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Abstract: The need for and interest in very-short-term load forecasting (VSTLF) is increasing and
important for goals such as energy pricing markets. There is greater challenge in predicting load
consumption for residential-load-type data, which is highly variable in nature and does not form
visible patterns present in aggregated nodal-type load data. Previous works have used methods such
as LSTM and CNN for VSTLF; however, the use of DNN has yet to be investigated. Furthermore,
DNNs have been effectively used in STLF but have not been applied to very-short-term time frames.
In this work, a deep network architecture is proposed and applied to very-short-term forecasting
of residential load patterns that exhibit high variability and abrupt changes. The method extends
previous work by including delayed load demand as an input, as well as working for 1 min data
resolution. The deep model is trained on the load demand data of selected days—one, two, and a
week—prior to the targeted day. Test results on real-world residential load patterns encompassing a
set of 32 days (a sample from different seasons and special days) exhibit the efficiency of the deep
network in providing high-accuracy residential forecasts, as measured with three different error
metrics, namely MSE, RMSE, and MAPE. On average, MSE and RMSE are lower than 0.51 kW and
0.69 kW, and MAPE lower than 0.51%.

Keywords: deep neural network; residential load; very-short-term forecasting; small data; individual
household; 1 min data; parameter selection analysis

1. Introduction

Growing penetration of information technologies into the operation of electricity
markets has allowed a transformation of the role of the stakeholders [1]. Notably, the role
of residential customers has evolved from a fully passive to an active one, where their
interactions with the rest of the market participants shape the overall load demand and
the electricity clearing prices. These interactions are performed via residents’ smart meters
equipped with intelligent decision-making algorithms [2].

One of the main tasks involved in most of the decisions pertaining to electricity market
activities is load forecasting. Forecasting is an integral part of the overall consumer purchase
decision strategy [3]. In practice, forecasting of future load demand allows optimal decision-
making concerning the cost, as well as the timing, of electricity utilization. Driven by the
length of the time horizon, load forecasting may be characterized as very short term, short
term, medium term, and long term [4]. Notably, each type serves different purposes and
contributes to different sets of decisions.

Regarding a resident’s participation in the electricity market, very-short- and short-
term horizons are needed for purchasing decisions. Furthermore, the high penetration of
information technologies in electricity markets requires residential consumers to decrease
the granularity of their forecasts [5]. Technological advances allow residential customers to
further refine their electricity demand in terms of minutes, in contrast to hourly demand,
which is the prevailing scale in traditional power systems [6].
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Given that human residents are not able to monitor the electricity market 24/7 and
to subsequently forecast their load demand, implementation of accurate very-short-term
forecasting for residential loads becomes a challenge. Reported solutions exhibit a trend
in utilizing data-driven methodologies based on tools from the realms of statistics and
artificial intelligence (AI). In [7], a linear regression model is discussed for both very-short-
and short-term forecasting and tested on datasets taken from smart meter data at the NIT
Patna campus. Results show that the method performs well as a fast method that can be
applied to multiple time horizons considering various load types. The inclusion of larger
building type loads, however, creates visible patterns and removes the high variability
present in residential-only loads. A deep autoformer method is presented in [8], which
aims to improve the high memory cost, computational complexity, and long training time.
Results show that the autoformer method is able to predict more irregular data patterns and
frequent fluctuations; however, some downsides include the need for pre-processing and
added system complexity of the autoformer framework. In [9], a two-level load forecasting
is implemented, consisting of an ANN in the first level for time-series prediction and a
feed-forward ANN in the second level for improving accuracy by using more training
data. Results show improvement when the scheme is used for prosumer operation cost
optimization. One potential downside is the requirement of a whole month’s worth of data
and the resulting training time for such a large dataset. A deep network that includes a
long-short-term memory network (LSTM) is presented in [10]. Forecasts are performed for
1 h ahead, considering a residential load dataset. The LSTM is combined with a sequence-
to-sequence architecture, which improved on the basic LSTM structure. Results showed
that standard LSTM fails at 1 min resolution, while the proposed architecture was able to
perform well on both 1 min and hourly data. One potential downside is the requirement for
a large dataset when using LSTM networks, which require more input data. The authors
left as future work exploring other deep architectures. The combination of an LSTM and a
convolutional neural network (CNN) for 10 min forecasts of residential appliances demand
is presented in [11]. This work presents another improvement upon the standard LSTM and
results show improvement in comparison to support vector machines, gradient boosting
machine, and random forest. Appliance-level data may, however, not always be available.

In [12], the extreme gradient boosting (XGBoost) method is compared to several other
methods for the load consumption of a warehouse. Results show the XGBoost method
outperformed the others in terms of RMSE, MAE, and MAPE. The data used, however, is
of hourly resolution and for a warehouse, which differs from residential profiles. In [13],
individual household data is utilized while addressing the gap on methods that work for
multiple forecasting horizons. Bayesian networks are used on Irish smart meter data, and
results showed that the proposed method showed improvement through NRMSE. The
time resolution used was half-hourly datapoints. An attention-based temporal–spatial
convolutional network (ACN) is proposed in [14], which aims to improve upon temporal
convolutional networks (TCN). Results show improvement in MAPE and RMSE compared
to benchmark TCN methods using hourly datasets from China, which are available by
request. In [15], the Markov-chain mixture model (MCM) is used to forecast one step ahead
on 30 min residential data from Australia. Results show that MCM performs similarly to
quantile regression. The work in [16] aims at high volatility due to new energy sources and
proposes phase space reconstruction (PSR) for load forecast at the substation level. Results
show that the PSR method works better than the benchmarks when the forecasting horizon
is greater than half an hour.

Other recent works propose new methods; however, they are only applied to the
short-term forecast horizon. In [17], a graph neural-network-based framework is proposed,
which captures the hidden spatial dependencies of different houses. The work also provides
analysis of computational timing, and results show improvement compared to baseline
methods. While the source of the data is given as houses from Los Angeles, New York,
and Texas and is available (OpenEI), the data is aggregated by selecting random houses
from each location, making the task of replicating the dataset a difficult one. Ensemble
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methods are presented in [18,19], which show improvement compared to baseline methods;
however, the methods are applied to 30 min and hourly resolution datasets. A bi-directional
LSTM network is presented in [20], in which an analysis comparing six training data
configurations with four prediction methods is performed, resulting in the bi-directional
LSTM yielding the most accurate results. A further point to consider in this work is the
requirement for more data for bi-LSTM networks. Recurrence plots are used in [21] to create
a 2-D input into a CNN. The proposed method is able to show accuracy improvement over
the 1-D counterpart. One of the future areas of work noted is exploring the use of deep
learning.

Graph spectral clustering is used in [22], where aggregate power is decomposed into
appliance-level consumption, and each appliance is forecasted separately. The separate
forecasts are combined to get the total consumption forecast, and the results show superior
performance in comparison to other methods. A gated recurrent unit (GRU) neural network
is presented in [23], which is used for the load forecasting of a residential community.
Results show similar performance of the GRU compared to LSTM; however, the GRU
shows shorter simulation time. LSTM combined with recurrent neural network is utilized
in [24], where focus is placed on forecasting at the individual household level. Results show
that the LSTM-RNN framework does the best forecasting compared to several benchmarks.
A future direction of research noted is the methodology for parameter tuning. Deep neural
networks are used in [25] for STLF on appliance-level consumption, and results show
improvement compared to SVM. Different data resolutions of 1 min, 15 min, and 30 min are
used, but final data configurations are not presented. A feed-forward ANN with Nesterov
learning is featured in [26], which is compared with six other algorithms. Results show that
the method outperforms the benchmarks; however, the timing horizon is hourly, leaving
VSTLF to still be explored. Because many of the works investigating DNN and other
neural network structures show promising use but have yet to be implemented for a VSTLF
horizon, we infer that DNN for VSTLF is a desirable topic to explore. In this paper, a
new deep neural network (DNN) architecture is developed and tested for very-short-term
forecasting of residential loads. The current work builds on our preliminary work and the
promising results that were obtained, as presented in [27]. In the current work specifically,
we propose a deep feedforward neural network architecture and extensively test it for
forecasting residential loads for a very-short-term ahead of time horizon on various days
from different seasons and on a set of special days.

One of our main contributions is the application of the method to 1 min data. Of the
aforementioned works, very few focus on 1 min resolution. Table 1 shows a summary of
the literature with methods and data granularity used. The data used in [7] are aggregated
into 10 min intervals, and no reference is given for online availability. The data in [8] are in
15 min intervals, and forecasting is done 1 day ahead (15 min) and 3 days ahead (hourly).
The data in [9] are hourly data taken from commercial and residential profiles, resulting in
recognizable load patterns. In [10], individual household data (UCI) is utilized at 1 min
resolution. The same data is utilized in [20] and [21]; however, the data is aggregated
into hourly and 15 min intervals, respectively. The data in [12–15] are all either hourly
or 30 min. Data used in [16] are of 5 min resolution; however, they are at the substation
level. The work in [11] utilizes publicly available data from a Belgium house with data
in 10 min intervals. Regarding [17–20,23,24], all consider data that are in (or have been
aggregated to) hourly or 30 min time resolution. In [22], 1 min resolution data is used;
however, the signals are decomposed, which makes replication of the work difficult. In [25],
data of 1 min, 15 min, and 30 min resolution are used; however, the final aggregated
configurations are not presented. Lastly, in [26], data resolution of 15 min is used. Of all the
references presented, only one [10] uses data with a resolution of 1 min without utilizing
appliance-level features. Aside from the time resolution, the other contributions of this
work include an additional input feature, which extends the previous work, as well as the
method working with small data (3 days training).
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Table 1. Literature review comparison.

Ref. Year First Author Horizon Approach Data Gran.

[7] 2018 Vats VSTLF Linear regression 15 s

[8] 2022 Jiang VSTLF Deep-autoformer neural network 15 min

[9] 2020 Faraji VSTLF First level: MLP-ANN; second level:
FF-ANN Hourly

[10] 2016 Marino VSTLF LSTM with sequence-to-sequence
architecture 1 min

[11] 2019 Ploysuwan VSTLF CNN for feature learning and
LSTM layers for time series 10 min

[12] 2022 Ribeiro VSTLF Extreme gradient boosting
(XGBoost) Hourly

[13] 2020 Bessani VSTLF Bayesian networks 30 min

[14] 2023 Tong VSTLF Attention-based temporal–spatial
convolutional network (ACN) Hourly

[15] 2021 Munkhammar VSTLF Markov-chain mixture distribution
model (MCM) 30 min

[16] 2019 Shi VSTLF Phase space reconstruction (PSR) 5 min

[17] 2021 Lin STLF Graph neural-network-based
forecasting framework Hourly

[18] 2023 Botman LTF Ensemble: clustering with k-means,
prediction with ensemble 30 min

[19] 2019 Ves VSTLF
Ensemble: gradient boosting
regression, MLP and LSTM
networks; linear regression

(Agg. to hourly)

[20] 2022 Atef STLF

6 input feature set scenarios with 4
prediction methods (LR, SVR,
Uni-LSTM, and bi-LSTM) that
result in analysis of 24
configurations

(Agg. to hourly)

[21] 2019 Rajabi STLF
Recurrence plots fed to CNN to
make the first layer 2-D instead of
directly feeding time-series

(Agg. to 15 min)

[22] 2019 Dinesh STLF

Aggregate power signal is
decomposed into individual
appliance signals and each
appliance’s power is forecasted

1 min

[23] 2019 Zheng STLF Gated recurrent unit (GRU) neural
network Hourly

[24] 2019 Kong STLF LSTM-RNN 30 min

[25] 2018 Din STLF FF-DNN and R-DNN 1, 15, 30 min

[26] 2019 Oprea STLF
7 algorithms: Momentum, Nesterov,
Nesterov + backtracking, NARX,
DNN, GTB, RF

15 min

The contributions of this paper are summarized as follows:

- Additional input of load demand that is delayed by 10 min;
- Investigation of the DNN structure for VSTLF;
- Dataset considering 1 min residential data;
- Commonly available dataset used;
- Method that relies on small data (only 3 days required).
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The current manuscript is organized as follows. The next section provides a brief
introduction to neural networks and deep architectures, while Section 3 discusses the
challenges of residential loads. Going further, Section 4 presents the materials and methods
used, including the developed network architecture. Section 5 presents and discusses the
obtained results. Section 6, the last section, summarizes the main points of the paper and
provides future research directions.

2. Elements of Deep Neural Networks

Nowadays, artificial intelligence is the driving force of the new industrial revolution
that is under way, and together with advanced information and communication technolo-
gies, it has transformed our world into a “digital world”. There are a variety of AI tools that
have been proposed and have been applied in autonomous systems and decision making.
Among those tools, artificial neural networks (ANN) are the most widely used, mainly
because of their universal approximation property, which makes them ideal solutions
for various complex problems where little is known about the internal structure of the
process [28].

ANN is an information processing system that takes an input and, through a series of
computations, provides an output. The structural unit of an ANN is the artificial neuron,
whose architecture mimics that of a biological neuron [29]. The inputs of the neuron are
multiplied with their respective weights, and a set of factors are obtained. The factors are
summed and are then fed to an activation function, whose output coincides with the final
output of the neuron.

The neural network is constructed by interconnecting individual neurons. Intercon-
nection of neurons is implemented by forwarding the output of a neuron as an input to
another neuron. Grouping those neurons based on their interconnections allows the neural
network to form layers [29].

The input layer is not a computing layer; its role is to take the input and forward it
to the next layer. The output layer is the set of neurons that provides the final output of
the neural network, while between the input and the output, there is a hidden layer. The
number of hidden layers can be more than one (theoretically, a network may have infinite
hidden layers but only one input and one output). It should be mentioned that based on
the number of hidden layers, neural networks are characterized as shallow or deep. In
particular, a shallow network contains up to two hidden layers, while any network with
three or more is characterized as deep [28]. The overall number of layers is called the depth
of the network [29].

Notably, the depth of a deep neural network is at least five: an input, three hidden, and
an output layer. Deep networks have revolutionized the information processing domain by
offering new opportunities for large-scale processing and have found wide use in image
processing—in the form of convolutional networks.

The main strength of the deep architectures is that each layer provides a different
abstraction of the input data. In other words, the hidden layers provide different infor-
mation (representation abstraction) of the input, thus implementing a hierarchical type of
representation. This type of representation is useful in representation in the analysis of
complex systems, as each layer models a different level of complexity.

Load forecasting is a complex process in which stochasticity prevails. There is no
specific model representation of the load demand given that it depends on a set of random
factors. Regarding residential load, these factors become even more stochastic—depicted in
the form of high volatility in the load pattern—given that the human activities and habits
in the residential building cannot be accurately predicted. However, we expect that the
DNN and its hierarchical representation will be able to capture the load dynamics of the
residential consumer in the very-short-time horizon [30].
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3. Residential Load

Load demand patterns are classified into three categories based on the type of con-
sumer: industrial, commercial, and residential. Each of the three categories exhibits a
set of features that is unique for every type of consumer. On one hand, industrial and
commercial consumers exhibit high load demand at specific times of the day, while their
pattern shows seasonality and low variability. On the other hand, residential load patterns
depend on various stochastic factors and are subject to human behavior—for instance,
activities and habits such as cooking, washing laundry, and other uses of appliances and
electronics. There is a high variety of activities that are performed at a residence that do
not fall under specific timelines; those activities contribute to the overall volatility that
is present in a residential load pattern [26]. For visualization purposes, two examples of
daily load demand patterns of a residence are presented in Figure 1, where the volatility in
demand is apparent.
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Figure 1. Example electric load demand patterns for a residential consumer.

With the increasing penetration of AI as well as new energy sources into our daily
activities, the residential load demand pattern only becomes more stochastic. Smart ap-
pliances equipped with AI capabilities can make autonomous decisions with little or no
input from the human consumer [2,31]. Furthermore, the adoption of power generation
technologies, such as PV panels, has transformed the consumer into a prosumer: the resi-
dential consumer is able to generate part of their consumed electricity. This transformation
has resulted in new load dynamics concerning the residential consumer, thus altering the
load demand pattern. In particular, part of the load demand is satisfied internally; thus, the
amount of electricity required to be purchased from the grid diminishes [32].

From the above discussion, forecasting of residential loads is a highly challenging
process that becomes even more challenging with the increasing penetration of advanced
technologies into our everyday lives. It should be noted that residential forecasting becomes
even more challenging for very short prediction horizons (e.g., 1 min ahead of time), given
that variability and uncertainty is higher at a smaller time resolution.

Under these conditions, accurate forecasting of the residents’ load demand will allow
them to make optimal decisions regarding their load management. This makes forecasting
methods highly important for the consumer in order to satisfy their maximum demand
and minimize their electricity purchasing costs [3,33]. It should be emphasized that in an
information-rich environment, such as those of smart grids, where the time granularity of
the time decision grows thin, purely data-driven methods prevail as the main forecasting
methods. AI and machine learning offer the necessary tools to build methods that are
accurate as well as fast in the forecasting of residential load demand with no input or
interference from the human resident [3].
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4. Materials and Methods

This section describes the materials and methods used to obtain results. The neural
network toolbox in Matlab 2020b is used to train and test the deep neural network. A
PC with Intel Core i9 is used with 32 GB RAM. The structure of the network is shown in
Figure 2; it is comprised of: 2 inputs, 3 hidden layers with 10 neurons each, and 1 output
layer with 1 neuron which gives a single output.
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Figure 2. Deep neural network structure.

4.1. Deep Neural Network Very-Short-Term Residential Load Forecasting

The goal of this section is to present the developed method for residential load fore-
casting. The proposed method is tailored to make predictions for 1 min ahead of time,
which is characterized as very short term. The cornerstone of the proposed method is the
utilization of a DNN architecture and its training with the inputs of minute-of-day and
load values (resolution of 1 min). The minute-of-day captures previous load habits of the
resident, while the delayed load demand captures the most recent load dynamics. The
block diagram of the proposed method is given in Figure 3.
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Figure 3. Block diagram of the proposed very-short-term load forecasting.

We observe that the deep network takes two inputs: minute-of-day, which is a single
value ranging from 1 to 1440, representing each minute of the day; and the load demand,
which was measured 10 min ago. Likewise, the output provides a single value, which is
the forecast demand of the next minute.

Training of the DNN architecture is performed by utilizing the 1 min real load demand
of: one day before, two days before, and the respective day one week before. Figure 4
exhibits an example of the training dataset assembly process adopted in the current work.
The goal of the assembled dataset is to capture the most recent load dynamics (recent days),
as well as the general behavior of the resident (week before) [4,27]. It should be noted, we
refer here to the “target day” as the day for which a specific network is trained. We choose
this term over “test day” because it is the only day for which the network is trained. Each
time the target day changes, the training data is re-assembled, and the network is re-trained.
Moreover, the “target day” is separate from the target data used in training, which comes
from the three training days marked in blue.



Energies 2023, 16, 3636 8 of 16

Energies 2023, 16, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 2. Deep neural network structure. 

4.1. Deep Neural Network Very-Short-Term Residential Load Forecasting 

The goal of this section is to present the developed method for residential load 

forecasting. The proposed method is tailored to make predictions for 1 min ahead of time, 

which is characterized as very short term. The cornerstone of the proposed method is the 

utilization of a DNN architecture and its training with the inputs of minute-of-day and 

load values (resolution of 1 min). The minute-of-day captures previous load habits of the 

resident, while the delayed load demand captures the most recent load dynamics. The 

block diagram of the proposed method is given in Figure 3. 

 

Figure 3. Block diagram of the proposed very-short-term load forecasting. 

We observe that the deep network takes two inputs: minute-of-day, which is a single 

value ranging from 1 to 1440, representing each minute of the day; and the load demand, 

which was measured 10 min ago. Likewise, the output provides a single value, which is 

the forecast demand of the next minute.  

Training of the DNN architecture is performed by utilizing the 1 min real load 

demand of: one day before, two days before, and the respective day one week before. 

Figure 4 exhibits an example of the training dataset assembly process adopted in the 

current work. The goal of the assembled dataset is to capture the most recent load 

dynamics (recent days), as well as the general behavior of the resident (week before) [4,27]. 

It should be noted, we refer here to the “target day” as the day for which a specific network 

is trained. We choose this term over “test day” because it is the only day for which the 

network is trained. Each time the target day changes, the training data is re-assembled, 

and the network is re-trained. Moreover, the “target day” is separate from the target data 

used in training, which comes from the three training days marked in blue. 

 

Figure 4. Training dataset assembly for training the DNN. 

The training and testing procedure is explained through the flowchart in Figure 5. 

First, the target day for the network is selected. Second, the respective raw training data 

Figure 4. Training dataset assembly for training the DNN.

The training and testing procedure is explained through the flowchart in Figure 5.
First, the target day for the network is selected. Second, the respective raw training data
for the target day is collected, as shown in the example in Figure 4. The minute-of-day
input is constructed from a numeric vector, which increases from 1 to 1440 and is repeated
for each day. The load values of the three days are taken as both input and output to the
network, which are delayed appropriately in the next step. To create the delays, the first
10 samples of the output load data are removed. Similarly, the first 10 min-of-day inputs
are removed. Finally, the last 10 samples of the input load data are removed. An example
of the input and outputs, both raw and after applying the delay, is shown in Figure 6. Once
the delays are applied, the size of the training input/output is reduced from 4320 samples
to 4310 samples. The network is then trained using the Levenberg–Marquardt training
algorithm. Next, a prediction is made for the target day by feeding the minute-of-day and
delayed load inputs using the same delaying procedure, which produces test inputs of a
size of 1430 samples. Lastly, the performance of the network for the target day is calculated
using the performance metrics.
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Since the network is valid for one day only, training of each network would occur on
a daily basis. In this work, 32 days are chosen as target days. One of the benefits of the
proposed method is that it requires a smaller amount of data in comparison to other works.
The data division ratio used is 90% for training, 5% for validation, and 5% for testing.
The actual target day is used as testing data to evaluate the performance of each trained
network. This also tests the generalization capability of each trained network by testing
on unseen data. In this work, no days that have missing data are utilized. Sporadically
missing values could be interpolated without significantly affecting the results. For a large
amount of missing data, in the range of hours or days, alternative days can be used for
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training. Investigation into alternative training days in the case of large amounts of missing
data is left as future work.

4.2. Residential Load Datasets

The testing of the forecasting method is performed on a set measured from a resi-
dential household building, which is found in [34]. Specifically, the dataset contains load
measurements from a single household taken in Sceaux, which is located near the city
of Paris in France. Overall, the dataset contains 1 min measurements for the period of
December 2006 to November 2010 [34]. The data used in this work is from the year 2007,
which is the same year used in [10]. One thing to note is that the important feature of the
data is the high variability of the residential load, which would also be present in a more
recent dataset.

The assembled test set consists of 32 days containing 4 weeks, one from each season—that
is, 28 days—and 4 special days from the year 2007. In particular, the test dataset contains the
week of 11–17 February (winter season), 13–19 May (spring season), 12–18 August (summer
season), 11–17 November (fall season), and the special days of Easter (8 April), Memorial Day
(28 May), Thanksgiving (22 November), and Christmas Day (25 December).

4.3. Deep Neural Network Parameter Analysis

Analysis is performed to determine the optimum number of layers and number of
neurons for each layer. The procedure for evaluating the network parameters is shown in
Figure 7. A network parameter (e.g., layers or activation function) is first changed, and
then the network is trained and evaluated for 32 target days. The performance metrics
are calculated for the prediction of each target day and then averaged over the total
32 days. Averaged performance metrics results are then compared to select the parameter
for the network. A total of 8 layer and neuron combination scenarios are tested, as well as
15 different activation functions.
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5. Very-Short-Term Forecasting Results

In this section, the presented DNN is applied on a set of load data taken from a real-
world residential customer. The obtained results are discussed, and the main observations
are highlighted below.

5.1. Performance Metrics

The presented DNN method is applied to the test datasets, and the results are recorded.
The accuracy of prediction is quantified utilizing three different error measures that are
given below [35]:

(i) Mean square error (MSE):

MSE =
1
n ∑n

t=1(Rt − Pt)
2 (1)

(ii) Root mean square error (RMSE)

RMSE =

√
∑n

t=1(Rt − Pt)
2

n
(2)

(iii) Mean absolute percentage error (MAPE)
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MAPE =
1
n ∑n

t=1

∣∣∣∣Rt − Pt

Rt

∣∣∣∣ (3)

where Rt is the real value, Pt is the predicted value at timepoint t, and n represents the
number of forecasts.

Three different measures are adopted in order to provide a holistic description of the
forecasting performance. Each of the measures has some properties and disadvantages. At
this point, it should be noted that MAPE is the widely used error metric for load forecasting,
given that it scales down the error in the interval 0–100%, which is well understood.
However, the problem of MAPE is that it is defined as a ratio, and there is a possibility that
the denominator may be zero, in which case MAPE is not defined. MSE and RMSE do not
share that problem, but MSE may become very large, while RMSE is prone to outliers (if
one point provides a very large error and the rest very small, RMSE will be large).

5.2. Parameter Analysis Results

Parameter analysis for the number of layers and number of neurons is shown in
Table 2. There are eight scenarios consisting of various combinations of layers and numbers
of neurons. The first column describes a vector that contains the number of neurons for
each layer. The rows which are highlighted green show the least value achieved in each
metric. It can be seen that the best result achieved in terms of lowest MSE and RMSE is the
scenario consisting of three layers with five neurons in each layer. This structure is then
chosen for the next step in parameter analysis.

Table 2. Analysis of layers and number of neurons.

Layers MSE RMSE MAPE
[10] 0.6111 0.7422 0.5072
[5 5] 0.5810 0.7230 0.4782
[10 10] 0.7271 0.7946 0.5429
[5 5 5] 0.5355 0.7050 0.4841
[10 10 10] 0.7789 0.8325 0.5607
[20 20 20] 1.4297 1.0954 0.7507
[10 10 10 10] 0.7887 0.8379 0.5866
[10 20 10] 2.0240 1.1113 0.7311

The next step in parameter analysis is the analysis of activation functions. Fifteen
different activation functions are considered, and the process in Figure 7 is followed to
obtain the average metrics for the 32 target days considered. Table 3 shows the results for
each activation function, which is applied on the set of 32 target days. Rows which are
highlighted green show the least value achieved in each metric. The activation function
that resulted in the lowest MSE and RMSE is “satlin”, which is a positive saturating linear
transfer function and is chosen as the activation function for the proposed deep network.

5.3. Results and Discussion

Results showing a comparison of the proposed method to other prediction methods
are shown in Table 4. Rows which are highlighted green show the least value achieved in
each metric. Results of the proposed DNN with three layers of five neurons each and using
the “satlin” activation function are compared to three other prediction methods, namely
fine tree regression, fine Gaussian support vector machine (SVM), and the ANN with a
single layer of 10 neurons, which is considered a shallow network. It can be observed that
the best results in terms of least MSE and RMSE are obtained by the proposed DNN.
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Table 3. Analysis of activation functions.

Activation Function MSE RMSE MAPE
compet—competitive transfer function 0.9925 0.9799 1.5295
elliotsig—Elliot sigmoid transfer function 0.5246 0.6965 0.4950
hardlim—positive hard limit transfer function 1.2279 1.0757 1.5222
hardlims—symmetric hard limit transfer
function 1.2020 1.0652 1.4746

logsig—logarithmic sigmoid transfer function 0.5631 0.7160 0.4870
netinv—inverse transfer function 3.1747 1.2561 0.6894
poslin—positive linear transfer function 0.5165 0.6858 0.4616
purelin—linear transfer function 0.5015 0.6793 0.5595
radbas—radial basis transfer function 0.5709 0.7211 0.4754
radbasn—radial basis normalized transfer
function 0.6365 0.7612 0.5240

satlin—positive saturating linear transfer
function 0.4954 0.6748 0.4658

satlins—symmetric saturating linear transfer
function 0.5384 0.7039 0.4914

softmax—soft max transfer function 0.5658 0.7177 0.4923
tansig—symmetric sigmoid transfer function 0.6436 0.7719 0.5533
tribas—triangular basis transfer function 0.5832 0.7350 0.5886

Table 4. Comparison of different prediction methods.

Method MSE RMSE MAPE
Regression (fine tree) 0.8808 0.9064 0.6413
SVM (fine Gaussian) 0.6429 0.7672 0.4737
ANN (10 neurons) 0.6111 0.7422 0.5072
DNN ((5 5 5) neurons, satlin) 0.5082 0.6832 0.5040

Detailed results of the proposed method are explained next. Table 5 provides the
descriptive statistics of the error for each week, as well as for the whole test dataset. Table 5
contains the minimum (min), maximum (max), and mean values for the time period under
study—the four weeklong periods, and the lumped special days.

By inspecting Table 5, it can be seen that the interval in which MSE lies is 0.0386–1.2649,
while the mean MSE for the whole test set is equal to 0.5082 kW. This error is characterized
as low [2,36], highlighting the efficiency of the method for forecasting the 1 min load
demands of the residential consumer.

Likewise, RMSE values lie within a short range of values, with the maximum value
being equal to 1.1267 kW and the minimum value equal to 0.1965 kW. The minimum
value is observed in the summer week, while the maximum is observed in the winter. The
summer provides the lowest RMSE, as was the case for MSE. Generally, for both MSE and
RMSE, we observe that the weeks with the highest variation of error values are in summer
and winter. The overall mean RMSE can also be categorized as low at 0.6832 kW.

Lastly, by checking Table 5 regarding the MAPE values, our observations differ from
those made for MSE and RMSE. Notably, the MAPE values lie within a shorter interval
when compared to MSE and RMSE, but the overall tested mean values are still very low (i.e.,
the mean is equal to 0.5040%). Thus, MAPE further confirms the efficiency of our method in
very-short-term residential load forecasting. Furthermore, as opposed to MSE and RMSE,
which show the lowest error in the summer season, the lowest MAPE is computed for the
fall week.
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Table 5. Descriptive statistics of the three error measures obtained for the test dataset.

Test Set MSE RMSE MAPE
Min Max Mean Min Max Mean Min Max Mean

Winter
week 0.3396 1.2694 0.5784 0.5828 1.1267 0.7408 0.3652 0.6956 0.4942

Spring
week 0.1239 0.7427 0.5404 0.3520 0.8618 0.7173 0.4496 0.7296 0.5154

Summer
week 0.0386 0.9874 0.3274 0.1965 0.9937 0.5138 0.4004 1.0794 0.6138

Fall week 0.3171 0.8513 0.5554 0.5631 0.9226 0.7372 0.2623 0.7152 0.4087
Special
days 0.1712 0.8967 0.5629 0.4137 0.9470 0.7248 0.3933 0.5927 0.4762

Overall 0.0386 1.2694 0.5082 0.1965 1.1267 0.6832 0.2623 1.0794 0.5040

The obtained results per week and per special day for each measure are given in
Figures 8–10 in the form of comparative bar graphs of the MSE, RMSE, and MAPE,
respectively. Similar to Table 5, it can be observed in Figures 8 and 9 that the week with
the lowest MSE and RMSE is in summer. The special day with the lowest MSE and RMSE
is Easter Day.
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Figure 8. Forecasting error results obtained with MSE.

The lowest MAPE of all weeks is for the fall week, which is evident in Figure 10.
Winter, summer, and spring weeks exhibit similar mean MAPE of 0.4942%, 0.5154%, and
0.6138%. The lowest MAPE among the special days is for Thanksgiving Day. We conclude
that even though the special days exhibit different load dynamics—given that the behaviors
of residential consumers change—the proposed DNN method attained a high accuracy of
forecasting (average MAPE: approximately 0.5040%).
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Figure 9. Forecasting error results obtained with RMSE.
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Lastly, for visualization purposes, in Figure 11 we provide the forecasted curves against
the real demand for the summer week test days. It is also evident that the DNN architecture
provides forecasts that closely follow the 1 min real load demand (i.e., 1440 forecasts
per day). It should be noted that the summer week plots exhibit a higher error during
weekends than weekdays. This is justified by the common fact that the residents spend a
higher amount of time at home and perform a higher number of consuming activities (i.e.,
cooking) on weekends, which makes the electricity load pattern more volatile as compared
to weekdays. It is likely that this volatility may be captured with a different assembled
training dataset.
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Figure 11. Daily forecasted curve against actual residential load demand for fall week.

It should be emphasized that in Figure 11, we clearly see the stochasticity of the
residential load as well as the abrupt changes in loads. More particularly, the real curve
(blue line in Figure 11) exhibits high variation, while the peak load appears to be shifted
from day to day. For instance, there is a peak around the 520th min of the day on 12 August,
while the next day, this peak is shifted to the 560th min, and two days after, there are two
peaks, one at the 520th min and a second at the 550th min. Further shifting occurs for
15 August, where the peak appears around the 530th min, and for 16 August the peak has
been shifted to the 440th min. Lastly, for 17 and 18 August, which coincide with a weekend,
there is a peak around the 500th min, while those peaks have changed shape and are not as
high as those of the weekdays. Additionally, to further illustrate the stochasticity of the
residential load, we observe that there is a period of high variation load in the middle of the
day for the weekdays, while this intense variation is not present on Saturday (17 August)
and appears in the last third of the day on Sunday. Overall, based on observation of the
load patterns in Figure 11, we observe that there are a few areas that exhibit smooth load
demand.

6. Conclusions

In this paper, the implementation of a deep neural network architecture for performing
very-short-term residential load forecasting was presented. Research on this horizon length
for residential forecasting is very premature, and this paper contributed to that end. DNNs
have been successfully used in various types of load forecasting, and the current work
exhibits the ability of the proposed DNN architecture to provide highly accurate forecasts
of residential demand.

The method was tested on a set of real-world data taken from a residence in France for
4 weeks from 4 different seasons and for 4 special days. Testing included the forecasting
of 1 min ahead of time residential load for the whole day, providing an overall set of
1430 forecasts per day. Results obtained in the form of MSE, RMSE, and MAPE showed
that the DNN provides low forecasting errors, while the obtained error values are close to
each other (i.e., lie within short ranges).

The proposed method shows that DNN is effective for use in VSTLF and how accurate
predictions can be made while utilizing a smaller amount of data. The method would be
useful for pricing markets and demand-side management. For example, an EV charging
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algorithm may utilize load forecast to determine the best (most cost-efficient) time to charge
an EV. Optimization algorithms for distribution network analysis also stand to greatly
benefit from VSTLF. By using forecasted load data, optimization could be performed on
future network conditions, leading to better decision making.

Future work will focus on testing the proposed DNN using different training dataset
assemblies. In addition, the integration of DNN with fuzzy logic [37] to capture data
uncertainty will also be investigated. Lastly, one of the main future directions would be the
implementation of a DNN method that is adaptive to the type of forecasted day (weekday
vs. weekend) and can capture abrupt changes in the data with the use of a time window.
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