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ABSTRACT
Continual learning (sequential learning of tasks) is challenging
for deep neural networks, mainly because of catastrophic forget-
ting, the tendency for accuracy on previously trained tasks to drop
when new tasks are learned. Although several biologically-inspired
techniques have been proposed for mitigating catastrophic forget-
ting, they typically require additional memory and/or computa-
tional overhead. Here, we propose a novel regularization approach
that combines neuronal activation-based importance measurement
with neuron state-dependent learning mechanisms to alleviate cata-
strophic forgetting in both task-aware and task-agnostic scenarios.
We introduce a neuronal state-dependent mechanism driven by
neuronal activity traces and selective learning rules, with storage
requirements for regularization parameters that grow slower with
network size - compared to schemes that calculate weight impor-
tance, whose storage grows quadratically. The proposed model,
NEO, is able to achieve performance comparable to other state-of-
the-art regularization based approaches to catastrophic forgetting,
while operating with a reduced memory overhead.
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1 INTRODUCTION
Continual learning refers to an area of study that focuses on how
artificial neural networks (ANNs) can learn tasks sequentially from
a continual stream of data. Continual learning algorithms aim to
address a fundamental trade-off: the stability-plasticity dilemma
whereby a model that emphasizes stability tends to suffer from poor
forward transfer and adaptation to new tasks, whereas one that
is too plastic is unable to retain previously learned information, a

This work is licensed under a Creative Commons Attribution International
4.0 License.

NICE 2023, April 11–14, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9947-0/23/04.
https://doi.org/10.1145/3584954.3584960

phenomenon commonly known as catastrophic forgetting or inter-
ference [24]. Biological brains seem to have solved this dilemma,
being able to learn continuously throughout their lifetime. Taking
inspiration from neuroscience, researchers have proposed several
types of mechanisms to address catastrophic forgetting [6, 16].
These can broadly be classified into (i) activity-dependent para-
metric adjustments or regularization [12, 28, 31, 37], (ii) dynamic
architectures, including neurogenesis. [7, 20, 25–27], and (iii) re-
hearsal or replay of previous experiences [4, 23, 30, 32]. In this
paper, we focus on regularization-based approaches (also known
as metaplasticity-based [1]), which accommodate new learning
without expanding the network. Regularization methods work by
identifying network parameters that are important for previously
learned tasks and restricting modification of those parameters when
learning new tasks.

Typically, regularization-basedmethods implement a per-synapse
parameter that reflects each synapse’s importance for each task.
Examples include the diagonal Fisher information matrix used by
EWC [13], path integrals of gradient vectors in SI [37], Bernoulli
transmission probabilites andmagnitudes in Stochastic Synapses [28],
a variance term for each synapse in VCL [38], and hidden metaplas-
tic weights in Binary Metaplastic BNN [18]. While these methods
have proved effective in addressing catastrophic forgetting, the
need to store regularization parameters can increase a model’s
memory requirements by a factor of two or more, which can be
prohibitive for large models.

To avoid this problem, we here introduce a novel metaplastic-
ity approach (NEO) that is driven solely by neuron activations,
without requiring additional storage of per-synapse regularization
parameters for every synapse. Utilizing neuron-importance-based
regularization reduces the space complexity from O(𝑛2) to O(𝑛),
where n represents the number of neurons per layer in the network.
In NEO, each neuron’s importance for previously learned material
is gauged based on its activity, and used to regularize synapses
and update the learning mechanism. This method does not require
additional storage of per-synapse regularization parameters for
every synapse, thereby reducing the space complexity from direct
quadratic growth. There have been other attempts to implement
regularization based on neuron importance [10, 11]; however these
were able to operate only in scenarios where task-identifying infor-
mation was provided to the network.

The proposed approach, NEO introduces a neuronal state
variable that depends on each neuron’s activity history and
is used to selectively regularize, rescale, or prune synapses
to alleviate forgetting in both task-aware and task-agnostic
scenarios.
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For evaluation of NEO, we use both the task-incremental learn-
ing (Task-IL) and the domain-incremental learning (Domain-IL)
scenarios for sequential learning. In both scenarios, the probability
distribution of inputs differs between tasks, but the distribution
of target labels does not change. They differ in that Domain-IL
requires that no task-identity or task-boundary information be
provided during training or inference [9, 33, 34].

1.1 Related Work
Regularization approaches. Techniques like EWC [12] and SI [37]

select important parameters by using a Fisher Information matrix
or tracking synapses’ credit in improvement on a task, respec-
tively. Other models [5, 14, 21] select parameters that preserve the
distribution of latent representations for each task. Laborieux et
al.[18] applied a version of metaplasticity to a binary neural net-
work model, making synapses with weights of greater magnitude
less plastic, thus protecting them from modification by subsequent
training. Steger et al. [28] used stochastic weights with Bernoulli
transmission probabilities and altered the learning rate of important
weights to preserve information.

Importance measurement. Importance-based regularization meth-
ods may be classified according to which entities they attribute
importance to (neurons or weights) and how they measure im-
portance. Kim and Lee [11] identify three categories: 1) Weight
Importance measurement using weight statistics, 2) Neuronal im-
portance measurement using weight statistics and 3) Neuronal
importance measurement using neuronal behavior/statistics. A fea-
ture that is common to the previously mentioned regularization
approaches is the calculation of weight importance metrics using
weight statistics. In the second of these regularization approaches,
neuronal importance is measured based on presynaptic weight sta-
tistics. Rather than maintaining an importance parameter for each
weight, a single importance value is calculated for each neuron and
used to regulate the learning of all of its incoming weights.

In Uncertainty-regularized Continual Learning [2], neuronal im-
portance is measured by means of an ‘uncertainty’ factor that is
computed from the variability during training of each neuron’s
incoming weights. The idea is that weights that are important for a
task tend to vary less during training, thus a neuron’s importance
for a task can be measured based on the stability of its incoming
weights during training of that task.

An alternative approach to identifying important neurons in-
volves using only neuronal activation levels and firing dynamics.
The work presented in [10] utilizes average activation level to de-
termine the importance of neurons and further exploits proximal
gradient descent to perform regularized updates. After calculating
the neurons’ importance values, incoming weights to important
neurons are frozen and outgoing weights from unimportant neu-
rons are pruned.

Neuronal-importance-based regularization approaches have been
shown to achieve near-state-of-the-art performance on image classi-
fication tasks, but only in scenarios where task identity was known.
By contrast, weight-importance-based approaches have demonstrated
superior performance even in task-agnostic settings, specifically in
the domain-incremental learning (Domain-IL) scenario.

1.2 Main contribution
We introduce a novel neuronal-state-based regularization approach
that eliminates the need for storing per-synapse regularization param-
eters. The state of each neuron is calculated based on its cumulative
average activation level, and each synaptic weight is updated using
one of a set of update rules, selected based on the states of the
synapse’s presynaptic and postsynaptic neurons.

Our model achieves performance on par with state-of-the-art
weight-importance based regularization mechanisms. Unlike pre-
vious neuronal-importance-based regularization approaches, our
model is able to learn in an online task-agnostic manner while
demonstrating performance comparable to other task-agnostic reg-
ularization based mechanisms in the domain-incremental learning
scenario. NEO is able to show these capabilities while operating
within ∼ 1.002-1.5x memory overhead.
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Figure 1: Neuron states and transitions in the proposedmodel.
A neuron can be in any of three states, Unimportant, Plastic
or Important. At every state transition interval, depending
on trace activity level, it may transition from one state to the
other.

2 METHODOLOGY
2.1 Problem Formulation and Notation
We formulate the continual learning problem ℱ as the ability to
learn tasks in a sequential manner, without suffering severe perfor-
mance loss on previously learned tasks when new ones are learned.
Formally, we consider a distribution of tasks D = {𝑇 1,𝑇 2 ...𝑇𝑁 } for
𝑁 ∈ Z+, wherein each task 𝑇𝑘 is a set (X𝑘 ,Y𝑘 ) of ordered pairs of
input data points and their corresponding class labels. Performance
on the problem ℱ is evaluated by first training the network on
the tasks {𝑇 𝑖 } sequentially, then measuring the mean performance
Ψ(D) ≡ ` ({𝜓 (𝑇 1),𝜓 (𝑇 2), ...,𝜓 (𝑇𝑘 )}), where𝜓 (𝑇𝑘 ) represents the
network’s test performance on task 𝑇𝑘 . The goal of the network is
to maximize Ψ(D) after learning task 𝑇𝑘 .

In this manuscript, we denote 𝑎𝑛 to represent the activation and
\𝑛𝑡 to represent the activity trace of neuron 𝑛 at sample 𝑡 repre-
sented by (𝑥𝑡 , 𝑦𝑡 ). The weights are represented using𝑤𝑖 𝑗 , wherein 𝑖
represents the pre synaptic neuron and 𝑗 represents the post synap-
tic neuron. The net activity of a layer is represented by 𝐴𝑙 , where 𝑙
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Figure 2: The network training phase with the neuronal state update and the policies applied after the states have been identified.
After every state update interval T , the state of the neurons are identified. Then based on the state, the connections are either
regularized, decayed, rescaled or remain unchanged.

represents the layers in the network. 𝜏 is used to denote the acti-
vation thresholds in the network and the state update interval is
represented by T .
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Figure 3: The correlation between the classification perfor-
mance and the active neurons in an MLP trained on MNIST.
When the connections to the highly active neurons are
reinitialized, a significant drop in performance is observed,
whereas reinitializing the connections from least active neu-
rons barely affects the performance.

2.2 Neuronal States and Importance
In the proposed model, neurons have a state variable that may
take any of the three values, Unimportant, Plastic or Important, see
figure 1. All neurons are initialized with the state set to Plastic,
in which new information can be learned by updating adjacent
synapses as needed. The state of each neuron is computed by keep-
ing track of its activation value during training. The activation trace
(\𝑛) is computed as the rolling average of the neuron’s activation

value (𝑎𝑛) using Welford’s online algorithm [35].

\𝑛𝑡 = \𝑛𝑡−1 +
(𝑎𝑛 − \𝑛

𝑡−1)
𝑡

(1)

where 𝑡 represents the sample number being presented to the net-
work. At every state update interval, state transitions can take place.
The trace value is compared to two thresholds (𝜏𝑢𝑝 and 𝜏𝑙𝑜𝑤 ) to
determine whether a neuron can transition to the Unimportant,
Plastic, or Important state:

𝑁𝑒𝑢𝑟𝑜𝑛_𝑠𝑡𝑎𝑡𝑒 =


IMP, if \𝑛𝑡 > 𝜏𝑢𝑝

PLASTIC, if 𝜏𝑙𝑜𝑤 ≤ \𝑛𝑡 ≤ 𝜏𝑢𝑝

UN-IMP, if \𝑛𝑡 < 𝜏𝑙𝑜𝑤

(2)

The parameter \𝑛 represents the average activity of the neuron
in response to the observed samples. The conditions presented in
Equation 2, show that the highly active neurons are considered to
be important with respect to the task being learned. Moreover, it is
important to note that with reference to figure 1, once a neuron en-
ters an Important state, the neuron does not shift states. Equation 2
applies to the plastic and unimportant neurons which can switch
and change states.

There are twoways of representing neuronal importance, namely
importance based on the weight measurement and importance
based on neuron activity measurement.

2.3 Why activation-based importance
An activation can be considered as the basic unit for representing
the learned information from a task. The importance of the neu-
rons can be determined by measuring the values of activation of
the neuron in response to the inputs being sent in. Catastrophic
forgetting occurs when the information received by the neurons
changes while learning new tasks. To understand how activations
can determine the importance of a task, we performed an analysis
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(a) Distribution of per-unit average activations in layer 1 (b) Distribution of per-unit average activations in layer 2

Figure 4: The distribution of activations (ReLU) in a MLP with 2 hidden layers of size 400 each, trained on the MNIST dataset
using backpropagation. The distribution is computed by taking an average of the activations over 1000 samples post training. It
can be observed that the distributions are highly skewed.

Figure 5: The skewness of the per-layer activation distribu-
tion in the hidden layers of an MLP trained on MNIST for 10
epochs. It can be seen the skewness of the activations does
not change with respect to the training time.

to measure how important the activity of neurons correlates to the
performance. Figure 3 shows that removal and reinitialization of
neurons which were highly active (with high \𝑛 values) hurts the
performance of the model in comparison to reinitialization of neu-
rons with lower activity. Additionally, to determine how to select
the important neurons from the rest of the activations, the skewness
and the distribution of average activation response is measured.
Figure 4 shows the distribution of per-unit average activation for
1000 samples of MNIST dataset. As can be observed, the distribution
is heavily skewed in both the hidden layers, which demonstrates
that there are few set of important neurons that could be used to
represent the important features selective to a particular task. Here,
the average activation is measured as a function of the state update
interval and the activity over time. Every average activation value
shown in figure 4 is computed as

dl = ( 1T ) ∗
T∑︁
𝑡=1

alt (3)

, where alt represents the vector of activation values of a layer at
sample 𝑡 and dl represents a vector of average activation distribu-
tion over the interval T which is set to 1000 in this case. Since
figure 4 shows the distribution post training, the skewness of acti-
vations was tested while training, as shown in figure 5. The high
skewness among the activations remains high throughout the train-
ing process. This can be attributed to the use of ReLU activation
function which maps all negative pre-activations to 0. Moreover,
prior studies have observed that using ReLU leads to highly skewed
per layer activation distribution for different architectures [8, 17].
Therefore the skewness can be used to determine the 𝜏𝑢𝑝 and 𝜏𝑙𝑜𝑤
thresholds presented in Equation 2.

2.4 Neuronal state-based learning mechanisms
The works presented in [10, 11] either regularize or prune and reini-
tialize the entire set of outgoing or incoming weights connected to
the neuron in reference. This does not encourage greater informa-
tion transfer between tasks and shuts off regions of the network
entirely while learning later tasks. Moreover, reinitalizing the con-
nections entirely can affect the neuron activation response of the
previously important and unimportant neurons therein leading to
a loss in performance. To avoid the unstable behavior and sections
of network being pruned off for the entire lifetime, a set of learning
rules are derived based on the state of the neuron.

Based on the states of the neurons, there are 9 different types of
possible connections between neurons across the layers. For some
of the connections, additional mechanisms are required along with
SGD weight updates to address catastrophic forgetting, and rest
of the weights undergo standard SGD updates. Table 1 shows the
mapping of the connections to the different learning mechanisms.

• Important-> Important neuron - The connections be-
tween important neurons are regularized and any change
in the weight connecting those neurons is penalized. This
enables greater retention of information for the newer tasks.
The weight 𝑤𝑙

𝑖 𝑗
connecting 𝑖𝑡ℎ neuron in layer 𝑙 to the 𝑗𝑡ℎ

neuron in layer 𝑙 + 1 is regularized according to

Δ𝑤𝑙
𝑖 𝑗∗ = 𝛼 ∗ (

���1 − ( \𝑖𝑡

\𝑖
𝑡−1

)2���) (4)
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,where \𝑖𝑡 represents the activation trace for the neuron in
layer 𝑙 (pre-synaptic neuron) and 𝛼 is a learning rate param-
eter in the R ∈ [0.001, 0.1]. Equation 4 represents that the
neurons selected as important are penalized based on how
high the activation trace is. A higher activity trace leads to
the connection being regularized heavily (similar to freezing
the connection). This rule enables the previous knowledge
to be preserved among the important neurons.

• Plastic -> Important neuron - The connections from plas-
tic to important neurons go through a slow decay process.
While a neuron is plastic, either it can become active while
learning earlier tasks or switch to unimportant state due to
low activation response over time. However, these changes
in states can in turn lower the activation response for the
important neurons in the next layer. Therefore a slow decay
process is applied to the connections wherein the outgoing
connection from the plastic neuron despite of the sudden
changes in later tasks attempts to keep the weight closer
to the initial value for consolidation of previous knowledge.
The weight from a plastic neuron 𝑖 in layer 𝑙 to an important
neuron 𝑗 in layer 𝑙 + 1 is updated according to

𝑤𝑖 𝑗 = 𝑤𝑖 𝑗 + 𝛽 ∗ (𝑤𝑟𝑒 𝑓

𝑖 𝑗
−𝑤𝑖 𝑗 )︸               ︷︷               ︸

Decay term

− (1 −
𝑤
𝑟𝑒 𝑓

𝑖 𝑗

𝑤𝑖 𝑗
) ∗ 𝛽

′

︸              ︷︷              ︸
Magnitude penalty

(5)

wherein the𝑤𝑟𝑒 𝑓

𝑖 𝑗
represents the reference weight that was

noted when neuron 𝑗 in layer 𝑙 + 1 was identified as im-
portant. The decay term penalizes based on how much the
weight has moved from the reference value post update. The
magnitude penalty adds further decay to the weights with
higher magnitude and active plastic neuron. 𝛽 is the scaling
parameter in R ∈ [0.001, 0.1] based on the type of connec-
tion. 𝛽

′
is a magnitude and activity rate parameter wherein

𝛽
′
= \𝑖𝑡 ∗ 𝛽 . It is important to note that the weight decay

mechanism is applied post weight update using gradients.

• Unimportant -> Important neuron - These connections
also undergo a similar decay mechanism wherein the depen-
dency of the unimportant neuron in the activation behavior
of the important neuron is reduced. This leads to an almost
stable connection which is unaffected by the change in the
state of the unimportant neuron while learning new tasks.

Connection Type Learning Mechanism

IMP->IMP Regularize (Eq 4)
Plastic->IMP Slow decay (Eq 5)
UN-IMP->IMP Fast decay (Eq 5,6)

UN-IMP->Plastic Rescale/Re-init/Unchange (Eq 7)
UN-IMP->UN-IMP Rescale/Re-init/Unchange (Eq 7)

Others No additional rule

Table 1: Mapping of the different connection types and the
learning mechanisms based on the neuronal states.

To enable this, the decay rate 𝛽 specified in Equation 5 is in-
creased to a higher rate. In this case𝑤𝑟𝑒 𝑓

𝑖 𝑗
can be set to a fixed

value in R ∈ [𝑤𝑚𝑖𝑛, 0.1], therein avoiding the need to keep
track of a reference weight. This ensures that the weight is
decayed to the reference value despite of the changes in the
activation trace of the unimportant neuron for future tasks.
Therefore, for these neurons, 𝛽

′
is set to 0, completely remov-

ing the magnitude penalty term and incorporating higher
ranges for 𝛽 . One way to ensure a dynamic representation
of 𝛽 is by using the following:

𝛽𝑛 =
1
T ∗ |𝐴𝑙 − \𝑛𝑡 |2 ∗ 𝛽𝑏𝑎𝑠𝑒 (6)

where, 𝐴𝑙 represents the average activation of the layer, T
represents the state update interval, and \𝑛𝑡 represents the
activity trace of the neuron of interest (pre-synaptic neurons
i.e. unimportant neuron). 𝛽𝑏𝑎𝑠𝑒 represents the base decay
parameter in R ∈ [0.01, 0.1].

• Unimportant->Plastic/Unimportant neuron - The out-
going weights from the unimportant neurons can undergo
either of the four different options. One option is to entirely
prune the connections off [10]. This option can be realized
by setting 𝑤𝑟𝑒 𝑓 in Equation 5 to 0 and make the weight
eventually decay to a value close to 0. However, this leads to
neurons being pruned off and having an inefficient use of the
capacity of the network. To avoid this, the other option was
to prune and then reinitialize the weights of the unimportant
neurons. Re-initialization allows the unimportant neurons to
get the opportunity to become plastic/important for future
tasks. Enhancing plasticity using reinitialization can lead
to interference with the previously learned knowledge by
either having shadow activations (duplicate neurons firing
for the same input) or affecting the response of other impor-
tant neurons. To address this, a third option is introduced
which involves connection strength based rescaling between
the unimportant neurons (upscaling the low values weights).
Rescaling enhances network plasticity without interfering
with the previous activity response of the network.

𝑤𝑖 𝑗 = 𝑤𝑖 𝑗 ∗ (1 + [ ∗ (1 − 𝑒𝑥𝑝

( 1
𝑤𝑖 𝑗

)
)) (7)

Equation 7 represents the scaling formula for the weights
connecting unimportant neurons, where𝑤𝑖 𝑗 represents the
outgoing weight from an unimportant neuron 𝑖 in layer 𝑙 to
another unimportant/plastic neuron in layer 𝑙 + 1. The final
option involves keeping the outgoing weights unchanged
for unimportant neurons. An ablation study is performed
and included in Section 3.

3 RESULTS AND ANALYSIS
3.1 Experimental Setup
We evaluate NEO on split image classification benchmarks us-
ing 5-Split MNIST [19], Fashion-MNIST [36] and CIFAR-10 [15]
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datasets under both the task incremental and task-agnostic domain-
incremental continual learning scenario [9, 33]. In the case of task-
incremental learning (Task-IL), the model is aware of the task iden-
tity during training and inference whereas in domain-incremental
learning (Domain-IL) scenario, tasks share the same output layer
while the model is unaware of task identity during both training and
inference. There were two sets of network configurations based on
the datasets used. For the Split MNIST and Fashion-MNIST bench-
mark, the configuration was fixed to 400 neurons per hidden layer
(2 hidden layers), and either a two-neuron output layer (Domain-IL)
or two-neurons each per task (Task-IL). The network is trained
using backpropagation with ReLU activation function for the neu-
rons. For the baseline, we train using SGD a learning rate of 1𝑒−3
and the network is trained for 5 epochs each on every task. For
the Split CIFAR-10 benchmark, we use a pre-trained CNN front-
end of ResNet-18 architecture with the latent space as input to the
configuration of 2 hidden layers with 400 neurons at the output.

3.2 Continual learning performance in
Domain-IL and Task-IL scenarios

We evaluated and compared the model’s performance in both task-
incremental and domain-incremental learning scenarios. For the
Task-IL scenario, we evaluated NEO on Split-MNIST, FMNIST and
CIFAR-10 benchmarks. For the Domain-IL scenario, we evaluated
the models on Split MINST and FMNIST benchmarks respectively.
Based on the results shown in Tables 3 and 2, NEO is able to achieve
comparable performance as other weight and neuron measurement
based regularization approaches.

Model FMNIST (MA%) MNIST (MA%) CIFAR-10

Baseline 86.13 ± 2.64 84.32 ± 0.99 76.84 ± 1.05
EWC– [12] 97.53 ± 0.15 98.64 ± 0.22 85.78 ± 1.2
SI – [37] 97.00 ± 0.25 99.09± 0.15 85.61 ± 1.51
MAS– [3] 97.43 ± 0.14 99.71 ± 0.02 82.13 ± 1.8
BGD– [39] 98.32 ± 0.12 99.47 ± 0.18 85.57 ± 3.89
UCL– [10] 98.10 ± 0.07 99.32 ± 0.05 86.72 ± 1.65
NAI– [11] 97.84 ± 0.06 99.6 ± 0.12 87.14 ± 0.68

NEO 97.22 ± 0.09 99.04± 0.14 86.4 ± 1.74
Table 2: Comparison of NEO’smean accuracy (MA) with other
regularization-based approaches on the Split MNIST, Split
Fashion-MNIST(FMNIST) and Split-CIFAR10 benchmarks
in a Task-IL scenario. *Each result was averaged across 5
different initializations.

As shown in Table 3, NEO is able to achieve mean accuracy
almost comparable to other weight measurement based regular-
ization approaches on both the Split-MNIST and Split-FMNIST
benchmarks while having minimal memory overhead. The metric
mean accuracy (MA) is measured, across the entire set of tasks
𝑇 1 − 𝑇𝑁 , after training on the final task 𝑇𝑁 , represented by the
equation

MA =

𝑁∑︁
𝑡=1

𝜓𝑡,𝑁

𝑁
(8)

Memory
Model FMNIST (MA%) MNIST (MA%) Overhead (MO)

Baseline 65.52 ± 1.31 60.13 ± 1.66 1
LwF– [22] 71.02 ± 0.46 71.5 ± 1.63 2x
MAS– [3] 68.57 ± 6.85 66.42 ± 2.47 3x

Online-EWC–[29] 65.55 ± 3.30 64.32 ± 2.48 3x
BGD– [39] 89.73 ± 0.88 80.44 ± 0.45 3.44x
SS– [28] 91.98 ± 0.12 82.9 ± 0.01 2x

Metaplastic BNN– [18] 82.44 ± 1.34 73.23 ± 2.31 1.03x
UCL– [10] 69.72 ± 2.53 66.40 ± 1.74 1.5x
NAI– [11] 68.82 ± 1.15 68.35 ± 1.34 1.002x

NEO 86.82±0.6 78.14± 2.23 1.002 - 1.5x

Table 3: Comparison of NEO’s mean accuracy (MA)
and memory overhead (MO) with other regularization-
based approaches on the Split MNIST and Split Fashion-
MNIST(FMNIST) benchmarks in the Domain-IL scenario.
*Each result was averaged across 5 different initializations.

, where𝜓𝑡,𝑁 is the accuracy on task 𝑇 𝑡 after training task 𝑇𝑁 . In
addition to this, to measure the model’s cost we use the memory
overhead metric,MO, calculated as the average amount of memory
that a model requires per task, 𝑀𝑒𝑚(𝑇 𝑡 ), in units of the baseline
model’s memory size𝑀𝑒𝑚𝑏 ,

MO =𝑚𝑖𝑛

(
1,

1
𝑁

𝑁∑︁
𝑡=1

𝑀𝑒𝑚(𝑇 𝑡 )
𝑀𝑒𝑚𝑏

)
(9)

It can be observed that incorporating neuron-based importance
significantly reduces the memory overhead and this overhead does
not grow quadratically with the increasing number of tasks, thereby
making the mechanism amenable to be combined with other learn-
ing methodologies. Additionally, since the storage requirements
increase as O(n+𝑛𝑖 ∗𝑛𝑝 ), wherein 𝑛𝑖 and 𝑛𝑝 represent the important
and plastic neurons, respectively. We observe that the total num-
ber of important neurons are generally less than half of the total
neuronal count (refer to Figure 7b) therein reducing the storage
requirements significantly. Therefore, NEO ideally operates within
a worst case overhead of 1.5x. The results in Tables 2 and 3 show
that NEO is not able to perform better than UCL [10] and NAI [11]
on Task-IL scenarios. This can be attributed to the way we model
the state update interval and regularization policies. UCL and NAI
both utilize weight reinitialization policies which are able to help
with plasticity when task boundaries are known. However, when
we attempt to reinitialize all the weights in task-agnostic scenarios
or when the state update interval cannot define the shift in con-
text, it affects the network activity thus leading to a significant
drop in performance. As the proposed model does not incorporate
these weight reinitialization schemes, we notice a slight degrada-
tion in performance in Task-IL scenarios. On the other hand, NEO
outperforms UCL and NAI in task-agnostic scenarios.

3.3 Impact of reinitializing connections
To evaluate the effect of different connection topologies for the
outgoing connections from unimportant neurons, we performed an
ablation analysis for the model by selecting different schemes. Fig-
ure 6 shows the difference in performance for different connection
choices selected for the outgoing weights from the unimportant
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Figure 6: The performance of NEO on Split-MNIST and Split-FMNIST in a task-aware and task-agnostic scenarios, categorized
by different learning mechanisms for the outgoing weight of unimportant neurons.
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Figure 7: Analysis of the model’s performance and state distribution with respect to the state update interval. Having a higher
state update interval generally leads to meaningful state transitions and better performance.

neurons. The works in UCL and NAI proposed different pruning
and reinitialization strategies for unimportant neurons. Therefore,
we evaluated those mechanisms to see how plasticity is affected
by incorporating them in our framework. The different strategies
we selected are namely, i) Pruning - the outgoing connections from
unimportant to plastic/unimportant neurons are set to 0, ii) Weight
rescaling - The weight rescaling principle specified in Section 2.4,
iii) Unchanged - The weights from the unimportant neurons are
not changed using any other mechanism and are updated normally
using SGD, and iv) Reinitialization - The outgoing weights are reini-
tialized at every state update interval. As it can be noticed in figure
6b, reinitialization boosts the performance in Task-IL scenarios
as the weights are being reinitialized at the task boundary. This
boosts the model plasticity for learning new tasks, however when
we reinitialize in Domain-IL scenarios as shown in figure 6a, adding
sudden plasticity interferes with learning and there is a high vari-
ance in performance depending on the type of initialization. Overall,
weight rescaling works better in task-agnostic scenarios, wherein
the weights are scaled based on their strengths and therein regulat-
ing plasticity without having the issue of shadow activations. One
surprising observation was that, not attempting to add any other
mechanism on the weights also performed comparably to when

the weights were being fine-tuned using additional mechanisms.
The reason behind could pertain to the fact that the error gradients
to those weights were low enough to drive any significant change,
thereby not requiring further rescaling or reinitialization.

3.4 Modeling the state update interval
The state update interval (T ) can play a critical role in determining
the neuronal states within a task. For task-aware scenarios, the
state update interval does not significantly contribute, since the
best time to update the states corresponds to the task boundary.
However, when learning in an online manner in task-agnostic sce-
narios, the rate at which states are updated becomes necessary to
avoid too much stability or plasticity. Figure 7 shows the impact
of different state update interval values on the performance of the
model and how the number of neuronal states vary across the lay-
ers based on the update interval. Figure 7a shows the impact of
interval on the performance. Overall, the performance improves
with higher state update interval. This can be attributed to the fact
that the network gets more time to adjust to the changes in the
input distribution and consolidates those changes periodically. To
observe how these changes occur, we can look into figure 7b, which
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shows the distribution of the neuronal states at the end of first and
final tasks. With lower state update intervals, the network starts to
assign important neurons quickly and apply the consolidation and
plasticity mechanisms quickly thereby leading to many neurons
transitioning to the either important or unimportant states. This
behavior impacts the performance for learning later tasks which is
clearly visible by looking at the number of neurons transitioning
in later tasks. However, with increased interval count, the model
uniformly distributes the state transitions across different tasks. We
currently set T to 2500 for the current benchmarks. However, a
dynamic way of selecting state update interval can also be derived
using the activity status in the network in conjunction with other
attention mechanisms which would be explored in future work.

CONCLUSION
We introduce a novel neuron importance based regularization ap-
proach coupled with selective state-dependent learning mecha-
nisms that is able to address catastrophic forgetting in both task-
aware and agnostic scenarios. NEO has minimal memory overhead,
making it a viable solution for larger models and for models solving
complex tasks. We also present how different learning mechanisms
such as weight rescaling, pruning and reinitialization affect the
performance of the model in different learning scenarios. In future
work, we aim to combine NEO with other activity dependent mech-
anisms, such as neuromodulation, to enable few shot continual
learning capabilities. Another extension is to incorporate dynamic
context detection module to select the state update interval based
on context.
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