
UTSA Journal of Undergraduate Research and Scholarly Works

Volume 7 December 2020

1

Application of Neuroevolution

in Blackjack

Iraz K. Tejani

University of Texas at San Antonio

School of Business

ABSTRACT

Blackjack is one of the few casino games with an
extremely low house edge. In the past, many brute force

simulations have been done to derive basic strategy.

Classical brute force methods are tedious, time

consuming, and often require hundreds of millions of

games played to achieve results. In this project, I use

reinforcement learning, specifically neuroevolution (NE),

which is an attempt to simulate biological evolution, to

see if an artificial neural net (ANN) can evolve to learn

basic strategy and achieve the theoretical maxima

provided by a basic strategy simulation. Two main

simulations are run in this project, one using basic

strategy charts and the other using the evolved ANN.
These are then compared to see how effective the ANN

was in learning strategy as well as how quickly it was able

to learn.

Keywords: Neuroevolution of Augmenting Topologies,

Blackjack, Reinforcement Learning, Artificial Neural Net

2

1. Introduction

Neuroevolution (NE) has been widely

researched and studied for the past thirty years.

While in the beginning NE algorithms were

primarily focused on evolving only the weights

of connections in an artificial neural network

(ANN), more recently in 2001 with the

publication of the Neuroevolution of

Augmenting Topologies (NEAT) paper, it was

found that evolving the network topologies

alongside the weights outperformed traditional

fixed-topology networks [1]. In comparison to a

NE system with a fixed topology, Enforced

Subpopulations (ESP), NEAT performed five

times faster. Due to this discovery, NE was able

to become much more viable in use for

reinforcement learning tasks since it requires

drastically less computing power. In my project,

I assess the ability of NEAT to learn strategy in

blackjack in comparison to earlier brute force

simulations. The first brute force simulations

arose in the 1980s where Julian Braun of IBM

had written a program which would go through

each possible combination of cards trying every

possible move and state the probabilities of the

various outcomes [2]. Needless to say, this is

very computationally expensive and requires

hundreds of millions of games played for

optimal results.

1.1 Motivation

The primary motivation for this project was to

evaluate the effectiveness of using NE to derive

strategy in blackjack. Blackjack was chosen

since it has one of the lowest house edges out of

your standard selection of casino games which

basically means you still lose money, just a lot

slower than other games [3]. The house edge

varies between each casino where it is common

to have different rules and even different rule

sets for specific tables. For example, one table

can have a single deck shoe (device which holds

dealer’s cards) and will allow the player to

double after a split. While another table in the

same casino may have a six deck shoe, which is

known to lower the house edge, but not allow

the player to double after a split. Some casinos

have side bets as well, allowing you to bet on

the values of cards such as a flush or a straight

however I will not be addressing these since

they are not standardized in any set of rules.

1.2 NEAT Overview

This section provides a high level understanding

of how NEAT works. For this project, I use the

library NEAT-Python which is highly

documented and has been extensively used for

training games in the past [4]. At first a

population of default genomes is created with

minimal structure. Each genome contains

genetic encoding which details the connection

nodes and their associated details such as

weight, innovation number (IN), and the in/out

nodes (see Figure 1).

Figure 1. Illustration of genome translated to a

network [1].

The main method of evolution of these genomes

is through two types of mutations. One is the add

connection mutation, and the other is an add

node mutation. In the add connection mutation,

two unconnected nodes will form a connection

and in the add node mutation a connection is

split in two adding a node in between [1]. In the

event of a crossover you will need to reference

the IN. The IN is a number assigned to each

3

gene in a so that when performing a crossover,

you are able to determine the historical context

of the gene and match accordingly. The last

main concept NEAT uses is speciation. To

preserve certain network structures and their

mutations, the population is split into separate

species so that they can compete with others in

their own species. The performance of the

population is judged by a fitness function which

returns a single value that determines the

effectiveness of a genome. The most fit can be

the genome with either the maximum,

minimum, or mean fitness value.

1.3 Blackjack Rules

For this version of blackjack, the following rules

are used:

• Single deck, cards are shuffled every round.

• Dealer will stand on soft 17 hands.

• Payouts are: 3-2 for hands of Blackjack

(natural), 1-1 for all other wins.

• Split up to two hands every round.

• Double after split is allowed.

• Upon splitting Aces, re-splitting is not

allowed. Only one more card will be received. If

a split Ace receives a 10-value card, that hand is

not considered Blackjack.

• It is allowed to surrender the initial two-card

hand returning half of the original bet.

This rule set provides a house edge of about

0.46% with a standard deviation of 1.14, which

seems low compared to other variants but is still

found common in casinos regardless [3].

2. Basic Strategy Simulation

To assess the effectiveness of the trained net,

there is a need to have a baseline to compare our

results with. To do this I first create a simulation

environment which plays using premade

strategy charts to determine the theoretical

maximum rate of return, as well as the percent

of games won. These strategy charts were

derived from the brute force methods mentioned

earlier. A player can either have a hard, soft, or

splittable hand. If the hand contains no ace then

it is labeled hard, however if it does then it will

be considered soft. This is because an ace card

has a dynamic value where it can be either 11 or

1 depending on whether the player has bust.

There is a different chart for each of the three

scenarios.

Figure 2. Strategy chart used for the simulation.

H(hit), S(Stand), Dh/Ds(Double), Rh(Surrender

if allowed otherwise hit), P/Ph (Split) [3].

To use this chart in the simulator, I simply save

it as a matrix, or a list of lists in python, and pull

values from it depending on the value of the

hand, dealer shown card, and whether the hand

is hard soft or splittable. This simulation was run

one million times with a runtime of about 66

4

seconds while saving all game data. It could be

run further, but with saving the game data, the

file size quickly adds up with about one

megabyte per second ran.

Results (Percent)

Wins 42.54

Dealer Wins 45.06

Push 7.99

Surrendered 4.41

Player Blackjack 4.57

Dealer Blackjack 4.57

Hard 86.43

Soft 14.63

Table 1. Game Results from a simulation of one

million games using basic strategy.

Figure 3. Results from one million games of

blackjack using basic strategy and the balance

of the player throughout the games.

Results from the simulation show that a player

can expect a theoretical maximum win rate of

around 42.6% and a rate of return of about

99.6% (see Table 1 and Figure 3). Each hand

was only given one dollar to bet not allowing

any type of dynamic betting.

3. Applying NEAT

Figure 4. Beginning minimal structure of each

genome.

3.1 Inputs and Outputs

For the nets’ inputs, I will be using 3 different

values. Input 1 will be a binary value indicating

whether the deck is a hard of soft deck.

 𝑓(𝑣) = {
1 if 11 𝜖 {𝑣1, … , 𝑣𝑛}
0 otherwise

Where v is a vector of the player’s current hand.

This is an important input because strategy can

greatly differ depending if the player has a

usable ace or not. Having an ace allows the

player to take greater risk on higher hand totals

knowing they have a cushion preventing them

from a bust. The second input is a sum of the

players hand.

∑𝑣𝑖

𝑛

𝑖=1

Rather than inputting each individual card, I

input the sum of cards instead because the single

values are irrelevant. A case in which there is a

need to know the individual values would be if

the player was keeping a count (a method

players use to gain an advantage by keeping

track of cards played). The third input is the

value of the dealer card that is shown. For the

outputs, I have one single node as the output

5

split into five actions. Since I am using the tanh

activation function, the value of the output node

will be between -1 and 1 therefore each action

will be assigned a range of values between the

given limits.

𝑓(𝑜) =

{

1 𝑖𝑓 𝑜 < −0.6
2 𝑖𝑓 − 0.6 ≤ 𝑜 < −0.2
3 𝑖𝑓 − 0.2 ≤ 𝑜 < 0.2
4 𝑖𝑓 0.2 ≤ 𝑜 < 0.6
5 𝑖𝑓 0.6 ≤ 𝑜

Where o is an output value returned from the net

between -1 and 1. These values correspond to

the following moves: 1(surrender), 2(stand),

3(hit), 4(double), 5(split). If the net attempts to

make an illegal move such as splitting when it

does not hold two matching cards, it will be

forced to hit.

3.2 Fitness Functions

Two different fitness functions were used. The

first one attempts to maximize the rate of return.

This fitness function was essentially just the

sum of the total amount of money gained or lost

over n amount of games. Usually it would be

30,000 games, however if a net achieves the

highest fitness result then it will be run again

and the average between the two results will be

the final fitness. This function ended up not

working too well compared to the second one.

The second one maximized the number of

games won which also worked better to

maximize the rate of return as well. However, a

natural (blackjack) does not count towards the

number of wins since it is a random occurrence

and not one caused by the player. A net can also

completely fail and have its fitness equal to zero.

This would be if the net has gone through twenty

percent of the number of games to be played and

has not won more than a fifth of them. After

repeated training sessions it was found that nets

who did not meet this bottom line only stagnated

and soon became extinct.

3.3 Results

The best evolved net came from the second

fitness function where I start off with a fully

connected net with all input nodes connected to

the hidden layer and all those connected to the

output. The results came close to the theoretical

maxima, falling short on the rate of return since

it was not able to learn a few things such as

surrendering.

Figure 5. Strategy chart from the most fit

genome. H(hit), S(Stand), D(Double), P (Split if

possible otherwise hit).

Results(Percent)

Wins 42.68

Dealer Wins 49.54

Push 7.77

Surrendered 0.00

Table 2. Game Results from a simulation of one

million games using the most fit genome.

While comparing the basic strategy and NEAT

results, the net was unable to learn one

important thing which was the ability to

6

surrender (see Figure 5). Surrendering in games

where it is highly probable the player will lose,

results in around a 4% decrease in games won

for the dealer. While the NEAT simulation

resulted in 49.54% dealer wins, the basic

strategy results had a smaller 45.06% (see Table

2). Even though the net was able to reach the

theoretical maximum win rate it was not able to

maximize the rate of return coming out to

90.8%. Interestingly the rate of return was

higher on the second fitness function versus the

first which emphasized a higher return.

Figure 6. Evolution of fitness and species using

NEAT’s visualize function.

The net was quickly able to evolve within 5

generations achieving a high fitness right off the

bat, which could simply be an anomaly since

most of the other simulations took around 20

generations to reach this point.

4. Conclusion

In this paper, I run simulations in blackjack

using predetermined strategy and compare it to

the results from an ANN trained with NEAT.

Although NEAT was able to formulate a good

solution relatively quickly, it was not an optimal

one and could have used a small amount of

improvement. Some changes in the ANN’s

configuration or possibly a change in the fitness

function might be able to achieve this goal in the

future. Another method which may work better

in this case would be Q-learning which is also a

type of reinforcement learning.

References

[1]Stanley, Kenneth O., and Risto Miikkulainen.

“Evolving Neural Networks through

Augmenting Topologies.” Efficient Evolution of

Neural Network Topologies, 2002, pp. 99–127.

[2]Snyder, Arnold. “History of Blackjack: Julian

Braun, Blackjack Pioneer.” History of

Blackjack: An Interview with Julian Braun,

2005,

www.blackjackforumonline.com/content/brauni

nt.htm.

[3]Shackleford, Michael. “Wizard of Odds.”

Wizard Of Odds, wizardofodds.com/.

[4]“NEAT Overview.” NEAT, CodeReclaimers,

2015, neat-python.readthedocs.io

/en/latest/neat_overview.html.

[5]“Blackjack House Edge Calculator.” Blackjack

House Edge & Standard Deviation Calculator,

Beatingbonuses.com, 2006,

www.beatingbonuses.com/houseedge.htm.

[6]Lehman, Joel, and Risto Miikkulainen.

“Neuroevolution.” Scholarpedia, 2013,

www.scholarpedia.org/article/Neuroevolution.

[7]Winston, Patrick Henry. “Artificial

Intelligence.” MIT OpenCourseWare, 2010,

ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-034-artificial-intelligence-

fall-2010/.

http://www.beatingbonuses.com/

