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ABSTRACT 

Blackjack is one of the few casino games with an 
extremely low house edge. In the past, many brute force 

simulations have been done to derive basic strategy. 

Classical brute force methods are tedious, time 

consuming, and often require hundreds of millions of 

games played to achieve results. In this project, I use 

reinforcement learning, specifically neuroevolution (NE), 

which is an attempt to simulate biological evolution, to 

see if an artificial neural net (ANN) can evolve to learn 

basic strategy and achieve the theoretical maxima 

provided by a basic strategy simulation. Two main 

simulations are run in this project, one using basic 

strategy charts and the other using the evolved ANN. 
These are then compared to see how effective the ANN 

was in learning strategy as well as how quickly it was able 

to learn. 

Keywords: Neuroevolution of Augmenting Topologies, 

Blackjack, Reinforcement Learning, Artificial Neural Net 
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1. Introduction 

Neuroevolution (NE) has been widely 

researched and studied for the past thirty years. 

While in the beginning NE algorithms were 

primarily focused on evolving only the weights 

of connections in an artificial neural network 

(ANN), more recently in 2001 with the 

publication of the Neuroevolution of 

Augmenting Topologies (NEAT) paper, it was 

found that evolving the network topologies 

alongside the weights outperformed traditional 

fixed-topology networks [1]. In comparison to a 

NE system with a fixed topology, Enforced 

Subpopulations (ESP), NEAT performed five 

times faster. Due to this discovery, NE was able 

to become much more viable in use for 

reinforcement learning tasks since it requires 

drastically less computing power. In my project, 

I assess the ability of NEAT to learn strategy in 

blackjack in comparison to earlier brute force 

simulations. The first brute force simulations 

arose in the 1980s where Julian Braun of IBM 

had written a program which would go through 

each possible combination of cards trying every 

possible move and state the probabilities of the 

various outcomes [2]. Needless to say, this is 

very computationally expensive and requires 

hundreds of millions of games played for 

optimal results. 

1.1 Motivation 

The primary motivation for this project was to 

evaluate the effectiveness of using NE to derive 

strategy in blackjack. Blackjack was chosen 

since it has one of the lowest house edges out of 

your standard selection of casino games which 

basically means you still lose money, just a lot 

slower than other games [3]. The house edge 

varies between each casino where it is common 

to have different rules and even different rule 

sets for specific tables. For example, one table 

can have a single deck shoe (device which holds 

dealer’s cards) and will allow the player to 

double after a split. While another table in the 

same casino may have a six deck shoe, which is 

known to lower the house edge, but not allow 

the player to double after a split. Some casinos 

have side bets as well, allowing you to bet on 

the values of cards such as a flush or a straight 

however I will not be addressing these since 

they are not standardized in any set of rules. 

 

 

1.2 NEAT Overview 

This section provides a high level understanding 

of how NEAT works. For this project, I use the 

library NEAT-Python which is highly 

documented and has been extensively used for 

training games in the past [4]. At first a 

population of default genomes is created with 

minimal structure. Each genome contains 

genetic encoding which details the connection 

nodes and their associated details such as 

weight, innovation number (IN), and the in/out 

nodes (see Figure 1). 

Figure 1. Illustration of genome translated to a 

network [1]. 

The main method of evolution of these genomes 

is through two types of mutations. One is the add 

connection mutation, and the other is an add 

node mutation. In the add connection mutation, 

two unconnected nodes will form a connection 

and in the add node mutation a connection is 

split in two adding a node in between [1]. In the 

event of a crossover you will need to reference 

the IN. The IN is a number assigned to each 
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gene in a so that when performing a crossover, 

you are able to determine the historical context 

of the gene and match accordingly. The last 

main concept NEAT uses is speciation. To 

preserve certain network structures and their 

mutations, the population is split into separate 

species so that they can compete with others in 

their own species. The performance of the 

population is judged by a fitness function which 

returns a single value that determines the 

effectiveness of a genome. The most fit can be 

the genome with either the maximum, 

minimum, or mean fitness value.  

1.3 Blackjack Rules 

For this version of blackjack, the following rules 

are used:  

• Single deck, cards are shuffled every round. 

• Dealer will stand on soft 17 hands. 

• Payouts are: 3-2 for hands of Blackjack 

(natural), 1-1 for all other wins. 

• Split up to two hands every round. 

• Double after split is allowed. 

• Upon splitting Aces, re-splitting is not 

allowed. Only one more card will be received. If 

a split Ace receives a 10-value card, that hand is 

not considered Blackjack. 

• It is allowed to surrender the initial two-card 

hand returning half of the original bet. 

This rule set provides a house edge of about 

0.46% with a standard deviation of 1.14, which 

seems low compared to other variants but is still 

found common in casinos regardless [3].  

2. Basic Strategy Simulation 

To assess the effectiveness of the trained net, 

there is a need to have a baseline to compare our 

results with. To do this I first create a simulation 

environment which plays using premade 

strategy charts to determine the theoretical 

maximum rate of return, as well as the percent 

of games won. These strategy charts were 

derived from the brute force methods mentioned 

earlier. A player can either have a hard, soft, or 

splittable hand. If the hand contains no ace then 

it is labeled hard, however if it does then it will 

be considered soft. This is because an ace card 

has a dynamic value where it can be either 11 or 

1 depending on whether the player has bust. 

There is a different chart for each of the three 

scenarios. 

 

Figure 2. Strategy chart used for the simulation. 

H(hit), S(Stand), Dh/Ds(Double), Rh(Surrender 

if allowed otherwise hit), P/Ph (Split) [3]. 

To use this chart in the simulator, I simply save 

it as a matrix, or a list of lists in python, and pull 

values from it depending on the value of the 

hand, dealer shown card, and whether the hand 

is hard soft or splittable. This simulation was run 

one million times with a runtime of about 66 
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seconds while saving all game data. It could be 

run further, but with saving the game data, the 

file size quickly adds up with about one 

megabyte per second ran.  

 

 

Results (Percent)   

Wins  42.54 

Dealer Wins  45.06 

Push  7.99 

Surrendered  4.41 

Player Blackjack  4.57 

Dealer Blackjack  4.57 

   

Hard  86.43 

Soft  14.63 

Table 1. Game Results from a simulation of one 

million games using basic strategy. 

 

Figure 3. Results from one million games of 

blackjack using basic strategy and the balance 

of the player throughout the games. 

Results from the simulation show that a player 

can expect a theoretical maximum win rate of 

around 42.6% and a rate of return of about 

99.6% (see Table 1 and Figure 3). Each hand 

was only given one dollar to bet not allowing 

any type of dynamic betting.  

3. Applying NEAT  

 

Figure 4. Beginning minimal structure of each 

genome.  

3.1 Inputs and Outputs 

For the nets’ inputs, I will be using 3 different 

values. Input 1 will be a binary value indicating 

whether the deck is a hard of soft deck. 

 𝑓(𝑣) = { 
1   if 11 𝜖 {𝑣1, … , 𝑣𝑛} 
0   otherwise              

 

Where v is a vector of the player’s current hand. 

This is an important input because strategy can 

greatly differ depending if the player has a 

usable ace or not. Having an ace allows the 

player to take greater risk on higher hand totals 

knowing they have a cushion preventing them 

from a bust. The second input is a sum of the 

players hand. 

∑𝑣𝑖

𝑛

𝑖=1

 

Rather than inputting each individual card, I 

input the sum of cards instead because the single 

values are irrelevant. A case in which there is a 

need to know the individual values would be if 

the player was keeping a count (a method 

players use to gain an advantage by keeping 

track of cards played). The third input is the 

value of the dealer card that is shown. For the 

outputs, I have one single node as the output 
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split into five actions. Since I am using the tanh 

activation function, the value of the output node 

will be between -1 and 1 therefore each action 

will be assigned a range of values between the 

given limits.  

𝑓(𝑜) =

{
 
 

 
 
1   𝑖𝑓 𝑜 < −0.6                 
2   𝑖𝑓 − 0.6 ≤ 𝑜 < −0.2
3   𝑖𝑓 − 0.2 ≤ 𝑜 < 0.2    
4   𝑖𝑓 0.2 ≤ 𝑜 < 0.6        
5   𝑖𝑓 0.6 ≤ 𝑜                    

  

Where o is an output value returned from the net 

between -1 and 1. These values correspond to 

the following moves: 1(surrender), 2(stand), 

3(hit), 4(double), 5(split). If the net attempts to 

make an illegal move such as splitting when it 

does not hold two matching cards, it will be 

forced to hit. 

3.2 Fitness Functions 

Two different fitness functions were used. The 

first one attempts to maximize the rate of return. 

This fitness function was essentially just the 

sum of the total amount of money gained or lost 

over n amount of games. Usually it would be 

30,000 games, however if a net achieves the 

highest fitness result then it will be run again 

and the average between the two results will be 

the final fitness. This function ended up not 

working too well compared to the second one. 

The second one maximized the number of 

games won which also worked better to 

maximize the rate of return as well. However, a 

natural (blackjack) does not count towards the 

number of wins since it is a random occurrence 

and not one caused by the player. A net can also 

completely fail and have its fitness equal to zero. 

This would be if the net has gone through twenty 

percent of the number of games to be played and 

has not won more than a fifth of them. After 

repeated training sessions it was found that nets 

who did not meet this bottom line only stagnated 

and soon became extinct. 

3.3 Results 

The best evolved net came from the second 

fitness function where I start off with a fully 

connected net with all input nodes connected to 

the hidden layer and all those connected to the 

output. The results came close to the theoretical 

maxima, falling short on the rate of return since 

it was not able to learn a few things such as 

surrendering.  

Figure 5. Strategy chart from the most fit 

genome. H(hit), S(Stand), D(Double), P (Split if 

possible otherwise hit). 

Results(Percent)   

Wins  42.68 

Dealer Wins  49.54 

Push  7.77 

Surrendered  0.00 

Table 2. Game Results from a simulation of one 

million games using the most fit genome. 

While comparing the basic strategy and NEAT 

results, the net was unable to learn one 

important thing which was the ability to 
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surrender (see Figure 5). Surrendering in games 

where it is highly probable the player will lose, 

results in around a 4% decrease in games won 

for the dealer. While the NEAT simulation 

resulted in 49.54% dealer wins, the basic 

strategy results had a smaller 45.06% (see Table 

2). Even though the net was able to reach the 

theoretical maximum win rate it was not able to 

maximize the rate of return coming out to 

90.8%. Interestingly the rate of return was 

higher on the second fitness function versus the 

first which emphasized a higher return.  

 

Figure 6. Evolution of fitness and species using 

NEAT’s visualize function. 

The net was quickly able to evolve within 5 

generations achieving a high fitness right off the 

bat, which could simply be an anomaly since 

most of the other simulations took around 20 

generations to reach this point. 

 

4. Conclusion 

In this paper, I run simulations in blackjack 

using predetermined strategy and compare it to 

the results from an ANN trained with NEAT. 

Although NEAT was able to formulate a good 

solution relatively quickly, it was not an optimal 

one and could have used a small amount of 

improvement. Some changes in the ANN’s 

configuration or possibly a change in the fitness 

function might be able to achieve this goal in the 

future. Another method which may work better 

in this case would be Q-learning which is also a 

type of reinforcement learning. 
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