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ABSTRACT
Memory storage and retrieval are context-sensitive in both humans
and animals; memories are more accurately retrieved in the context
where they were acquired, and similar stimuli can elicit different
responses in different contexts. Researchers have suggested that
such effects may be underpinned by mechanisms that modulate
the dynamics of neural circuits in a context-dependent fashion.
Based on this idea, we design a mechanism for context-dependent
modulation of a liquid state machine, a recurrent spiking artificial
neural network. We find that context modulation enables a single
network to multitask and requires fewer neurons than when several
smaller networks are used to perform the tasks individually.

CCS CONCEPTS
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1 INTRODUCTION
Memory storage and retrieval in humans and animals is context-
sensitive; memories are more accurately retrieved in the context
where they were acquired [4, 18, 24], and similar stimuli may elicit 
different responses in different contexts [22]. A context may be spa-
tial or temporal or may consist of any collection of cues that serve to
distinguish one learning situation from another. The establishment
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of a context for memory retrieval may be achieved by a physical
return to the place of learning or the reinstatement of relevant en-
vironmental cues, but can also be effected by subtle reminders [10].
From a neuroscience perspective, it has been suggested that brain
regions such as the CA3 subfield of the hippocampus may be modu-
lated by context signals that bias the excitability of neurons, thereby
adjusting the way a neural subsystem responds to inputs [1, 22].

Here, we explore potential benefits of context modulation in
biologically inspired artificial neural networks. We design a context
modulationmechanism for a liquid state machine (LSM), a recurrent
spiking architecture [16] that can be deployed on energy-efficient
neuromorphic hardware [14, 21, 30]. In analogy with the purported
neural processes, our mechanism modulates the firing thresholds of
the LSM’s spiking neurons, thus altering its dynamics in a context-
dependent fashion.

We investigate whether context modulation can improve ac-
curacy, enable multi-tasking and reduce the amount of resources
required for a task. For evaluation, we use two publicly available
datasets: FSDD, the Free Spoken Digit Dataset [11], and Motion-
Sense, a human activity recognition dataset [17]. We find that
context modulation provides only modest accuracy improvements
within a single network. However, context modulation does en-
able a single network to perform multiple tasks and substantially
decreases the number of neurons required compared to the case
where smaller individual networks perform the same tasks sepa-
rately. In essence, context modulation allows a network to reuse its
computational components for more than one task.

2 PREVIOUS WORK
Work with brain-inspired neural networks falls largely into two
categories. The first involves models of hypothetical neural mecha-
nisms, which are built in order to test whether the putative mech-
anisms can account for phenomena that have been observed in
biological systems. Conversely, observation of such models can
lead to new hypotheses about biological systems, which can be
tested in neuroscience laboratories. For a review of models of con-
textual modulation of this kind, see [15]. The other category, to
which this work belongs, concerns the application of mechanisms
observed in biological brains to practical networks, in particular in
the field of artificial intelligence. There are several notable examples
of the use of contextual modulation to enhance the performance of
neural networks. Contextual information was used in [5] to control
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where learning takes place in a compartmentalized architecture
for few-shot learning. In [31], an online learning model derives its
goal from environmental clues and uses it to modulate its attention
mechanism toward objects relevant to the goal. A neuromodulatory
network in [2] is trained to selectively inhibit neurons in a predic-
tion network in order to mitigate catastrophic forgetting. In [1],
the use of superclass information to modulate neuron biases in a
convolutional neural network was shown to improve the accuracy
on image classification tasks. Previous work involving liquid state
machines includes [27–29].

3 MATERIALS AND METHODS
3.1 The Liquid State Machine
The concept of reservoir computing was independently introduced
by the publication of two algorithms, the Echo State Network
(ESN) [13] and the Liquid State Machine (LSM) [16]. The two ar-
chitectures differ in that the ESN uses conventional (rate-based)
neurons in the reservoir, whereas the LSM uses spiking neurons,
but are otherwise very similar. Here, we focus on the LSM, the
spiking variety of reservoir computing.

Figure 1: Liquid state machine (LSM). An LSM consists of
an input layer, a recurrent spiking reservoir, and a readout
network. Connections from input to reservoir and between
reservoir neurons are sparse, randomly initialized and fixed;
only output connection weights are trained. Samples of mul-
tichannel time series data are fed to the input neurons, which
project the received values onto the reservoir, resulting in
spiking activity. Once a sample has been fully processed, the
readout network classifies the resulting reservoir state and
outputs its predicted label for the sample.

The core idea of an LSM is to cast input data into a much higher
dimensional representation with the hope of improving class sepa-
rability of the data. Then, a readout network is trained to classify
on the higher dimensional representation. This is implemented
by projecting time-series data onto a recurrently connected set of
spiking neurons (the reservoir or liquid), then read the state of the
reservoir and classify it using a simple feedforward readout network,
which is fully connected to the reservoir; see Figure 1.

The connections from the input neurons to the reservoir neurons,
aswell as the connections between reservoir neurons, are sparse and
randomly initialized, but thereafter never change during training or
inference. Learning occurs only in the readout connections. In this
manner, the readout network learns to discern patterns of activity
in the liquid to differentiate between how different inputs drive
different activity dynamics.

The reservoir consists of leaky-integrate-and-fire (LIF) neurons
whose dynamics are defined by the following equation:

𝑉𝑖 (𝑡 + 1) = 𝑉𝑖 (𝑡) +
Δ𝑡

𝜏𝑚𝑒𝑚

(
−𝑉𝑖 (𝑡) + 𝐼𝑖 (𝑡)𝑅

)
, (1)

where 𝑉𝑖 (𝑡) is the membrane potential of neuron 𝑖 at time 𝑡 , 𝐼𝑖 (𝑡)
is the input current to neuron 𝑖 , 𝑅 is the membrane resistance, and
𝜏𝑚𝑒𝑚 is the membrane time constant. Δ𝑡 is the length of a time
step.

The input current to neuron 𝑖 is the sum of the incoming currents
from other neurons:

𝐼𝑖 (𝑡) =
𝑁𝑖𝑛𝑝∑︁
𝑗=1

𝑤𝑖 𝑗𝐴 𝑗 (𝑡) +
𝑁𝑟𝑒𝑠∑︁
𝑘=1

𝑤𝑖𝑘𝑆𝑘 (𝑡). (2)

𝑤𝑖 𝑗 is the connection weight from input neuron 𝑗 to reservoir
neuron 𝑖 , 𝐴 𝑗 is the activation level of input neuron 𝑗 , 𝑤𝑖𝑘 is the
connection weight from reservoir neuron 𝑘 to reservoir neuron 𝑖 ,
and 𝑆𝑘 is 1 if reservoir neuron 𝑘 spikes at the current time step,
otherwise 0. 𝑁𝑖𝑛𝑝 and 𝑁𝑟𝑒𝑠 are the numbers of input and reservoir
neurons, respectively.

When a neuron’smembrane potential crosses a threshold𝑉𝑡ℎ𝑟𝑒𝑠ℎ ,
a spike is emitted (𝑆𝑖 = 1) and the membrane potential is reset to
zero (𝑉𝑖 = 0). After a neuron spikes, there is a short time interval
during which it cannot spike; this is known as the refractory period.

Each reservoir neuron 𝑖 is equipped with an “x-trace", 𝑋𝑖 , a leaky
integrator that serves as a decaying memory of the neuron’s spiking
activity:

𝑋𝑖 (𝑡 + 1) = 𝑋𝑖 (𝑡)
(
1 − Δ𝑡

𝜏𝑥𝑡𝑟𝑎𝑐𝑒

)
+ 𝑆𝑖 (𝑡), (3)

where 𝜏𝑥𝑡𝑟𝑎𝑐𝑒 defines the decay rate and 𝑆𝑖 (𝑡) is 1 if neuron 𝑖 spikes
at time step 𝑡 , 0 otherwise.

The readout layer consists of sigmoid neurons:

𝑓𝑖 (𝑡) =
1

1 − 𝑒−𝑌𝑖 (𝑡 )
, (4)

where 𝑓𝑖 (𝑡) is readout neuron 𝑖’s activation level at time 𝑡 , and𝑌𝑖 (𝑡)
is its instantaneous input, a weighted sum of the x-trace values:

𝑌𝑖 (𝑡) =
𝑁𝑟𝑒𝑠∑︁
𝑗=1

𝑤𝑖 𝑗𝑋 𝑗 (𝑡), (5)

where𝑤𝑖 𝑗 is the connection weight from x-trace 𝑗 to output neuron
𝑖 . The readout network is trained to map input samples to one-hot
encodings of the corresponding labels, i.e., the index of the readout
neuron with the highest activation level is the network’s prediction
for the label:

𝑝𝑟𝑒𝑑 = argmax
𝑖

𝑓𝑖 (𝑡). (6)

3.2 Context Modulation
The central contribution of the present work is the introduction
of a mechanism for context-dependent modulation of the LSM’s
reservoir. The idea is to bias the reservoir neurons’ firing thresholds
so that, depending on the current context, different subpopulations
of the reservoir are more or less prone to fire. This can be thought
of as remodeling the reservoir’s “energy landscape” so that spiking
activity is directed to different parts of the reservoir depending
on which context is active, with the aim of improving pattern
separation and facilitating classification.
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To implement this mechanism, we replace the LSM’s globally
defined firing threshold𝑉𝑡ℎ𝑟𝑒𝑠ℎ with a neuron-specific firing thresh-
old 𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑖 , and the condition for spiking becomes:

𝑆𝑖 (𝑡) =
{
1, if 𝑉𝑖 (𝑡) >= 𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑖

0, otherwise,
(7)

where 𝑆𝑖 (𝑡) indicates whether neuron 𝑖 is firing and𝑉𝑖 (𝑡) is neuron
𝑖’s membrane potential at time 𝑡 .

Whenever a context is activated, the neuron-specific firing thresh-
olds 𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑖 are set to a set of values specific to that context. Those
values are determined as follows:

Let 𝑁𝑐𝑡𝑥 be the number of contexts for a given classifica-
tion task. We identify the different contexts with integer IDs
𝑐 = 0, 1, 2, ..., 𝑁𝑐𝑡𝑥 − 1.

For each context ID 𝑐 , we create a unique vector of firing thresh-
old biases with length 𝑁𝑟𝑒𝑠 , the number of neurons in the reservoir.
So we have an array of biases, 𝑏𝑖𝑎𝑠𝑐𝑖 , with 𝑁𝑐𝑡𝑥 rows, one per
context ID, and each row is a vector of 𝑁𝑟𝑒𝑠 bias values, one for
each reservoir neuron. When a particular context, say context 𝑐 , is
activated, we set the firing threshold for each reservoir neuron 𝑖 to
a base threshold 𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑏𝑎𝑠𝑒 plus the value of the corresponding
element of the bias vector for context 𝑐:

𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑖 = 𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑏𝑎𝑠𝑒 + 𝑏𝑖𝑎𝑠𝑐𝑖 (8)

To achieve a smooth variation of biases, the bias vectors are
created by randomly permuting a template vector 𝑡𝑒𝑚𝑝𝑙 that is
initialized with a Gaussian distribution of bias values:

𝑡𝑒𝑚𝑝𝑙𝑖 =𝑚𝑎𝑥𝑏𝑖𝑎𝑠 ∗ 𝑒−
𝑘𝑏𝑖𝑎𝑠
𝑁𝑟𝑒𝑠

(𝑖− 𝑁𝑟𝑒𝑠
2 )2

, (9)
where𝑚𝑎𝑥𝑏𝑖𝑎𝑠 and 𝑘𝑏𝑖𝑎𝑠 are configurable parameters.

During training, the context ID for each sample is supplied from
the environment. During testing, context IDs may similarly be sup-
plied to the network ("known context mode"), simulating a scenario
where each test sample is presented in the same context where
it was learned (Figure 2 B). In an alternate scenario, context IDs
are provided during training, but not during testing. For this case,
an auxiliary context identifier LSM is trained to infer context IDs
from samples, and the inferred context ID is used to modulate the
network during testing ("inferred context mode"), see Figure 2 C.
Using speech recognition as an example, the first scenario may
correspond to a situation where the speaker can be identified inde-
pendently of the audio signal, e.g. visually, whereas in the second
scenario no such extra information is available, but accuracy may
be improved if the listener can identify the voice of the speaker.

3.3 Datasets
The FSDD dataset [12] consists of 3000 voice recordings of six
speakers pronouncing the digits zero through nine in English. We
preprocess the recordings into standard 13 MEL frequency cepstral
coefficients (MFCCs). See Section 3.4 for further details.

The MotionSense human activity recognition dataset [17] con-
sists of recordings from a smartphone’s acceleration, attitude, and
gyroscope sensors when worn by 24 participants engaged in any
of 6 activities (sitting, standing, walking, jogging, walking upstairs,
and walking downstairs). There are 216 recordings designated for

Figure 2: Context modulation of LSM. Scenario A: Without
context modulation; Scenario B "Known context": As each
sample is trained, an associated ("true") context ID (green) is
received from the environment and is used to modulate the
LSM. During testing, as each sample is being classified, the
LSM is modulated using the same context ID with which the
sample was trained; Scenario C "Inferred context": During
training, an auxiliary LSM (blue) is trained to infer context
IDs from the samples, using the true context IDs as targets.
During testing, the true context IDs are unavailable; context
IDs inferred by the context identifier LSM are used to modu-
late the main (classifier) LSM.

training and 144 for testing. The lengths of the recordings vary
considerably; to obtain a uniform dataset, we split the recordings
into five-second samples, resulting in 4214 training samples and
1247 test samples, labeled with activity type.

3.4 Training and Testing
The LSM’s performance on a dataset is evaluated by executing a
series of train/test cycles. For the FSDD dataset, each cycle consists
of the following steps:

(1) The dataset, consisting of 3000 labeled samples, is randomly
split into a training set (2700 samples) and a test set (300
samples).

(2) The LSM is then trained on the training set for 50 epochs. The
order of the training samples is randomized for each epoch.
Each sample is processed through the LSM as described in
Section 3.1, whereupon the readout weights are updated
using gradient descent (online training).

(3) The accuracy of the trained LSM is then tested by processing
the test samples and calculating the proportion of correctly
labeled samples.

Each accuracy value reported in the results section was calculated
by executing ten train/test cycles and taking the mean and standard
deviation of the test accuracies.

The procedure is the same for the MotionSense dataset, except
that a) the training and test datasets are predefined, so there is
no random splitting into train/test samples, and b) the number of
samples is 4214 for training and 1247 for testing.
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3.5 Optimization of the LSM
The configuration of an LSM is controlled by a number of hyper-
parameters. Some hyperparameters directly control attributes of
network elements, for example 𝜏𝑚𝑒𝑚 , the membrane time constant
for the LIF neurons; others are used to parameterize the random
initialization of the LSM. For example, the probability of a connec-
tion between any two reservoir neurons is 𝐶 · 𝑒−(𝐷/_)2 , where 𝐷
is the distance between the two neurons and 𝐶 and _ are hyperpa-
rameters [16]. We use a genetic algorithm (GA) to find a good set
of hyperparameter values for a classification task, using a train/test
cycle as defined above to evaluate the fitness of a set of parameter
values. However, the random initialization still leaves room for
considerable variation in accuracy between LSMs configured with
the same set of hyperparameter values. The problem of finding a
"good reservoir" has been discussed in the literature and several
approaches have been suggested [9, 19, 25]. Here we use a simple
heuristic: We repeatedly (e.g. 50 or 100 times) instantiate and ini-
tialize LSMs using the optimized set of hyperparameters, execute a
single train/test cycle with each such randomly initialized LSM in-
stance on the task, and select the instance that achieves the highest
accuracy. This means that, when evaluating an LSM’s performance
for a given task, we use the best set of input and reservoir connec-
tions that we have found for that task, together with a fixed set
of threshold bias vectors (when using context modulation). The
weights in the readout network are still randomly initialized and
trained in each train/test cycle.

4 RESULTS
4.1 Context Modulation Improves Accuracy
We start our investigation by asking if context modulation can
improve the classification accuracy within a single network. We en-
vision potential applications in two different scenarios (see Section
3.2 and Figure 2). In the first scenario, the context signal is known
and is supplied by the environment both during training (memory
acquisition) and during testing (recall). This is likely the best case
scenario and characterizes how well a network can perform in a
situation where context is unambiguous. In the second scenario,
we assume that the context signal is available during training, but
not during testing. In this case, an auxiliary LSM is trained to learn
the context. The inferred context signal is then provided to the
main LSM during testing. Unless the auxiliary network learns to
infer context perfectly, the context signal will contain some noise
and likely limit the benefits of context modulation. We look at the
"inferred context" scenario because it is likely there are many real-
world applications where the context signal is not available during
inference. We wanted to get a rough idea of how much realistic
errors in a context signal would affect classification accuracy.

As shown in Figure 3, context modulation modestly improves
classification accuracy on both the FSDD and MotionSense datasets.

When we trained a single LSM to identify spoken digits in the
FSDD dataset without a context signal, we achieved an accuracy of
0.958 ± 0.012. We then applied context modulation to the LSM by
using the speaker as a context signal. Using the inferred speaker IDs
resulted in an accuracy of 0.969± 0.014, a 1.1% improvement. Using
known speaker IDs resulted in an accuracy of 0.973 ± 0.010, a 1.5%
improvement over baseline. The difference in accuracy between

the inferred-context and known-context modes is due to the error
in speaker inference, which was 98.2% accurate.

We see similar results when applying context modulation to the
MotionSense dataset. Here participant ID (0-23) is used as the con-
text signal and activity type (one of six) is used for the classification
target. With this dataset, accuracy without context modulation was
0.946 ± 0.003, with inferred participant ID used as context signal,
0.948 ± 0.002, a 0.7% improvement, and with known participant ID,
0.954 ± 0.002, a 0.8% improvement over the baseline.

Although these improvements are small, they do show that our
context modulation technique can aid in classification on two sepa-
rate datasets.

Figure 3: Context modulation improves accuracy. Left: digit
classification with FSDD using speaker ID as context signal.
Right: activity classification with MotionSense using partici-
pant ID as context signal. The error bars indicate standard
deviation over ten train/test cycles of each test case. The
smaller variability with MotionSense is due to the fact that
train and test subsets are predefined in the dataset; only sam-
ple ordering varies between train/test cycles.

4.2 Context Modulation Reduces Network Size
Above we showed that a context signal can improve the ability of a
network to perform classification. The best results were achieved
when the context signal was available both during training and
testing. This raises the question: If context is known, why perform
classification in different contexts on one network? Why not use
separate networks for each context? Here we use the FSDD dataset
to show that using one network with a context signal reduces the
number of neurons needed to reach equivalent accuracy between
individual networks and a context network.

We trained six separate LSMs to each classify samples from one
of the six speakers. The mean accuracy for individual speakers
varied between 0.974 and 0.992 depending on speaker, with an
overall mean of 0.986±0.017 (see Figure 4). The accuracy of a single
LSM with context modulation is somewhat lower than the mean
accuracy for single-speaker networks. As also reported in Section
4.1, when we trained a single LSM on the complete FSDD dataset
without context, we achieved 0.958±0.012 accuracy, 2.8% below the
mean single-speaker performance. Context modulation improved
the accuracy to 0.969± 0.014 when using inferred speaker IDs, 1.7%
below mean single-speaker accuracy and to 0.973 ± 0.010 using
known speaker IDs, 1.3% below mean single-speaker accuracy.

Although using a single LSM with context modulation does not
improve accuracy over using multiple individual networks, it does
substantially reduce the number of neurons needed to achieve high
accuracy. The accuracy values shown at the top of Figure 4 were
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obtained using a cube-shaped reservoir with 103 = 1000 neurons for
each network. Thus, although individual networks achieve higher
average accuracy, more neurons are used to achieve this result
(6*1000 neurons using multiple individual networks versus 1000
neurons for one network with context modulation). To quantify
how large individual networks need to be to achieve high accuracy,
we decrease the size of the networks (bottom panel of Figure 4).
The size of the individual-speaker digit classification networks can
be reduced to 343 neurons and still achieve the accuracy obtained
by the single 1000-neuron LSM with context modulation. Although
343 is less than 1000, six networks are required. Using context
modulation to handle all six speakers with a single 1000-neuron
LSM thus resulted in an overall reduction of reservoir size by 51.4%
(1000 vs. 6 ∗ 343). Thus, the use of individual networks comes at the
cost of a larger combined network size. Interestingly, these results
also show that the context-modulated network does not simply
use separate subsets of neurons while in different contexts; instead,
individual neurons contribute to more than one context.

Figure 4: Top: Single-speaker vs. multi-speaker accuracy. The
first six columns show accuracy achieved by LSMs classifying
FSDD samples spoken by each individual speaker and the
seventh column shows the average across speakers. The last
three columns indicate the accuracy of a single LSM classify-
ing the complete FSDD dataset (all six speakers), without con-
text modulation, with inferred speaker ID as context signal,
and with known speaker ID, respectively. Note that the last
three columns are the same as in Figure 3. Bottom: Accuracy
versus reservoir size for single-speaker and multi-speaker
FSDD digit recognition. The error bars in both panels indi-
cate standard deviation over ten train/test cycles for each test
case.

4.3 Context Modulation Enables Multiple
Representations Within a Single LSM

Our biological brains are capable of applying different classifications
to the same objects depending on context. For example, in the classic
Terminator movie series, featuring Arnold Schwarzenegger, Arnold
is a "bad guy" in the first movie and a "good guy" in the second
movie. Humans can easily classify whether Arnold is good or bad
based on context (whether they are watching the first or second
movie). To explore if context-modulated LSMs are capable of this
type of behavior, we devised an experiment where identical data
had to be classified differently depending on context.

We assigned each of the six speakers in the FSDD dataset to one
of two groups, A or B, and labeled each speech sample with its
speaker’s group ID. As a "baseline" group assignment, we assigned
the first speaker to group A, the second speaker to group B, etc.:
ABABAB. The LSM was trained to classify the speech samples ac-
cording to group labels (withholding speaker IDs and digit classes),
achieving an accuracy of 0.931 ± 0.014.

We then created modified speaker-to-group mappings that dif-
fered from the baseline in one, two, three, four, five or all six posi-
tions: BBABAB, BAABAB, BABBAB, BABAAB, BABABB, BABABA.
The LSM was trained with a mix of samples labeled either accord-
ing to the baseline mapping or according to one of the modified
mappings. As in the digit recognition task, we randomly split the
dataset into 90% training samples and 10% test samples for each
train/test cycle. During both training and testing, a context signal
was supplied, indicating which mapping was in effect ("known
context"). As shown in Figure 5, context modulation enabled the
simultaneous learning of both mappings in the same LSM with
little or no accuracy loss even when as many as four of the six
speakers had different group assignments in the two mappings.
The same reservoir size (1000 neurons) was used as in the previous
experiments.

Figure 5: FSDD speaker group identification. An LSM was
trained to simultaneously learn two different classifications
of the FSDD dataset. Samples were classified according to
speakers’ group memberships. The x-axis indicates how
many of the six FSDD speakers had different group assign-
ments in the two mappings. Accuracy with and without con-
text modulation is shown. The plots show mean accuracy
over ten runs with random train/test splits of the dataset;
error bars indicate standard deviation.
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4.4 Resource Usage and Energy Analysis
Because an LSM’s input-to-reservoir connections and intra-reservoir
connections are sparse and fixed, its model size and energy con-
sumption compare favorably to other recurrent networks. To illus-
trate this point, we estimate the number of compute operations and
the energy requirements for our LSM implementation compared
with an LSTM network with comparable performance on the FSDD
task [23]. See Appendix A for details.

Table 1 compares the total number of arithmetic operations dur-
ing a forward pass and the number of weight updates per training
iteration, as well as memory requirements.

Table 2 compares energy consumption for the same networks,
estimated for 32-bit and 16-bit floating-point operations. We also
include 8-bit integer operations, which are supported in hardware
by several recent ML accelerators.

As seen in the tables, the resource requirements for the LSM
are considerably lower than for the LSTM: 85% smaller memory
footprint and 86% lower energy cost. Even when including the
auxiliary context inference network, the memory size is 71% smaller
and the energy cost 71% lower than for the LSTM.

Network # Ops (FP) # Weight Updates Model size (Mb)

LSM without CI 1,195,620 10,010 2.3
LSM with CI 2,383,232 16,016 4.6
LSTM 8,536,020 4,270,010 16.3
Ops: Synaptic operations; FP: Forward Pass; CI: Context inference network

Table 1: Comparison of the number of operations (additions
and multiplications) in a forward pass, the number of weight
updates per training iteration, and memory usage for the
LSM networks applied to FSDD as described in this paper,
and also for an LSTMnetwork with comparable performance.
The LSM without context inference network (CI) is used in
the "no context" and "known context" scenarios, and the LSM
with CI is used in the "inferred context" scenario. The model
sizes are calculated for 32-bit floating-point representation.
See Appendix A for calculations.

Network Energy(32-bit FP) Energy(16-bit FP) Energy (8-bit INT)

LSM without CI 75.3 × 10−6 J 25.1 × 10−6 J 6.0 × 10−6 J
LSM with CI 150.1 × 10−6 J 50.0 × 10−6 J 11.9 × 10−6 J
LSTM 537.5 × 10−6 J 179.3 × 10−6 J 42.7 × 10−6 J

FP: Floating Point; INT: Integer

Table 2: Estimated computational energy requirements for
each of the networks when realized with either FP-32, FP-16,
or INT-8 operations [26]. See Appendix A for calculations.

Table 3 compares our model’s accuracy on the FSDD and Motion-
Sense tasks with the best-performing previously published LSM
implementation and state-of-the-art non-spiking networks.

Model Network Task Accuracy

Kang [14] LSM FSDD 0.930
Ours LSM FSDD 0.958 ± 0.012
Ours LSM with CI FSDD 0.969 ± 0.014
Reddy [23] CNN FSDD 0.987

Haresamudram [8] CPC MotionSense 0.918 ± 0.22
Ours LSM MotionSense 0.946 ± 0.003
Ours LSM with CI MotionSense 0.948 ± 0.002
Bernau [3] LSTM/CNN MotionSense 0.99

Table 3: Performance on the FSDD and MotionSense tasks.

5 DISCUSSION
We designed a mechanism for modulating the dynamics of an LSM
in a context-dependent manner. We show that context modulation
can improve classification accuracy, reduce resources needed to per-
form classification, and enable an LSM to classify objects differently
based on context.

For both datasets, the classification accuracy improvements are
small. There are several possible explanations for why we observe
minimal improvements. Here, we have chosen context signals based
on obvious characteristics of the dataset. For example, in the FSDD
dataset, we chose to use speaker ID as a context signal, not because
we had reason to believe it would be particularly informative, but
because it was available in the dataset. Perhaps there are less ob-
vious contexts that would yield better results. This work would
benefit from research aimed at understanding how to identify a
good context signal and determinewhether datasets have properties
that make them more amenable to improvements in classification
accuracy from context modulation. In addition, classification of the
datasets used here is already quite good without context modula-
tion. It remains to be seen whether context modulation will make
more of a difference for datasets where the baseline classification
accuracy is lower.

A perhaps more interesting result is that context modulationmay
enable more efficient use of resources. As shown with the FSDD
dataset, although the single context-modulated network showed
slightly lower accuracy than the average across the single-speaker
networks, the number of neurons needed to perform classification
was reduced by approximately half. It will be interesting to see
if this result holds for different datasets and how this scales to
larger datasets. This result also implies that our context modulation
mechanism does not simply divide the network into independent
subpopulations for classification. Rather, it seems that neurons are
reused between contexts. An interesting line of inquiry would be
to understand how the dynamics of the reservoir differs between
contexts, and further, to identify what aspects of this change can
lead to resource conservation.

Another interesting result is that context modulation can enable
multiple classifications of the same samples depending on context.
In essence this also illustrates how the use of one network with
context modulation enables efficient resource use. The alternative
would be to have separate networks performing different classifica-
tion tasks according to the context.
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In addition to the efficiency benefits of context modulation as de-
scribed above, LSMs are spiking networks and can be implemented
on power-efficient neuromorphic hardware, further amplifying
their energy advantage [6, 7]. On the other hand, our LSM imple-
mentation does not quite match the accuracy of state-of-the-art
non-spiking networks; this is an area for further improvement.

In conclusion, this preliminary work provides evidence that con-
text modulation can enable more efficient resource use in LSMs and
can also enable different data classifications in the same network.
It is likely that context modulation will become a powerful tool to
reduce the resources needed in a variety of artificial intelligence
applications.
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A MODEL SIZE AND ENERGY ESTIMATES
A.1 LSM
The number of neurons in the LSM network is 𝑁𝑛 = 𝑁𝑖𝑛𝑝 + 𝑁𝑟𝑒𝑠 +
𝑁𝑜𝑢𝑡 . The number of synapses is 𝑁𝑠 = 𝑁𝑖𝑛𝑝 ∗𝑁𝑟𝑒𝑠 ∗𝐷𝑖𝑛𝑝 +𝑁𝑟𝑒𝑠

2 ∗
𝐷𝑟𝑒𝑠 + 𝑁𝑟𝑒𝑠 ∗ 𝑁𝑜𝑢𝑡 , where 𝐷𝑖𝑛𝑝 = 0.6 and 𝐷𝑟𝑒𝑠 = 0.58 are the
fraction of nonzero input-to-reservoir and intra-reservoir connec-
tions, respectively. For the FSDD task, the digit classifier LSM has
𝑁𝑖𝑛𝑝 = 13, 𝑁𝑟𝑒𝑠 = 1000, and 𝑁𝑜𝑢𝑡 = 10, and the context identifier
(CI) has 𝑁𝑖𝑛𝑝 = 13, 𝑁𝑟𝑒𝑠 = 1000, and 𝑁𝑜𝑢𝑡 = 6.

The memory size equals one word per input neuron (𝑁𝑠 ), three
per reservoir neuron (𝑁𝑟𝑒𝑠 ) (potential, refractory timer, and xtrace),
and two per readout neuron (𝑁𝑜𝑢𝑡 ) (activation and bias), plus one
per synaptic weight (𝑁𝑠 ). In addition, the digit-classifier LSM (but
not the CI) requires 𝑁𝑐𝑡𝑥 ∗ 𝑁𝑟𝑒𝑠 words for the context-dependent
spiking thresholds, where 𝑁𝑐𝑡𝑥 = 6. For FP-32 representation, this
results in a total memory size of 2.3M bytes and 4.6 Mbytes
without and with the CI, respectively.

The operation count for a forward pass is one multiplication
and one addition per synapse, plus one bias addition per readout
neuron. This adds up to 1,195,620 operations for the LSM without
CI, and 2,383,232 for the LSM with CI.

The number of weights to update per training iteration is 𝑁𝑟𝑒𝑠 ∗
𝑁𝑜𝑢𝑡 +𝑁𝑜𝑢𝑡 , i.e., 10,010 for the LSM without CI and 16,016 for the
LSM with CI.

A.2 LSTM
As an example of an LSTM network with FSDD performance compa-
rable to our LSM network, the Keras-based LSTM implementation
in [23] achieves 0.98 accuracy on the task when configured with a
hidden state of size 1000 and applied to speech samples that have
been preprocessed into 64x64 spectrograms (64 time steps, 64 fre-
quency bands). The network consists of an LSTM layer with input
size 64 and hidden/output size 1000, followed by a dense (fully
connected) layer with ten linear units, and a softmax layer.

Figure 6: LSTM network. The network consists of an LSTM layer,
a dense layer and a softmax function. The numbers indicate vector
dimensions.

Figure 7 illustrates the components of the LSTM layer.

Figure 7: LSTM. The arrows are vectors and the pink circles rep-
resent element-wise vector operations, ⊗ for multiplication, ⊕ for
addition, and 𝑡𝑎𝑛ℎ for the tanhyp function. The yellow boxes rep-
resent multiplication by a (trainable) weight matrix followed by
element-wise application of a sigmoid (𝜎) or tanhyp (𝑡𝑎𝑛ℎ) function.
Merging lines represent vector concatenation and diverging lines
represent copying. 𝑋𝑡 is the 𝑖𝑛𝑝𝑢𝑡 at time 𝑡 and ℎ𝑡 is the 𝑜𝑢𝑡𝑝𝑢𝑡 ,
also known as the ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 , which is recurrently passed on to
the next time step, as is 𝐶𝑡 , the cell state. The three ⊗ components
are called the forget gate, input gate and output gate, respectively,
hence the names 𝑓𝑡 , 𝑖𝑡 and 𝑜𝑡 for the corresponding gating vectors.
Adapted from [20].

The following equations define the processing during a single
timestep:

𝑓𝑡 = 𝜎 (𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 ) (1)
𝑖𝑡 = 𝜎 (𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖 ) (2)

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝐶 ) (3)

𝐶𝑡 = 𝑓𝑡 ∗𝐶𝑡−1 + 𝑖𝑡 ∗𝐶𝑡 (4)
𝑜𝑡 = 𝜎 (𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜 ) (5)
ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡 ), (6)

where · represents matrix/vector multiplication and ∗ is element-
wise multiplication. 𝑏 𝑓 , 𝑏𝑖 , 𝑏𝐶 and 𝑏𝑂 are trainable bias vectors. The
dimension of 𝑋𝑡 is 64, and that of 𝐶𝑡 , ℎ𝑡 , 𝑓𝑡 , 𝑖𝑡 and 𝑜𝑡 is 1000. The
four weight matrices have dimension 1000×(64+1000) = 1, 064, 000.

The numbers of multiplications, additions and squash opera-
tions (sigmoid or tanhyp) in a forward time step are therefore:

Equation Mul Add Squash

(1) 1,064,000 1,065,000 1,000
(2) 1,064,000 1,065,000 1,000
(3) 1,064,000 1,065,000 1,000
(4) 2,000 1,000 0
(5) 1,064,000 1,065,000 1,000
(6) 1,000 0 1,000
Dense 10,010 1,000 0
Softmax 10 0 0

Total 4,269,020 4,262,000 5,000

The softmax and squash operations are conservatively counted as
equivalent to multiplications, for a total of 8,536,020 add or mul
operations.

https://doi.org/10.1109/MCE.2017.2685159
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https://doi.org/10.1109/TCSI.2022.3147380
https://doi.org/10.1016/j.neunet.2020.01.031
https://doi.org/10.1016/j.neunet.2020.01.031


LSM Context Modulation ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA

The LSTM’s memory size is calculated as the combined sizes of
the four weight matrices plus the dense output layer, each with their
bias vectors: 4 ∗ ((𝑁𝑖 +𝑁ℎ) ∗𝑁ℎ +𝑁ℎ) +𝑁ℎ ∗𝑁𝑜 +𝑁𝑜 = 4, 270, 010.
With FP-32 representation, this amounts to 16.3 Mbytes.

A.3 Energy estimates
We estimate the energy consumption for a forward pass by multi-
plying the operation counts by upper-bound estimates of energy
per operation for a range of AI/ML processors [26]: 6.3 × 10−11 J
for FP-32, 2.1 × 10−11 J for FP-16, and 5.0 × 10−12 J for INT-8.
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