camera or the
camera itself moving. The goal is to find a pair of functions u(x,y),v(x,y) that represent the x- and
y-components of the velocity of the intensity function E(x, y) at pixel location (x, y). The optical flow
constraint equation Exu + Eyv + Ey = 0 must be satisfied by u and v, but this is insufficient to determine
a unique solution pair. An additional constraint must be added. This is done by incorporating
a regularization term that enforces smoothness on the solutions. The goal is to minimize the total
energy es + Ae. functional

es + Aec = // IV ul2 + | Vo2 dxdy + A//(Exu—f—Eyv—i—Et)z dxdy. @)

The corresponding Euler-Lagrange equations are a coupled pair of elliptic PDEs that must be
solved at each time step to obtain u and v. This can be done in several ways including iteratively:

VZM = )\(Exu + EyU + Et)Ex ; VZU = )\(Exu + Eyi) + Et)Ey- (5)

Tracking the movement of E(x, y) at each pixel location (dense optical flow) is computationally
expensive [32], and some form of dimensionality reduction is needed to efficiently track the motion of
cumulus clouds. OpenCV has several implementations of optical flow, some of which track a sparse set
of features in the image, while others track each pixel. In our software, the Lucas—Kanade [33]
approach is used as implemented in the function cv2.calcOpticalFlowPyrLK, with a prior call to
cv2.goodFeaturesToTrack that uses the most prominent corners in the image for tracking [34]. Note that
this feature extraction strategy implicitly finds information about first and second partial derivatives
of the intensity E. Figure 6a—c show the predicted locations of detected corners (indicated by white
dots) 5-, 10-, and 15-min ahead in time. Information from repeated calls to the optical flow function
allows the computation of cloud motion vectors and extrapolation of cloud boundaries.
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1. One feature point in the past image is selected; an attempt
is made to find a corresponding nearby feature point in the
present image.

2. If amatch is found, the pair of feature points is recorded and
the velocity vector (direction and magnitude) is calculated.

3. This process is repeated for all feature points in sequence of
consecutive images.

4. Velocity vectors generate predicted cloud movement.

b
Y

Figure 6. Forecast locations of features detected and tracked using the optical flow algorithm in OpenCV.
These will be used to determine the cloud motion vectors. (a) 5-min features forecast on 23 October
2015 made at 11:13 MST; (b) feature locations 10 min into the future; (c) locations 15 min ahead.

2.5. True North Determination and Ray Tracing for GHI Prediction

While predicting cloud movements and the resulting shadows is a critical intermediate step, the
ultimate goal is to accurately forecast GHI and the power produced by the PV arrays. The last step
in the pipeline is to make a prediction of the GHI in the minutes-ahead time frame. If a shadow is
predicted to be over the solar array, then direct sunlight is being blocked and a large drop in DNI will
occur. While DHI will also be influenced by the presence of shadows over the surrounding terrain,
the dominant term is DNI as shown in the equation GHI = cos(§)DNI + DHI.

In order to utilize the predicted cloud locations together with ray tracing to find where shadows
of cumulus clouds will be located, it is necessary to know precisely the direction of True North relative
to the camera frame of reference. While this can be accomplished physically with a compass during
installation of the Skylmager or with a Global Positioning System (GPS) module added to the GPIO
pins of the Raspberry Pi, it was convenient to write a program to determine True North just using
data gathered from the camera itself. First, a sequence of low exposure images is acquired on a clear
sky day and used to plot the trajectory of the sun as determined by the camera. Then, the zenith and
azimuth angles of the sun for the same day are calculated from NREL’s online SOLPOS program.
The Solar Position Algorithm (SPA) calculates the solar zenith and azimuth angles in the period from
the years —2000 to 6000, with uncertainties of +0.0003 degrees based on the date, time, and location
on Earth [35]. A second trajectory of the computed sun position is plotted in the image reference frame
based upon this data. Finally, an optimization routine is employed to determine the degrees of rotation
required to align the one curve with the other. The set of images that were acquired at the NREL ESIF
facility required a rotation of ~—195°. Finding the true north correction is performed as a calibration
step during initial set up of the camera and does not have to be repeated.

Using the predicted locations of cumulus clouds on the horizontal plane at CBH and the precise
location of the sun, simple ray tracing provides the locations of cloud shadows cast on the ground.
Figure 7a—c show the results of these computations for the entire field-of-view of the camera. After the
ray-tracing has been performed, a Region-Of-Interest is selected from each of the three forecasts and
used to determine the precise locations of shadows in the vicinity of the ESIF building where the



Sustainability 2017, 9, 482 10 of 17

SkyImager is located. Figure 8a—c show the results of these calculations. They also demonstrate the
undesirable aspects of a ray-tracing approach: mathematically, the problem is ill-posed with small
errors in the input data causing potentially large errors in the resulting output. Note that the DHI is
relatively easy to predict, and the extreme variability of the measured GHI is due mainly to the DNI
term, which, in turn, is determined by clouds moving through the circumsolar region of the image.
However, the methodology proposed does not make explicit use of the pixels in the neighborhood of
the sun, but attaches equal weight to all pixels in determining cloud locations. Then, with knowledge
of the sun’s location and ray-tracing, one attempts to truly make a “point” forecast of the shadows
on the solar arrays. The instability of the algorithm explains the results obtained when compared
with persistence.

318

+5 min Ahead +10 min Ahead +15 min Ahead

Figure 7. Results of the ray-tracing 5-, 10-, and 15-min ahead, performed on 23 October 2015 at 11:23.
Areas in white represent bright sunlight on the ground, while areas in black denote shawdows cast by

v

+5 min Ahead +10 min Ahead +15 min Ahead

cumulus clouds.

Figure 8. Shadow locations 5-, 10-, and 15-min ahead in the region of interest. The red rectangles
in the centers of the images in Figure 7 delimit the region of interest immediately surrounding the
camera location.

Once GHI has been forecast, it is usually straightforward to assign a corresponding power
produced, which is then fed into the micro-grid management system. Figure 9 shows the functional
relationship determined between GHI and power produced for the RSF2 solar generation unit at NREL
(a 408 kW commercial rooftop array). GHI values are acquired using one Kipp and Zonen CM22
and four LiCOR 200 pyrheliometers at different locations throughout the laboratory. After GHI and
power forecasts are made, these values are then published to the micro-grid management system
using a protocol such as MQTT. Message Queue Telemetry Transport is a publish-subscribe-based
“lightweight” messaging protocol for use on top of the TCP/IP internet protocol. It is designed for
connections with remote locations where network bandwidth is limited.
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Figure 9. The functional relationship between GHI measured in W/m? and PV AC power production
in Watts for the NREL RSF2 solar generation facility for 17 October 2015.

3. Solar Variability

Almost a terabyte of image data was collected at NREL from 15 October 2015 through 16 April
2016. Preliminary analysis of a small sample of the data is presented here; a more detailed analysis will
appear in a forthcoming paper. Figure 10 shows irradiance plots for 12 days beginning with 14 October
2015 and ending with 19 November 2015. Each day’s plot shows DNI, GHI, and Direct Horizontal
Irradiance (DHI). Although for our purposes GHI is the most important of the three quantities, because
it will serve as ground truth for the forecasting algorithms, forecasting the DNI component is the
challenging part of the problem. The measured DNI values were recorded using NREL's CHP1-L
pyrheliometer with units of Watts/m?. Initial inspection shows that sky conditions can be grouped
into three categories as regards solar variability and ramping events. The first category (Clear Sky)
consists of predominantly clear sky with little or no cloud cover and no ramping events: 14 October,
2 November, and 3 November. Category 2 (Overcast) results from a large cloud mass that obscures the
sun during a good part of the day: the afternoons of 27 October and 15 November. Finally, Category
3 (Moderately Cloudy) encompasses the remaining days and is characterized by large swings in the
DNI values resulting in multiple ramping events. In this manner, we account for the variability of the
solar forecasting problem [36,37].

10-14-2015 10-15-2015 10-17-2015 10-24-2015

10-27-2015 10-31-2015 11-02-2015 11-03-2015
1000 1000 1000 1000

800 800 800 800
600 600 600 600

400 400 400 400

11-13-2015 11-15-2015 11-18-2015 11-19-2015
1000 1000 1000 1000

800 800 800 800
600 600 600 600
400 400 400 400

200 200 200 200
Pna\al

8 10 12 14 16 18 8 10 12 14 16 18 B 10 12 14 16 18 8 10 12 14 16 18

Figure 10. Irradiance values for 12 days in late fall of 2015 measured at the NREL ESIF building in
Golden, CO, USA. Green denotes Direct Normal Irradiance, blue is Global Horizontal Irradiance, and
red is Diffuse Horizontal Irradiance.
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It is instructive to zoom in upon a ramp event and try to correlate the drop in DNI with cloud
movement in the image sequence. Unless this is possible visually, there is little chance that machine
learning or physics-based approaches will be successful. Consider the observed irradiance values for
27 October 2015. Figure 11 shows a subsequence of the images captured on this day, taken every 2 min
beginning at 12:31 (upper left) and ending at 12:54 (lower right). The time lapse begins with no clouds
in the circumsolar region, but clouds on the horizon moving rapidly into the region from left to right.
By 12:37, clouds have blocked the direct path from the sun to the site, thereby drastically reducing
the DNI. At the same time, significant amounts of radiation are still diffusing from the atmosphere
so that the GHI decreases briefly to the value of the DHI. By 12:50, those clouds have moved off and
DNI recovers.

12:48:06 12:50:10 12:52:15 12:54:19

Figure 11. A subsequence of the images captured on 27 October 2015. There are 2 min between the
displayed images, beginning at 12:31 (upper left) and ending at 12:54 (lower right). A major ramp
event is occasioned by a cloud obscuring the sun.

This evolution of clouds and irradiance is even more striking when the video sequence is viewed,
and confirms the fact that pictures from the Skylmager are highly correlated with observed values of
the irradiance time series. Moreover, it suggests the camera sensor could be used to measure irradiance
as well as forecast it. The blue line in Figure 12 shows the GHI time series on 27 October 2015 and
confirms the ramp events occurring during the noon hour. Also plotted are the 10- and 15-min
forecasts using both persistence and the camera method. The two track each other closely, since the
latter algorithm uses persistence whenever conditions are clear sky or overcast. Only in the case of
moderately cloudy conditions is the persistence value modified and then only when a shadow is
forecast over the camera site.
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Measured GHI, 10-Min, 15-Min. Forecasts (Persistence & Camera)

—— Measured GHI
—— Persistence 10min
—— Camera 10min

————— Persistence 15min
----- Camera 15min

800

600

400

200

Figure 12. Measured GHI (blue line) for the day of 27 October 2015. Note that the ramp events shown
in Figure 11 are clearly indicated by the wildly oscillating GHI values that occur during the noon

hour. Also plotted are the 10- and 15-minute forecasts using both persistence (black) and the camera
method (red).

4. Discussion

Standard metrics for evaluating the performance of irradiance forecasting algorithms are
MAPE—Mean Absolute Percentage Error and RMSE—Root Mean Square Error:

1 &y =yl 1Y V2
MAPE(%) = + % x 100 RMSE = (N Y-yl )2> ;o (6
=Y =1

where yM is the measured value of a time series, y}’ is the predicted value, and N is the total number
of predictions. The smaller the MAPE, the better the forecast. While there is a stochastic component
to the GHI function, the near discontinuities that occur as a cloud moves between the sun and
the array, and the ramping in power output that it occasions, make intra-hour prediction of GHI
a challenging problem. As in weather forecasting, for short-term prediction, it is difficult to beat
persistence which simply asserts that whatever the observed value is now, it will persist into the future.
This is particularly true for those days that have clear skies with no clouds or completely overcast
days: persistence always wins. As described earlier, days were classified as “Clear Sky”, “Overcast
Sky”, and “Moderately Cloudy”, and the algorithm only used for the latter category. Persistence was
used to forecast on a clear or overcast day (details were given in the Methods Section). If there are
no clouds in the region of interest, the Haurwitz model [38,39] is used to calculate clear sky GHI,
Ger = 1098 [ cos B, exp(—0.057/ cosB;) |, where 6 is the solar zenith angle. The straight persistence
forecast G(t + At) = G(t) is modified [17] with the equation below that accounts for small changes in

8 over the time period At:
Gerr (t + At)

Gerr ( t)

On moderately cloudy days, our approach assumes that if clouds are predicted to move into the
area of the PV arrays, then GHI will be reduced from its current value. If ray-tracing indicates that
the solar panels are shaded at the site, then GHI should drop dramatically and a ramp event occurs.
In Weather Service parlance, this amounts to using a “point” forecast as opposed to an “area” one.
In fact, GHI should (and in many cases does) drop to the level of the Diffuse HI. The problem is that the
uncertainty in determining the exact position of shadows on the ground is very large. The code reduces
the current GHI by a factor of a, where 0 < & < 1. A value # = 85% was determined empirically

G(t+At) - G(1). 7)

based upon averaging the slopes of the GHI curve when a ramp occurs and the percentage of the
GHI that the DNI and DHI constitute, respectively. While this should work for diffuse irradiation,
DNI has a strong directional selectivity. Work currently in progress will improve this methodology by
weighting heavily the pixels along a line from the center of an image to the sun, as was done in [14].
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Table 4 gives a preliminary analysis of data collected at NREL in the fall of 2015, under a variety
of cloud conditions from mostly clear sky to overcast as indicated by the Average Cloud Cover column.
Two metrics, MAPE and RMSE, are given both for the camera 5-min ahead forecast and for persistence.
They were computed for daytime hours, 8:00-16:00 MST, and measured and forecast values every
minute were used so that N = 481. We note that on a clear day, such as 14 October, the errors are very
small and identical for both methods. This is not surprising since, under clear skies, there are no clouds
to track and the algorithm falls back on persistence. On 27 October, the conditions were “Moderately
Cloudy” with Avg CC of 20.5% and Max CC of 98%. In this case, the cloud-tracking algorithm cuts
in with a resulting MAPE that is slightly lower than persistence. Overall, the results look promising,
but they present opportunities for further refinements in the algorithms to improve performance in
the future.

Table 4. Error metrics for selected dates in late fall of 2015. Avg CC denotes the average cloud cover
percentage computed from the images captured by the Skylmager on that day, while Max CC denotes
the maximum in a single image. Persist denotes values computed using persistence, while Camera are
values determined by the camera algorithm.

Date Avg CC MaxCC  MAPE Persist MAPE Camera RMSE Persist RMSE Camera
14 October 3.6% 12% 0.533% 0.533% 6.2 W/m? 6.2 W/m?
15 October 5.3% 27% 4.54% 5.32% 56 W/m? 66 W/m?2
17 October 5.9% 42% 5.8% 6.04% 65 W/m? 67 W/m?
24 October 7.8% 70% 35.76% 35.66% 214 W/m? 217 W/m?2
27 October 20.5% 98% 816.27% 793.05% 334 W/m? 336 W/m?2
31 October 3.3% 20% 54.84% 54.84% 131 W/m? 131 W/m?
2 November 2.77% 20% 0.832% 0.832% 11.6 W/m? 11.6 W/m?2
3 November 2.8% 14% 0.725% 0.725% 9 W/m? 9 W/m?
13 November 3.5% 41% 3.7% 3.7% 55 W/m? 55 W/m?
15 November 8.3% 92% 75.68% 69.62% 93 W/m? 92 W/m?
18 November 5.4% 53% 45.74% 43.48% 140 W/m? 139 W/m?
19 November 2.5% 17% 1.53% 1.43% 30 W/m?2 27 W/m?

5. Lessons Learned and Future Activities

There are five distinct tasks involved in intra-hour solar forecasting for the Smart Grid:
development of new hardware, writing software to perform image processing and machine learning,
finding the most important variables and input data on which to base the forecasting algorithms,
validating the method offline on large data sets that extend over several months, and finally
implementing the system in real time in a distributed environment as part of an actual micro-grid.
Our hope is that other researchers working in the area of solar forecasting will benefit from our
experiences.

The work shows that SBC are not just for science fair projects, but can serve as powerful platforms
for acquiring and processing data in a research environment. The graphics capabilities of the Raspberry
Pi and its on-board camera are superb. Additional horsepower for processing the images in real
time can be provided by linking with a second SBC, such as an Odroid C2, although this may be
unnecessary as technology continues to improve (e.g., the RPi-3). By far, the most expensive part of
the SkyImager was the security camera enclosure, but this approach was used to save time and effort.
Using off-the-shelf components for enclosures, heater/fan assemblies, heat sinks, etc., as well as a
Wi-Fi connection to the internet, might well bring the cost down below the $100 mark. This would
allow a large number of the devices to be employed in a distributed IoT environment.

We found that modern operating systems such as Raspbian Jessie and Ubuntu give the researcher
the full power of software development in the Linux environment on a SBC. Python 2.7 proved to be
a convenient, versatile framework not only for writing our programs, but for analyzing and displaying
big data, via such packages as numpy, scipy, and pandas. Finally, the Open Computer Vision software
OpenCV 3.1.0 with Python bindings served as a robust development platform for high-level image
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processing: reading and writing images to disk, standard image transformations, and calculating
optical flow.

Forecasting the ramps in PV power production in the intra-hour time frame is a difficult problem.
While there is a strong stochastic component, from the acquisition of the images to the final GHI and
power forecasts, the problem is deterministic as well. Large drops in the DNI occur as cumulus clouds
move between the sun and the solar arrays. We chose a physics-based approach that predicts GHI
based upon the location of cumulus clouds minutes ahead. This task can be subdivided into two
problems: (1) accurately predicting cloud movements and (2) predicting drops in DNI occasioned by
shadows falling on the solar arrays. The Denver airport is 36 mi from Golden and frequently there are
missing entries in the METAR observations, making the CBH value often a reasonable guess. Once
the binary cloud images are projected to the CBH level, optical flow algorithms do an excellent job of
predicting the apparent movement of intensity levels in the images. Moreover, one can choose between
tracking features (Lucas—Kanade) or dense optical flow (Farneback) methods. Analyzing the errors in
forecast versus actual cloud positions should be done separately from the GHI predictions.

A ray-tracing approach to locate shadows was chosen early in the design cycle, and while it did
not perform better than persistence, we understand the reasons why. The sensitivity in this problem is
large: mathematically, the problem is ill-posed and relatively small errors in the future cloud/shadow
positions can result in large errors in forecast GHI. Moreover, the focus on low level cumulus clouds
both ignores the fact that there can be multiple layers of different cloud types, and necessitates a binary
cloud/no-cloud classification with its attendant loss of information. Specifically, converting to binary
images before feature extraction and optical flow means that much of the rich information content
contained in the original RBG image is lost. Our current research investigates retaining the grayscale
images of the red-blue ratio throughout the entire process. More generally, a totally data-driven
deep learning approach may prove superior. In the latter case, clouds would not be tracked at all,
but, instead, the changing intensity patterns in the red and blue channels of the image sequence would
be used with machine learning to forecast GHI. Physics would still be important. Changes in the pixels
of the circumsolar region would figure prominently in a DNI calculation, while the remaining pixels
would be used to extrapolate the DHI.

For task four, several months of images and observed GHI were collected at NREL. Offline
versions of the codes can be used to analyze this data and develop new algorithms such as neural
networks that require large computational resources in the training phase. The key to doing this
effectively is to find sparse representations of the data-dimensionality reduction is essential. The final
task is integration of the technology in a real-time setting, and we have completed the initial work as
part of the INTEGRATE project, both at NREL and Ft. Sam Houston, San Antonio, Texas, USA.
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Abbreviations

The following abbreviations are used in this manuscript:

GHI
DHI
DNI

Global Horizontal Irradiance
Diffuse Horizontal Irradiance
Direct Normal Irradiance

NREL  National Renewable Energy Laboratory

CBH
ASOS
SBC
HDR

Cloud Base Height

Automated Surface Observing System
Single Board Computer

High Dynamic Range

MAPE  Mean Absolute Percentage Error
RMSE  Root Mean Square Error
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