Optimal Dynamic Treatment Regime by Reinforcement Learning in Clinical Medicine

Mina Song & David Han, Ph.D. (david.han@utsa.edu)

The University of Texas at San Antonio, TX 78249

Reinforcement ML

- a machine learning (ML) method that takes action in response to the changing environment over time for maximizing rewards, *R*
- · application domains of RL
 - dynamic treatment regime (DTR)
 - * chronic diseases: cancer, diabetes, anemia, HIV, mental illness such as epilepsy, depression, Schizophrenia, opioid addiction
 - * critical care: sepsis, anesthesia, ventilation, heparin dosing, and so on
 - automated medical diagnosis w/ structured data (medical imaging) and unstructured data (free text)
 - resource scheduling and task allocation, optimal process control, drug discovery (de novo design), healthcare management, etc.

Dynamic Tx Regime

• RL approach in *precision medicine* to enable the optimal personalized treatment regime for patients w/ distinct genetic, demographic, clinical characteristics

Figure 1. Schematic illustration of RL; its formulation requires

- policy: map from state to action
- value function: total expected reward over time

Why RL-based DTR?

- incomplete knowledge of environment, usually estimated
- dynamic programming is often inappropriate.
- limited sample size and costly data collection
- causal association of historical conditions w/ final outcome (viz., no Markov property)
 - exponentially growing state and action space compared to sample size

Q-Learning

- a temporal difference control algorithm to search the optimal DTR from longitudinal data
- backward recursive fitting of linear models based on a dynamic programming algorithm

$$Q_t(h_t, a_t) = E\left[\max_{a_{t+1}} Q_{t+1}(h_{t+1}, a_{t+1}) \middle| h_t, a_t\right]$$

with $Q_T(h_T, a_T) = E\left[R\middle| h_T, a_T\right]$

- easy implementation and interpretation for domain experts
- risk of model misspecification
 - inverse probability weighted estimator (IPWE)
 - * non-parametrically estimate mean outcome w/ different weights to the observed outcomes
 - * robust but noisy contrast for classification
 - augmented inverse probability weighted estimator (AIPWE)
 - * combine info from both propensity score and mean outcome models for smoothing
- → action space is *binary*; need to implement multidimensional action space for combinations of treatment regime.

Illustrative Example

• two-stage treatment w/ multiple (3) treatments in each stage (n = 500)

stage 1: 3 covariates (x11, x12, x13) 3 treatments/actions (a11, a12, a13)

<u>stage 2</u>: 3 covariates (x21, x22, x23)

3 treatments/actions (a21, a22, a23)

R = final outcome (reward)

- continuous variable
- higher the value is, better the outcome is.

A = empirical treatment decision (action) based on multinomial distribution w/ probability vector by

$$e^{X\beta_i}/\sum_j e^{X\beta_j}$$

optA = optimal treatment decision rule

stage 1: treatment 1 if (x11>-0.54) and (x12<0.54) else treatment 2 if (x11>-0.54) and (x13<0.54) else treatment 3

stage 2: treatment 1 if (x21>0.3) and (x23<0.46) else treatment 2 if (x22>0.3) and (x23<0.46) else treatment 3

Confusion matrix @ stage 2

→ The optimal DTR at stage 2 has significantly better accuracy than the empirical treatment decision.

Table 1. Snapshot of the dataset

x11	x12	x13	<u>A1</u>	x21	_x22	x23	<u>A2</u>	R
-0.02	0.36	0.36	3	0.66	0.39	-0.38	2	1.61
0.49	-0.22	-0.28	2	-1.47	0.66	0.79	3	-0.41
0.75	0.55	-0.29	3	0.22	1.66	0.14	2	1.14
0.28	1.83	0.47	3	0.81	1.78	0.95	2	1.42
0.00	0.30	-0.09	2	0.30	0.33	1.00	1	0.31

Confusion matrix @ stage 1

			optA			
	٠.	1	2	3		
	1	66	3 9	4 4		
A	2	120	19	4 0		
	3	63	26	83	(accuracy = 0.336)	

		optA			
		1	2	3	
	1	241	67	6 4	
DTR	2	8	0	9	
	3	0	17	94	(accuracy = 0.670)

→ The optimal DTR at stage 1 also has significantly better accuracy than the empirical treatment decision.

References

- Fernandez, K.C., Fisher, A.J., and Chi, C. (2017). Development and initial implementation of the dynamic assessment treatment algorithm. *PLoS One*, 12: e0178806.
- Laber, E.B. and Davidian, M. (2017). Dynamic treatment regimes, past, present, and future. Statistical Methods in Medical Research, 26: 1605–1610.
- Laber, E.B., Lizotte, D.J., Qian, M., Pelham, W.E., and Murphy, S. (2014).
 Dynamic treatment regimes: technical challenges and applications. *Electronic Journal of Statistics*, 8: 1225–1272.
- Murphy, S. (2003). Optimal dynamic treatment regimes. *Journal of Royal Statistical Society B*, **65:** 331–366.
- Wallace, M.P. and Moodie, E.E. (2015). Doubly-robust dynamic treatment regimen estimation via weighted least squares. *Biometrics*, 71: 636–644.
- Zhang, Y., Laber, E.B., Davidian, M., and Tsiatis, A.A. (2018). Interpretable dynamic treatment regimes. *Journal of the American Statistical Association* 113: 1541–1549.
- Zhang, Z. (2019). Reinforcement learning in clinical medicine: a method to optimize dynamic treatment regime over time. *Annals of Translational Medicine*, **7:** e345.