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HOMOGENIZATION OF BOUNDARY LAYERS IN THE
BOLTZMANN-POISSON SYSTEM*

CLEMENS HEITZINGER! AND JOSE A. MORALES E.}

Abstract. We homogenize the Boltzmann—Poisson system where the background medium is
given by a periodic permittivity and a periodic charge concentration. The domain is the half-space
with a periodic charge concentration on the boundary. Hence the domain consists of cells in R3 that
are periodically repeated in two dimensions and unbounded in the third dimension. We obtain formal
results for this homogenization problem. We prove the existence and uniqueness of the solution of
the Laplace and Poisson problems in the fast variables with periodic and surface charge boundary
conditions generating an electric field at infinity, obtaining formal solutions for the potential in terms
of Magnus expansions for the case where the diagonal permittivity matrix depends on the vertical
fast variable. Further on, splitting the potential into a stationary part and a self-consistent part,
performing the two-scale homogenization expansions for the Poisson and the Boltzmann equations,
and applying a solvability condition, we arrive at the drift-diffusion equations for the boundary-layer
problem.
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1. Introduction. In this work, the Boltzmann—Poisson system describes charge
transport in the general setting of the presence of a manifold that carries a periodic
charge concentration. As the spatial period of the oscillations of the charge con-
centration goes to zero, a homogenization problem arises and effective equations are
sought.

The Boltzmann—Poisson system considered here is general enough to describe
various physical systems. One example is nanowire bio- and gas sensors [9, 10,11,
12,13, 14]; in [10], semiconducting nanowires were fabricated and characterized as
highly sensitive and selective sensors for the label-free detection of low concentrations
of many types of biomolecules. Such nanoscale devices are only one motivation for
the model equations, which include the more general physical situation of phenomena
at a surface due to a spatially fast oscillating electrostatic potential. Therefore, we
study the homogenization of boundary layers in the Boltzmann—Poisson model for
collisional electron transport described below.

We consider the Boltzmann—Poisson system in the form

(1.1a) —V - (A°Vu®) = p° + ¢,
(1.1b) O+ L{E, [ = Q)
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in a diffusive scaling and on the whole space R%. In the Poisson equation, A%(z) =
A(x,z/¢) is a matrix and denotes the given permittivity, u®(z) = u(x,z/¢c) is the
electric potential,

p°(t,x) = p(t,z,x/e) == /]Rd flt,x,x/e,v)dv

is the concentration of free charges, and ¢°(z) = g(z,x/¢) is the given concentra-
tion of fixed charges. In the Boltzmann equation, f¢(t,z,v) = f(t,x,z/e,v) denotes
the distribution function of particles in the phase space (z,v) considering a velocity
proportional to the momentum,

{Ea f}xv =V, E- vzf —V,E- vvf

is the Poisson bracket,

[v]?
Ef i=u® + —
2
is the particle energy, and @ is the collision operator modeling the scattering over the
electrons.
We suppose that @ is a linear operator, which is a reasonable assumption under
a low density of electrons (obtaining Boltzmann statistics), and that it has the form

(1.2 Q) = [ S ) O f = M)

with M being the normalized Maxwellian
e—lvl?/2
(v2m)d’

f= ft,x,z/e,0v"), and S(x,v,v") = S(x,v’,v) the collision cross section. In our
theoretical work we will assume as in [2] that the collision cross section is uniformly
bounded; i.e., 0 < S < S(z,v,v") < S holds for two constants S and S. (However,
there are physical situations of interest where collision cross sections that do not satisfy
this requirement become relevant. For example, for the case of electron-phonon colli-
sions in a lattice, the collision cross section is S(z,v,v") = M~1(v) l+:171 cio(e(v) —
g(v") +1lhw), accounting for the electron energy transitions due to inelastic and elastic
interactions with the phonons.)

Previous work related to the diffusion approximation and homogenization of the
Boltzmann—Poisson model for collisional electron transport has been developed in
several papers. First, we consider [2], which deals with the diffusion approximation of
the semiconductor Boltzmann equation in the presence of a spatially oscillating elec-
trostatic potential. This work proved that if the oscillation period is of the same order
as the mean free path, there is convergence to the drift-diffusion equation with a ho-
mogenized potential resulting in a diffusion matrix that contains the small-scale infor-
mation. The convergence was rigorously proved under Boltzmann statistics, whereas
for Fermi—Dirac statistics a formal analysis was performed.

Before this work, the same authors studied the diffusion limit of the initial-value
problem for the Boltzmann—Poisson system in one dimension in [1], but homogeniza-
tion was not considered at that point. LP estimates were established for the solution

(1.3) M) :=
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of the Boltzmann—Poisson system with well-prepared initial and boundary conditions
by analyzing entropy production terms due to the boundary. The convergence of the
solution towards the solution of the drift-diffusion-Poisson system was proved using a
hybrid Hilbert expansion obtaining a convergence rate. Later on, in [7], the diffusion
and homogenization approximation of the Boltzmann—Poisson system with a spatially
oscillating electrostatic potential was studied. A uniform energy estimate was proved
for well-prepared boundary data by analyzing the relative entropy. The convergence
of the scaled Boltzmann equation coupled to the Poisson equation to a homogenized
drift-diffusion-Poisson system was proved using an averaging lemma and two-scale
convergence techniques.

In previous work, a multiscale model for the electrostatics of planar and nanowire
field-effect sensors was developed by homogenizing the Poisson equation in the bio-
functionalized boundary layer [5]. This multiscale model can be coupled to any charge-
transport model and hence makes the self-consistent quantitative investigation of the
physics of field-effect sensors possible. Numerical verifications of the multiscale model
were given, and a silicon-nanowire biosensor was simulated to find the influence of
the surface charge density and the dipole-moment density on the conductance of the
semiconductor transducer.

In [6], a system of diffusion-type equations for transport in 3D confined structures
was derived from the Boltzmann transport equation for charged particles. The scaling
in the derivation of the diffusion equation is chosen so that transport and scattering
occur in the longitudinal direction and the particles are confined in the two transversal
directions. Two diffusion-type equations for the concentration and fluxes as functions
of position in the longitudinal direction and energy are obtained, and entropy esti-
mates are given. An important feature in this work is that the coefficients in the
resulting diffusion-type equations are calculated explicitly such that the six position
and momentum dimensions of the original 3D Boltzmann equation are reduced to a
2D problem. The applications of this work are related to the simulation of charge
transport in nanowires, nanopores, ion channels, and similar confined structures.

The work in [3] presents existence and local uniqueness theorems for a system of
partial differential equations modeling field-effect nanosensors. The system consists
of the Poisson—Boltzmann equation and the drift-diffusion equations coupled to a
homogenized boundary layer. The existence proof is based on the Leray—Schauder
fixed-point theorem. A maximum principle is used to obtain a priori estimates for
the electric potential, the electron density, and the hole density. Local uniqueness
around the equilibrium state is obtained from the implicit function theorem. Due to
the multiscale problem inherent in field-effect biosensors, a homogenized equation for
the potential with interface conditions at a surface is used. These interface conditions
depend on the surface charge density and the dipole-moment density in the boundary
layer and still admit existence and local uniqueness of the solution when certain
conditions are satisfied.

In this work, we consider the theory of homogenization for the Boltzmann—Poisson
system for electron transport focusing on problems related to fast oscillating charge
concentrations at manifolds occurring, for example, in nanotechnological devices but
including a general physical setting. Since the phenomena that occur at the surface
of these devices is of particular interest for the prediction of observable quantities,
the geometry of the problem considered here is the half-space with its boundary
representing the surface of the device and with periodic cells along the manifold.
We will study in this work the boundary-layer effects along the unbounded direction
normal to this manifold.
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2. Formal result for periodic media. We define

x
Y=
&

and use the ansatz

ua(‘r) = ’U,()(LL', y) + E’U/l(l',y) + 52”2(m7y) Ty
fs(tazvv) = fO(taxayvv) +€f1(t,$,y,’l)) + €2f2(t71'7yvv) e
Substituting this ansatz into the Boltzmann equation (1.1b), noting that V =V, +

1/£)V,, and comparing the coefficients of 72, e71, €0, and €72, i > 0, respectively,
Yy
we obtain the equations

(2.1a) v-Vyfo—Vyuo-Vyfo=Q(fo),
(2.1b)
v-Vafo—Vaug-Vyfo+v-Vyfi = Vyur - Vi fo — Vyuo - Vo f1 = Q(f1),
Ofo+v-Vaft —Vaur - Vi fo — Vauo - Vo fi
(2.1c) +v - Vy fa = Vyus - Vo fo — Vyur - Vi f1 = Vyue - Vi, fo = Q(f2),

i—1

(2.1d) Ofica+v-Vafin =Y Vattii1 k- Vol
k=0
i—1
+v -V fi = Vyug - Vo fi — Zvyui—k Vol =Q(fi) Vi>2.
k=0

We define the linear operator
L:=—-v-Vy,+Vyug- -V, +0Q.

Regarding the first equation, (2.1a), which can now be written as Lfy = 0, we find
that fo must be of the form
efuo(t,x,y)

fo=N(t,z,y)M(v), N(t,z,y)= P(t7$)m7

according to [2, Proposition 3.1], where M (v) denotes the normalized Maxwellian
distribution (1.3). The second equation, (2.1b), becomes

Lfi =v-Vufo—Vauo-Vyfo—Vyur - Vi fo
=Mv-V;N+ NMv-Vyug+ NMv-Vyu
=Mv- (VN + NV,up + NVy9Vau).

In the last equality in the last term, we have used the identity u; = ¥ (y) - Viup that
is well known from the homogenization of elliptic operators. (Note that ¥ (y), the
first-order correction, is a vector field and that the gradient with respect to z of a
vector a is a matrix with the entries (V.a);; = 0.,a;.) It is immediate to see that the
solvability condition from [2, Proposition 3.1] is always satisfied for the last equation.
After defining the vector

x(y,v) == L™ (Mv)",
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where L~ is applied componentwise, we can write

fi = (VuN + NV,ug) - x + NL™H( MoV 1) - Vaug.

Furthermore, we define the vector

(2.2) 0(y,v) :== L~ (MvTV, )"
to have
(2.3) f1= (V,;N + Nvgqu) X+ NV, ug - 6.

We now counsider the third equation, (2.1c), i.e

Lfs =0ifo+v-Vafi — Vaur-Vyfo — Vaug - Vo ft — Vyus - Vi fo — Vyur - Vo, fi.

We have to check the solvability condition from [2, Proposition 3.1] again to ensure

that now a solution fo exists. Therefore, we consider the condition

//(atfo +U'V3;f1 —Vuq 'vva —Vaug 'vvfl _vaQ 'vva _vyul 'V/Uf1)dydv =0,

which simplifies, by using (2.3) and the divergence theorem with respect to v for the

terms containing V,,, to

0= / M (v)ON(t, z,y)dydv + / v+ Vo ((VaN + NVauo) - x + NVauo - 0)dydv

e*uo(t z,y)

=0ip+ Vs - v®xy, v)VeN(t, z,y)dydv —

e~ uo(t,x u)v —ug(t,z,y)
P e
=p+ Ve - (/ U®X(f w0 (tw ) dy +p(t,7)Va

pffv@( +x Vefu"t‘y)dydv
f e “O(tfy)dy

fY e—uwo(t,z,y’) dy’

p(t,x) [[v@ (04 x)Vee 0¥ dydy
fy e—uo(t,z,y’) dy/

) dydv

VR e~ uo tzy)d dov e~ uo (t,z,y)
=0p+ Vs f X Y +p v®xV — 5 dydv
feuo(txy)dy uo(tacy)d
pffv@ (0 + x)Voe 0¥ dydy
f e—uo(ta.y’) dy!
_ 1 dydvevotenly (o)
=0p+ Vy - ( fy ety dy “Vap+p vVy mdydv

S [(9 + x)e*“f)“vaw] dydv))

fy e—uo(t,z,y’) dy’

The tensor product is defined as (v ® x)¢ := (x - ¢)v. Therefore, the solvability

condition becomes the drift-diffusion-type transport equation

1 _ _ vye w0 bEY) dydey
(———1 [ aydveovy - v, “Od’VgC-//
(fy e_uody { // ydave (' 14 + 1Y |:/Y (& Y fY 67u0(t’w’y,)dyl

v, // o(0+ X)e‘““dydv} })
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3. Formal result for boundary layers. We consider the domain 2 := {z =
(€1,62,2) € R3 | 2 > 0} C R3 and set Qg = {z = (&1,62,2) € R® | 2 = 0}. We
split the domain into cells and define a cell as C := Y x (0, 00), where Y is the square
Y :=(0,1)2, and we set 9Co := {y = (y1,%2,93) € C | y3 = 0}.

We consider again the Boltzmann—Poisson system

(3.1b) Of +v-Vaof =Veu-V,f =Q(f),

where np(z) is a given charge concentration (the doping density) and n(t,z) :=
J f(t,z,v)dv.

We introduce the notation z = (¢, z) for the position, where ¢ = (£1,&) € R?
and z € R, and v = (w, () for the velocity, where w = (w1, ws2) € R? and ¢ € R, and
we define y := £/c and w := z/e.

The boundary condition for the Boltzmann equation at 9€)q is specular reflection,
and the boundary condition for the Poisson equation as z — oo is lim, .., u = F € R.
On the boundary 9, there is a surface charge density

0% (€) == 0(€,€/e) = 0(&,y) = 00(y) +e01(&,y) +202(E,y) + -

with og(y) such that in the limit og “looks” constant from far away, and only the
small-scale structure of the surface charge becomes visible as one zooms in. In the
following, we split the electrostatic potential u into the stationary potential ¢(&, z)
due to the surface charge density ¢ and the fixed charges np and the self-consistent
potential (¢, &, z) due to the charges n; i.e., we write

u(t,§,2) = 9§, 2) + ¥(t, €, 2).

The scaling of n5, and o¢ is chosen so that the stationary potential p(§,&/e, 2z, z/¢) =
©° (&, z) is the solution of the problem (denoting as v the normal to the boundary)

=V, (AV.¢®) =npH in Q,
v- AV, =0° on 0Q,
v AV, > F  asz — .

We specify Neumann boundary conditions since they are consistent with the phys-
ical situation of an infinite charged plate. It is well known that an infinite charged
plate gives rise to a constant force normal to the plate; we call it F' € R here.

The self-consistent potential (¢, &, € /e, z,z/e) = ¥°(t, &, 2) solves the problem

=V, (AV.)%) =n° in Q,
v-AV,Y® =0  on 09,
v-AV Y* -0 asz— oco.

Due to the fast variations, the ansatz for the particle-density function f is

fa(t7£7z7w’<-) = f(t7£727£/€7z/€7w7c) = f(t7£727y7w’w7<)'

We rescale to a diffusive scaling in the Boltzmann equation by changing variables so
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that 7 :=te and @Q — (1/¢)Q, remembering that w = z/¢. Recalling
_ (Ve 1 Vy
v- (o)« (32)
\Y
Vv = v ’
(34 )
the Boltzmann equation becomes
(3.2) €0 f*+ (w-Vef®+ (0. f° — Veu® - Vi f* — 0,u0 f7)
1
+ g(w “Vyfe+(0Lf° — Vyu® - Vo f* — 0,u0c ¢ — Q(fa)) =0
and the Poisson equation for the stationary potential ¢ becomes
1 1
—App® + —A19° + Asp® =n%H  in Q,
g2 5
1
v A(V(Eﬁz) + gv(y,w))pf =0° on 09,
1 £
v-A( Vi + gv(w) ©*—= F asw — oo,

where we have defined the three operators
s (3) - (4(2))
(2 ()59 ()
() ()

to simplify notation. The equations for the self-consistent potential 1* are analogous,
but the right-hand sides are n®, 0, and 0, respectively.
We make the multiscale ansatz

[ & 2w, Q) = folt, & 2y, w,w, Q) +efi(t, & 2y, w,w, () + -
©° (& 2) = po(& 2, y,w) +epr(§, 2, y,w) + -
n5H (& z) =npo(&, z,y,w) +enp1(&, z,y,w) + -+,
we(t §,2) =vo(t, &, 2, y,w) +ei(t,§, 2, y,w) + -+,
n(t,&,z) =no(t, &, 2z, y,w) +eny(t, &, 2,y,w) +--- .
Comparing the coefficients in the Poisson equation yields the three problems for ¢y,
1, and po. We will discuss the problem for g in the following, returning in a later

section to the respective problems for ¢; and s.
For ¢q, the boundary value problem is

(3.3&) Ao(po =0 in C,

(3.3b) vo(§, 2, -, w) is 1-periodic,
(3.3¢) v-AV(y w0 =0 on dC,
(3.3d) v-AV(yumpo — 0 asw — oo,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/06/23 to 129.115.103.38 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

HOMOGENIZATION OF THE BOLTZMANN-POISSON SYSTEM 513

According to Proposition 3.1, which will be proved in the next subsection, this bound-
ary value problem determines ¢y up to an additive constant and implies that ¢y does
not depend on the fast variables y and w, i.e., ¢g = po(&, 2).

3.1. Ap boundary value problems. We will prove the existence and unique-
ness of solutions to the Ap-Laplace (homogeneous) and Ag-Poisson (inhomogeneous)
boundary value problems for 1-periodic functions across Y-cells with Neumann bound-
ary conditions at zero and infinity. These results will be useful in the following to
treat with the different elliptic problems arising from the appearance of the operators
Ap, A1, Ay in the homogenization problem.

We start with the homogeneous Ap-Laplace problem as it is related to the bound-
ary value problem for .

PROPOSITION 3.1. Suppose F € R and o: Y — R are given. Suppose further that
the 3 x 3 matriz A is coercive and bounded and that it has the diagonal form

&11(0)) 0 O
A(w) = 0 (122(0.}) 0
0 0 asz(w)

The diagonal entries a;; may depend on w but not ony. If fY o(y)dy = F holds, then
the solution u(y,w) of the boundary value problem

Aou =10 inC,
u(-w) is 1-periodic,
v+ AV wuy,0) =o(y) on dCo,
v-AVywu(y,w) = F  asw — oo
is unique up to an additive constant and, as w — oo, the solution u converges expo-

nentially quickly to a function of w only (which is linear if ass is constant). Otherwise,
if [y o(y)dy # F, the problem has no solution.

Proof. First, we consider the case

aill O O
A= 0 a2 0
0 0 ass

with constant a;; > 0. The Fourier modes are the basis

Unm (y) := exp(i27(nyy + my2)), (n,m) € 7?2,

and of course the equation Agt,m = (27)2(a11n? + az2m?),m holds. We write the
solution u as the sum

u(y,w) = Z Cnm (W) Pnm (Y),

(n,m)ez?

and the coefficient functions ¢, (w) are to be determined, keeping in mind the bound-
ary conditions

a330,U|w=0 = 0(y) = Z TnmPnm(y) on 9

(n,m)€Z?
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(taking the normal at w = 0 as +é,, when restricting our domain to the half-space)
and

330t wmsoe = F =F+ > 0 tnm(y).
(n,m)#(0,0)€22

After substitution, the equation becomes

Z ((2m)*(a11n? + a2om®)Cpm (W) — O (a3300Crm (w))) Yrm (y) = 0.
(n,m)€z?
Therefore, the coefficients ¢, (w) have to solve the problem
0.,(a330.Cm (W) — (27)%(a11n? + agam?)cpm (W) =0 Vw > 0,

a33awcnm ‘w:O = Onm,

3300,C00|lw=o00 = F,

~ o~~~
W W w w
N O Ot =~

4)
5)
.6)
) 4330 Cnmlw=co =0, n+m > 0.

We discern two cases. In the case (n,m) # (0,0), we find—given that a;1, ass, ass
are independent of w (and also of y)—that

o a11n2 + a22m2 a11n2 + a22m2
Cnm ((JJ) = Qlpm €XP 2my | ——m8M8M——w | + Bnm exXp 2| ——w s
a33 a33

and this implies a,,, = 0 due to the boundary condition (3.7) for w — oo. In the case
n = 0 = m, the equation is —9,,(a330,c00) = 0, and hence coo(w) = apo + boow/ass.
The boundary condition (3.6) for w — oo yields ¢op(w) = agp + Fw/ass.

Therefore, the solution is of the form

Fuw 1112 + aoem?2
(38) u(ya UJ) = a00+a7+ Z 6nm exp —27 %UJ wnm(y),
B (nm)ez2\(0,0) 33

and hence the kernel consists of linear functions in w and the solutions decay expo-
nentially to these linear functions as w — oo.
Comparing the boundary conditions (3.5)—(3.7) with (3.8) for u implies F' = ¢

2 2 . .
and 0 /a33 = —Brm2T4/ % Therefore, the solution is
_ a11n?+azpm?
Fuw Z exp ( 2my/ o w)

u(y,w) = agp + — —

483 (n,m)€Z2\(0,0) 2”\/‘133(%1”2 + azam?)

This concludes the proof for the first case, since g9 = fY o(y)dy.
The second case is

a1 (W) 0 0
Alw) = 0 age (W) 0
0 0 asz(w)

with a;;(w) > 0 assumed to have no y-dependence.
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We express the solution u as the sum
uy,w) =Y Cam(@)¥nm(y),
(n,m)€Z?

since for this second case the equation Ao, = (27)2(a11(w)n? +agz(w)m?)hp., also
holds and the coefficient functions ¢, (w) must then satisfy the boundary conditions

aSSBwu‘w:O = 0(3/) = Z o'nm/(/)nm (3/) on 890,

(n,m)€z?

a330,U|yw—00 = F = F + Z 0 Ynm(y) asw — oo.
(n,m)#(0,0)€Z?

The equation after substitution is again
Z ((27T)2(a11n2 + a22m2)cnm(w> - aw(G/SSawcnm(w)))wnm(y) =0.
(n,m)€Z?

Also, in this case, the coefficients ¢, (w) must solve the problem

(3.9) 0Ow(as30,Cnm(w)) = (27r)2(a11n2 + a22m2)cnm(w) Yw > 0,

(3.10) 4330, Crm|w=0 = Tnm,

(3.11) a330,,c00 — F as w — 00,

(3.12) 0330, Cnm — 0 asw —o00, n+m>0,

which can be rewritten as the system

(3.13) o, <bnm> () = <a33(?u)_1 (277)2(a11n§ +a22m2)> (bnm> ()

cnm

of ODEs, or equivalently as
(314) aw£nm = Bn?n (w)an'm(w)

by defining

(315)  Cam(w) = (b") Bom (1) =

Cnm

( 0 (2m)2(aun®+ a22m2)> |

ags (w) 0

This is a family of first-order general ODE systems. The case n = 0 = m has the

solution of a constant byy and
Y do
(3.16) coo(w) = coo(wo) + boo/ ——,  a33(w)0u,co0 = boo = F' = oo,
wo @33(@)

where the last equalities are due to the boundary conditions. Therefore, it follows
that the force due to the electric field is the result of the average of the surface charge
over the periodic cell.

The systems with (m,n) # (0,0) have positive definite matrices and can be solved
by the Magnus expansion method [4], where we express the solution by an exponential
of a matrix given by an expansion of

—

(3.17) (W) = exp (Aw)) Dy, wo =0, Qw) =Y Q(w).
k=1
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The first terms of the expansion have the form

o “ ~ 0 (27’()2 (7’L2 fow alld(:J + m2 f(;d aggd(:))
Ql(w) - /0 Bnmdw - (f(;d a§31d&) 0 )

D (w) = ;/Ow /OM [Brm (w1), Bpm (w2)] dwadwy

1 w  pwi wa
Qg(w) = 6 A /O' A ([Bnm(wl), [Bnm((.UQ), Bnm(UJ3)]] dwgdwgdwl

+ [Brm(w3), [Bam (w2), Bam(w1)]])

with the commutator [B, C] := BC — CB. The recursive relation for the terms in the
expansion can be found in [4]. The Magnus series is known to converge for w € [0, W)
such that B,,, is a bounded operator on a Hilbert space, and this operator satisfies

the condition fOW | Bpm (w)||dw < 7. This yields
bm(w)\ b\ (a33(w)0ucnm(w)
(3.18) (Cnm(w)) = exp (Q(w)) (C%”) = ( o .

The matrix exponential of a 2 x 2 matrix B is given by

exp(B) = exp (“23) ((cosh(q) _ “Bsmg@> I+ Sm};@ B) ,

2
B
q:i\/—det (B—UQI).

Both the positive and negative values of ¢ give the same result for exp(B) as
cosh(q) and sinh(q)/q are even functions of gq. Therefore, the exponential matrix
e22@) and the associated solution of the coefficients ¢, are

exp () = exp (L) [ (o) - T IUD ) py I g,

2 2 q q
q(w) _ \/(Qll(w) ; Q22(w)> + 912(w)921(w) —
Com () = €xp (“ 92(“)> <a33(0)awcnm(0)smh(q) Qo1 ()

+ ¢nm(0) {sz(q)ﬂgg(w) + <cosh(q) — trQ(w)smh(q))}) .

2 q
Taking into account the boundary condition (3.10) at w = 0, the solution has the

form
tr Q(w) sinh q(w
Cnm (W) = e 2 <O‘nm ()

q(w)

001() + o (0) (W%(w)

tr Q(w) sinh g(w)
 (comate - SR ))
To apply the second boundary condition, we consider the coefficients
tr Q(w) sinh g(w)
2 qw) )

= 6% g M w COS. w

+ Cnm (O) Wﬂlg (w)) .
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Since it must hold that b, (w) = a330,cnm — 0 as w — co, we have
tr 9(w) sinh ¢(w) tr Q(w) sinh q(w))
0=e 2 Onm | ————Q11(w) + cosh g(w) —
(o (5 e+ coshate) - 5
sinh ¢(w)

q(w)

+ ¢nm(0)

)
w—r00

le(w))

which implies

tr Q(w)
2

e (anm (Qu(w) + q(w) coth g(w) ) + cnm(O)ng(w)) 0.

Although the decay of ™3 to zero would satisfy this condition, in order to

guarantee the latter we can require that for ¢,,,(0) the condition

1t Qw) — Q1 (w) — q(w)>
M2(w)

)
w—r00

Cnm(o) = Onm <

Cnm (0) = Onm

Qoo (w) — M1 (w) \/(Qn(w) - Q22(w)>2 n Q91 (w)
2912(0.)) 2912(0.)) ng(w)

tr Q(w)

with a speed of convergence faster than e~ 2 holds in case this last term blows up
so that we satisfy the condition

~ trQw)

e (mm (Qu(w) + ¢(w) coth g(w) 2) + cnm(O)ng(w)) =0.

w—r00
Therefore, the solution of our original problem has the expression

) = aw@ + F [ Bt (e H (T

a33(w) (n,m)#(0,0)

q(w)

Q21 (UJ)

s ( x "(”)53(13)(” — q(w) )

with F' = go0-

However, in order to arrive at more explicit, though approximate, formulas for
the coeflicients ¢, (w), we have to resort to truncated Magnus expansions, obtaining

. . [o'e) .

approximations of Q = >~ O up to a given order of k.

We will compute the first two matrices of the Magnus expansion and their asso-
ciated solution for ¢, (w) up to first and second order in the expansion.

The exponential matrix and associated solution up to the first term of the expan-
sion are

sinh(q) ( 0 (2m)? [n? f(;u ar1d@ +m? fow aggd@))]
W do 3
q 0

w w w o
qg=+/—detQ(w) = 27r\/<n2/ aprdw + m2/ agzddz> / @
0 0 0 ass

This matrix simplifies to

exp (1 (w)) = <cosh(q)] +

h sinh(q) 9.)2 (2 ¥ 4 g 2 (% goodi
(3.19)  expQ(w) = sin}f((;? (g)dw 22 (2m)% (n? [y arndw +m? )7 agzda) .
Tfo P cosh(q)
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Moreover, after writing the g(w) term explicitly in the matrix above, it has the form

21 (@)

Sinh%\/(ﬂg [ aryd@tm? [ aggdd) [§ 7{5{;—2

cosh2‘n'\/(n2 fo a11d@ + m?2 fo azgdw) & ad“’
33 VIE azy do
0 %33
27r\/(n2 I§ ay1do+m?2 s azzd@')

slnh27r\/(n2 J§ a11do+m?2 [§ agedd) [ L
33 w ~ b w w do
cosh 271'\/ n?2 a11d® + m?2 az2d®
27r\/(n2 1§ a1t datm? [ agadd) ( Jo a1ndo + Jo az2 )fo

a33
VI§ ags do

Therefore, the solution for the coefficients up to first order in the Magnus expan-
sion is

sinh 271'\/(712 fow a11do + m? fow (22d) fow %
271—\/(n2 Jy arndo+m? [ a22d@)

Vg azido

w w w Ao
+ ¢nm(0) cosh 277\/(712 / a11dw + m?2 / aggd(:)) / —w,
0 0 0o @33

for which the boundary condition (3.10), 0pm = a33(0)0.,Cnm (0), holds at zero, keep-
ing in mind that

Cnm (W) = Onm

sinh 27r\/(n2 fow a11do + m?2 fow a22dw) fow % sinh(q) [° _,
= lim / gy dw = 0.
27r\/(n2 f(;’” ai1do+m?2 fow azzd@) q—0 q 0
\/fo azy do w=0

The coefficient ¢, (0) is determined from the boundary condition by the formula

w do
eom(0) = —0 Qo1 (w) _ —Onm 0 ass
Qq2(w) e 2m n2 fow a11d@ + m?2 fow a90d@

wW—r 00

The solution of our original problem up to first order of the Magnus expansion is

u<yaw):COO(0)+F/0w + Y CamW)owm

953(@) 2 (00)
<\//w751nh 27T\/(TL2 Jo andd +m? [ asadi) [ 57&3
as3 27r\/n2f audw—i-me anad
a33

fo audw—i—m2 fo A90d®

w—r00

w w w A
- cosh 27r\/<n2 / a11d® + m? / aggddz> / i > )
0 0 o ass
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The solution up to second order of the Magnus expansion is given by

ex 2 w) | = ew oS _tr Zizl Q% (w) sinh(q)
p(;gk( )) (< h(q) . : )1

2 2
g = |- det (ng(w) = “Z:f:zlﬁk(@])
k=1

so we have to compute the second matrix term of the Magnus expansion by calculating

- ;/Ow dw; /O“” dws (Brm (w1) Brm(w2) — Bum (w2)Brm(w1)) = I(w)M,

M= <(1) —01) ’
W= /“ /WI dwlgdw2 (2m)* <a“(wl)”2 +ap()m?  an(w)n® + azz(wz)mz) :

az3(w) ass(wr)

Therefore, the Magnus expansion up to the second-order term adds up to

(3.20) (Ql + 92)(w) _ (fochffl)d@ (27r)2 (n2 fow alii?w—’)_ m2 fow a22d®)> |

for which we have that tr Zk 1 Q% (w) = 0. Then

© do
q(w) = | —det Z Qp (w) I2(w) + (27m)2 n2/ alldw+m2/ azgdw) s ,
k=1 0 as3
2

S us a w m2 a w
exp <Z >_coshq( )I+h7q (fo aas (2m)? (n® [y liC[l(o_;; I3 aada )),

q(w)
e (@) = (Unm sinhq(w) [“ d& ) (Coshq(w) W) sinhq(w)))

q(w) 0 ass q(w)
is the solution up to second order of the Magnus expansion, recalling that o,,, =
a33(0)0,Cnim (0) due to the boundary condition (3.10) at zero. To determine ¢y, (0),
we recall that

Cnm (0) = Onm

QQQ(W) — Qll(w) _ Qll(w) — Qgg(w) 2 le(w)
2912(&)) \/( 2912(0)) ) + ng(w)

w00

Onm [( )+q( )
(27)2 n2f a11do + m?2 fo a9ad

w—r00

The solution of our original problem with coefficients approximate up to the
second order of the Magnus expansion is

“do
u(y,w) = coo(0) + F/ —
o a33
£ Y (o | T [T E cosh g(w) — I(w) 21l
nm Onm _ R
n,m#0,0 Y q(w) 0 @33 (277)2(”2 Jy arndo+m? [ a22d&;)
| | fe)rat) w—00
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We notice that for the particular case of all a;; being constant, the formulas for
the first and second orders in the Magnus expansion yield

. 2 2
sinh <27r /nZai;tmZasy w)
asz3
21 /n2a11+m3azs
aszs

chim (@) = Btum (0)

ass

2 2
+ e (0) cosh (% nan + m’az w) 7

inh 2 2
() = Buenm (O T 4 g, (0) cosha(w) = el (w),  alw) = 2y [T,
q(w) ass
(I(w) = 0 in this case), which is just the same expansion in terms of exponen-
tials of :&:2771/%32”2‘”2@1. For this case of constant a;;, it is known that all
(N)

the solutions ¢y, will give the exact solution, since in this case the commutator
[Brm(w1), Brm(w2)] = [Bnm, Bnm)] = 0 vanishes (which is why I(w) = 0 holds in the
second-order case).

As a final check, we compare the last equations with the previous formulas

w di
(1) — _Unm : 0 ass —Onm
Crn(0) = lim )
©) 21 w—oo \| [¥(n?a11 + mPagy)de 27T\/a33 (n%a11 + m2ags)
_1 -
5 dw —
¢2,(0) = — 7™ im = e

T woroo f n2a, —|— mQagg)dUJ 27r\/a33 (712&11 + m2a22)

for the constants ¢y, (0) for the first- and second-order truncations of the Magnus
expansion with all a;; constant, which are in agreement with the coefficients obtained
in the first part of the proof for the case of constant a;;. 0

Having solved the Ag-Laplace homogeneous problem, we consider the Poisson in-
homogeneous problem Agu = g next. This will be useful for handling boundary value
problems such as those associated to the self-consistent potential 1%, for example.

PROPOSITION 3.2. Suppose F, o0 : Y — R are given, and the 3 x 3 matrix A =
diag(a11, aze, ass) is coercive and bounded, where the terms a; > 0 may depend on w
but not on y For g satisfying the solvability condition 0 = (g,1) of Proposition A.1,
if F = fY y)dy holds, then the solution u(y,w) of the boundary value problem

Aou(yaw = (7 ) in Qv
u(_, is 1-periodic,

)

(- w)
as30,u(y,0) = ( ) on 09,

) =

a330,u(y,w as w — 00

E

is unique up to an additive constant. If F # fY y)dy, the problem has no solution.

Proof. For the case of constant A we proceed as in the first part of the proof of
Proposition 3.1, and we expand

9(y,w) = Z G (W) Ynm (y)-

(n,m)€z?

The equation for the coefficient functions ¢, becomes

aggaicnm(w) — (27r)2(a11n2 + a22m2)cnm(w) + gnm(w) =0,
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and we discern two cases. In the case n? + m? # 0, the general solution is

2 2 2 2
() = n 65D (zﬂ /aun+a22mw> B exp (zﬂ almﬂmmw>
ass ass
) | e
exp ( aun el C) gnm(¢)dC/ass
™

2.9 aj1n2+azam?
ass

exp (—271', [ a11n?tazam? w)
asz3 w 2
N / exp (27r [a11m? + a22m C) G ()dC /a3,
0 ass

2.9 a11n?+agzam?
a33

The derivative of this function is

2 2 2
a11n + agom? an?tagam? , —2 [ aan"tagam?,,
8 Cnm = 27 3 - Bnme 33
aiintazam? +a22m2
exp (ZW V ass ¢ a11n? + agem?
exp | —2my | ———(
2a33 0 a3s3

[ a11n?+azam?
eXp ( ass w) alln + a22m2
exp | 2my| ———(
2a33 0

gnm

To use the boundary conditions (3.10)—(3.12), we calculate

Onm = a333wcnm(0) = 271'\/(0411”2 + a22m2)a33 (anm - ﬁnm)
and

9 a11n24agym?

Frm = 0= a330,cnm(00) = 27r\/(a11n2 + agam?)assz apme T @33 Y

eXp (QW V %szﬂm’zw) o a11n2 + a22m2

_ exp 72 gnm
2 0
w=00
We deduce then that
oo _ / (a11n2+az9m?)

5 Bnm = Opm —

Qnm =

2. 27r\/(a11n2 + a22m2)a33 27(\/(@11712 =+ azzmz)agg '

In the case n = m = 0, the equation is

az302coo(w) + goo(w) = 0,

for which we have

w w ¢
a330,Co0(w) = Koo*/ goo(w')dw',  aszcoo(w) = K60+Koow*/ / goo(w")dw'dC,
0 o Jo
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and the imposition of boundary conditions renders as
oo
000 = a330,¢00(0) = Koo, Foo = a330.,c00(00) = g0 — / goo(w)du',
0
and so, remembering that (1,g) = 0, this gives the condition

/ y)dy — // 9(y,w dydw—/ o(y)dy.

The solution is then

2 2
_ ajjn“+aggm
274/ —asz wa
nm

271'\/ a11n2 + a22m2)a33

u_KOO+——//g°“ W — S Yumly)~

(n,m)#0€Z2

o 7%,/7‘111"2“22“4 q
a33
Jo Inm(€) Ccosh o

27‘(\/ ajin? + a22m2)a33 a33

CL117L2 + a22m2
— % W

+ Y Py

(n,m)#0€Z?

For the case with diagonal A such that a;;(w) > 0, we can obtain the solution to
our nonhomogeneous system by using the method of variation of parameters over the
solutions of the homogeneous system.

1 o) sinh g(w) 2 2w (sinh g(w) tr Q(w)
= — 0 = 2 1 (Q I S h
Cnm € q(w) 21 (UJ), Cnm € q(w) 22 (w) 2 + COSs q(w)

(remembering €2 has an implicit n, m dependence) are two linearly independent solu-
tions to the (n,m) # 0 homogeneous system, so a particular solution to the nonho-

mogenous problem is (with W(cL,,,c2,.) representing the Wronskian)
w 2
_ m (8)gnm (8)/as3(s) . m (8)gnm (s)/as3(s)
o) = o) 7 ez - o [ e

trQ(s) inh ¢(s t Q nm (S

trQ(w) (sinhg(w) we 2 (s "q(ff ( 2(s) — = ) +coshq(s)) i33((s))
el me T W )0 -
tr Q(s) (sinhq(s) 921(8)) gnm(s)

tr Q(w) sinhq(w) ( trQ(w)) )/w e 2 q(s) a33(s)
_er (Amhalw) (g _ W) h ds.
(T (a0 - T ) weoshate) | Wchm B )(5) ’

We know c,m(w) = Kicl,, (w) + Koc2,, (w) + vpm(w) with K7, Ko given by the
boundary conditions o, = a33(0)0wCnm(0), Frm = 0 = as3(00)0yCnm(00). Since

wo [sinhgq trQ sinh ¢ o
aggawcim =€ 2 [ p (QH — 2) + COShL]:| s a338wcim = p 9126 2,

we have that o, = K1 + a33(0)0,vnm(0) = K1, and, unless 0 = a3z3(c0),

_ OOC}Lm( )Gnm(8)/az3(s) G O Cpym (00) o Oocim( )Gnm (5)/az3(s) s
KQ‘/O Wick @0(s) acnm<oo>("m+/o W s o) (5) d)'

nm’) -nm nm?’ -nm

The remaining case n = 0 = m is 9, (as3(w)d,co0) = —goo(w), with solution

w ’ w 13
(3.21) coo(w) :K60+K00/0 L)*/O di)/o goo(w')dw'.

azz(w’ ass(
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The boundary conditions are ogp = az3(0)9,,¢c00(0) = Koo and

F = a33(00)0.,co0(00) = 000 — /000 goo(W')dw" = /YU(Z/)dy

since (g,1) = 0. The solution to the nonhomogeneous problem for a;;(w) is then

u

u

u

u

w W’ £ w')dw
= K+ [ [ [ S ik @) + Kad @)+ vam ()

ass(w') ass(§) (n 3
_ w  Fdw’ goo(w Ydw'dE " R O nm(oo)CQ »
— g+ [T [T el +(n§#6wm<w nm{m - g >]
2 * chn(8)gnm s)/a33(s) o cnm(s gnm(S)/asz( )
L e (i V e e ), B 2 (3) ds]
+ Vnm (W))
_ w  Fdw’ goo(w )dw' dg o A (W) — 0w cnm(oo)CQ w
— Ko+ [ = [ el AR SR { () = GBI >]
b OwVnm (00
F O ) (v ) = ) g )
(n,m)#0 «
- “ Fdw' ¢ goo(w/)dw dg
B KOO + /0 a33(w/) / / add(&)
Inm [awcnm,(oo)cnm,(w) - awciz,m(oo)cz (w)] + 6 cnnL(Oo)vﬂ7n(w) vmn( )8“;’07”“(00)
+ ("%#6 "Z"nm(y) G n7n(oo) .

O
We remark that the condition fY y)dy = F codifies the physical intuition that

we recall from the well-known example of the infinite charged plate. An infinite ho-
mogeneous 2D charged plate gives rise to an electric field that is constant everywhere
in 3D space; this result is a nice exercise in integration and can be found, e.g., in
Feynman’s Lectures on Physics. The condition means that the charge density of the
plate and the electric field at infinity must agree quantitatively. Furthermore, this
proposition tells us that the potential due to oscillations in the charge of the plate
decays exponentially as we move away from the plate. The field —F far away from

t

he plate is only determined by its average charge density. Finally, the solution is

only determined up to an additive constant due to the combination of periodic and
Neumann boundary conditions.

In general, boundary value problems of the kind of (3.3) in divergence form

must satisfy a solvability condition because of the lack of Dirichlet boundary con-
ditions. The solvability condition generally arises from integrating both the left-hand
and right-hand sides over (y,w) over a cell C and applying the divergence theorem.
Physically speaking, this means that the fluxes under the divergence must balance
the total charge in the domain. More precisely, the solvability condition is given in
Proposition A.1. For the problem (3.3) at hand, the solvability condition means that
fooc fy Aogpodydw = 0 must hold; here this condition is always satisfied due to the
periodic and zero Neumann boundary conditions.

The equation for ¢y is
3.22a) Appr = —Ai1pg inC,
3.22b) v1(&, 2, w) is 1-periodic,
3.22¢) v- AV 0o + Vigwel) = oo on 0Cg,
3.22d) v- AV 00 + Vigwer) = F as w — 00.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/06/23 to 129.115.103.38 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

524 CLEMENS HEITZINGER AND JOSE A. MORALES E.

For a nonconstant A(w) this 1-periodic problem reduces to

(3.23a) Aop1 = Ouass(w)0z¢0(&,2) inC,
(3.23b) p1(&, 2, o,w) is 1-periodic,
(323C) a33(0)8w<p1\w:0 =09 — a33(0)82<,00 on (9(;'07
(3.23d) a33(00)0, 01| w=0o — F — a33(00)d,p0 as w — 00.
Our source function g(w;§,z) = Ouass(w)d.pe(€, z) has no y-dependence, so

gnm(w) = 0 for (n,m) # 0, and the problem is nonhomogeneous only for the case
(n,m) = 0. For the problem to have a solution, it should hold that

(3.24)  F — a33(00)9:¢0 :/ dy [oo — a33(0)0. o] —/ dw Oy azs(w)0240(, 2),
Y 0
which reduces to F' = fY oo dy. We apply the solvability condition in Proposition A.1,

0= (1>awa33(w))az@0(£’ Z) = (GSB(OO) - a33(0))8z§00(§72)'

We can provide an explicit solution for this problem, which is

o1 = Ko+ / (F — ags(o0 >a)zsoo>dw/ /

ag(

+ Z 1/}nm(y ( nmCnm +Ifrzlm nm)
(n,m)70

/ Dass(w')d,podw’

a33

and which can be reduced to (since 9, has no y-dependence)

dw' 000 /Ow (a33(B) — as3(0))dp

@1 = Koo + (F — 033(00)6z800)/
0

a33(w’) as3(B)
ducl
+ Z ¢nm |:C'}Lm a CQ Cim:| O0nm-
(nm)£0 o

Further simplification from the solvability condition in Proposition A.1 renders as

1
aw C?’L m
OuCim,

Y1 = K00+F/ 7) Waz(,@() éa Z wnm UOnm l: nm(w) - Cim(w):| .

(n,m)#0 e

We observe that we can divide ¢; by linearity into two components, one satis-
fying a Laplace problem with Neumann boundary conditions associated to the sur-
face charge og plus another part satisfying a Poisson equation where the source and
the boundary conditions are related to 0.¢o, that is, @1 = ¢ + ¢F, such that
of = —wd, (&, 2) satisfies

(3.25a) Aopt = Buazs(w)dap0(€,2) inC,

(3.25Db) ol (&, 2, w) is 1-periodic,
(3.25C) a33(0)8w<pf|w:0 = —a33(0)8zap0 on 800,
(3.25d) a33(00) 0t oo — —a33(00)D. 00 as w — 00,
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w ) 8_;0}””
ok = Kby + F [ 2555 4 3y Y ()0 (i (@) = 52582 |2, (0)) st

(3.26a) Aot =0 inC,

(3.26b) ol (&, 2, ,w) is 1-periodic,

(3.26¢) a33(0)8w<,01L|w:0 =09 on 0Cy,

(3.26d) 33(00)0 T |wmoo — F as w — 0.

The Poisson component can be expressed as ¢f = —wd.¢o(§,2) = x(w) - Vie,2)%0

with x(w) = (0,0, —w).
Again, we apply Proposition A.1 for elliptic problems and see that the solvability
condition

/Aongdydw = —/A1Q0()dydw
C C

must be satisfied. The left-hand side simplifies to (defining 9C as the boundary of C
in the w direction)

w—r 00

/A0<p1dydw = 7/ v- AV wmyprdydw = 7/ v AV (yw)p1dy ,
c ac Y w=0

and the right-hand side becomes

/CAlwodydw = - /C V(yw.z) : (AV(S,Z)SDO) + v(&,z) ! (Av(y,w)WO)dydw

w—r 00

w=0

=- / v AV (¢ p0dy /C (Vg - AT) - V(e oy 0dyduw
Y

= */ V'AV(s,zWody‘ . *V@,ZWO'/CV(y,w)'ATdydW
Y w=

w—00 T w—r00
= */ v AV(g,z)sﬁody‘ = Vie,2)%o (/ v-A dy)’ ;
Y Y

w=0 w=0

w—00

since AT is periodic in y (trivially). Hence the solvability condition becomes

w—r00 oo

= a33(w)‘0 0.0 = 0,

(3.27) /YOO(y) — Fdy = V(epo0- (/Y v ATdy)‘

so in the case when the two surface integrals on the right-hand side are identical, we
recover

w=0

/ oo(y)dy =/ Fdy =F,
Y Y

meaning that the field at infinity and the average surface charge density of the infinite
charge plate must correspond when they are prescribed as boundary conditions. The
equation for g is

Aopa =npo — A1 — Ao in C,

p2(§, 2, -, w) is 1-periodic,
v- AV 01+ Vigwp2) = o1 on 0Cy,
v A(v(faZ)QDl + v(yw)‘:@) -0 as w — 00.
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The solvability condition for this problem is

/ Agpadyde = / npo — Aver — Asgodydos.
C C

Applying the divergence theorem to the left-hand side, we find

w—r00
/Aog@dydw = —/ V- (AV (y.w)p2)dy ,
c Y w=0

whereas the right-hand side simplifies to

/CTLDO — A1p1 — Asppdydw
= /CnDodydw + /C Vigw) " (AVi(ey01) + Ve 2y - (AV 0y e1)dydw

+ Vi, </c Adydwv(&zypo)
:/Cnpodydw+LV~AV(s,z)¢1dy‘::0w+/CV(5,Z) AV () x1) TV (e, 2y p0)dydw

+ V(&Z) . (/c Adyde(&Z)(po) .

The problem for ¢y can be reexpressed as
Aopa = npo + 0uass (9 Kpy — wd2p0) — az302p0 + a110Z, o + a2203,¢0 in C,

w2(§, 2, -, w) is 1-periodic,
a33(0)0up2 = 01 — az3(0) Oz¢1|,_¢ = 01 — a33(0)0: K on 0Cop,
a33(w)dwip2 — —az3(w)dxp1 = —azs(w)(9: Khy — wdZepo) as w — oo.

If this Poisson problem is to have a solution, it must hold that
(3.28)
— ag3(w)(9:Kgy — wdZpo)

:/ Jldy—agg(O)azK(l)o
w=00 Y

o0
- / dw/ dy [npo + Owass (0. Ky — wdZpo) — aszsd2po + au@é o + a223§2@0] )
0 %

which can be simplified to

8?14,00/ andw—&—agzgoo/ CLQde:/ Uldy—/ /nDodwdy.
0 0 Y o Jy

The solvability condition from Proposition A.1 is
(3.29)
0= (1,npo + Dwassd.p1 — assd2po + a110z, 0o + a220%,0)
= (1,npo) + asz(w) |~ 0:K{y — ass(w) wl D20 + (1, all)aglgoo + (1, agg)(‘?gzgoo.
Applying the Proposition A.1 solvability condition in the relation between the electric

force and the (surface and volumetric) charges, we have

(330) *(lgg(w)(azK{)O — w8§¢0)| = / Jldy — a33(0)8zK60;
Y

Ww=00
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therefore, the Proposition A.1 solvability condition can be reexpressed as
(331) (1, all)aglcpo + (1,&22)8522@0 = / Uldy - (1,nD0),
Y

which renders again as a Poisson equation in the &-domain for g (as the ass term
has vanished), having as sources the surface charge o1 and the doping npo(&, z, y, w),
and having permittivities averaged over the (y,w)-domain.

Next we consider the equations for vy, 11, and ¥y for the self-consistent poten-
tial 1°. The equation for ¢y is the same as the one for ¢g. This yields (¢, &, 2) as
a function of the slow variables only. The equation for 1, is the same as the one for
1 but with zero boundary conditions; that is,

(3.32a) Aothy = yazz(w)d.(€,2) inC,

(3.32b) 1(&, 2z, -, w) is 1-periodic,
(332C) a33(0)3w1/)1\w=0 = —a33(0)821/10 on 800,
(3.32d) a33(00) 011 |weoo — —a33(00)D, 100 as w — 00.

We already know that the solution is 11 = —wd,90(&, 2) + K (&, 2), a constant with
respect to (y,w) that uniquely defines the problem. Defining it up to a constant, 1,
has the form of a separation ansatz,

(333) 1/}1(53 Z,va) = Xl(y7w) : V(E,z)’(/}()(é-a 2)7

with x1(y,w) = (0,0,—w) = x1(w), for which the change of variables renders as a
so-called cell problem,

“Vw  (AVwx1) = Ve AT incC.

We remember that the self-consistent charge concentration is given by the two-
scale formulation as n°(t,&,z,y,w) = no(t,&, 2z, y,w) + eny (¢, &, z,y,w) + ---. After
comparing coeflicients of €, the equation for 15 is found to be

Aotpa = ng — A1p1 — Azpg in C,

P2(§, 2, -, w) is 1-periodic,
v AV P11+ Vigwi2) =0 on 9C,
v- AV b1+ Vigwie) =0 as w — 0o.

The solvability condition for this problem is equivalent to the one considered for .
Defining more explicitly the source and boundary conditions for v, we have

Aotz = no + 8wa338zK(£, Z) - &J(wagg)afwo + azzagzwo + an@glwo in C,

P2(€, 2, -, w) is 1-periodic,
a33(0)8w1/)2 = —a33(0)8ZK(§, Z) on 8Co,
a33(w)Outps = —ass3(w)d. K (€, z) 4+ waszs(w)d21bo (€, 2) as w — 0.

If this problem has a solution, then it must hold that

- 033|003ZK + wli_{%o wags(w)921ho (€, 2) = —ag3(0)0. K

_ / / dydw (’I”Lo + 0,a330, K — 9, (wa,33(w))8§1/10 + (122((4])85221/}0 + au(w)agld)o) R
0 Y
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which is equal to

O [ anm()do =0 [ an()do= [ [ mo(t.& zp )y
0 0 o Jy
The solvability condition for this problem is
(3.34) 0= (1,n0) + assly’ 0. K — wags(w)|, 820 + (1, 011)3.521¢0 + (1,6122)55221/10,

which would simply reduce the equality between the electric field and the surface
charge to

(3.35) I2o(€,2) lim wazs(w) = ass|y 9. K (&, 2),
w—00

and using this in the solvability condition gives us again

(336) - (15 all)aglwo - (17 a22)8§221/}0 = (1,”0),

which is an effective Poisson equation in the &-variable for the potential 1y having as
source the charge ny and averaged permittivities (1,a11) and (1, as2). This problem
links the Poisson equation with the Boltzmann equation via g and ng.

3.2. Boltzmann problem. Having treated the elliptic problems arising from
the Poisson equation, we now return to the Boltzmann equation (3.2). We now intend
to obtain more information on the probability density function of our system and the
equation that it obeys in the limit. We define

= (g)

By proceeding as in the derivation of (2.1), we find that the equation for fy at order

e~ lis
v - vnfO - Vnuo : vva - Q(fO) =0.
By [2, Proposition 3.1], fo must have the form

exp(—uo(t,2,1))
Jy dy exp(—uo(t, z,n))

(3.37) fo = p(t,z) M(v) = No(t,z,n)u(&, 2, v),

where p is the modulated Maxwellian

(3.38) (&, z,v) := M(v) exp(=U (¢, 2)),

with U(z) a time-independent potential of choice (for example, an ansatz for the equi-
librium solution of the potential in terms of the slow variables only), and Ny(t,z,7)
the time-dependent density

exp(U(x) — uo(t, x,n))

(3.39) No(t, ,1m) = p(t’x)f dy exp(—ug(t,z,n))
Y b) )

We will simply choose U = 0, in which case p = M(v), and Ny(t,z,n) =
p(t,x)e~uwobem /[ e—wolt-emdy  The equation for f; obtained from (3.2) at the
next order £° is

(340) Q(f1) — - anl + anQ . val = (U -V —Vieug -V, — Vnul . Vv)fo.
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We define £ to be the operator on the left-hand side, i.e.,

L:=0Q—v-V,+Vyuy-V,.
Using (3.37) for fo, we calculate the right-hand side of (3.40) as

R:=(v-Vy—Vug-V, —Vyur - Vy)fo
= v - VoNog + Nov - Veu + Nopw - Vauo + Nopw - Vyug
= v - (VoNo — NoV,U 4+ NoVaug) + Nopw - Vs
= v - (VINO + Novmuo) + Nopw - Vyuy,
since Nov - Vopu = —Nopv - V,U = 0.
The solvability condition for (3.40) according to [2, Proposition 3.1] is that the

integral over the right-hand side vanishes, i.e.,

L
lim Rdvdydz = 0.
L—oo Jg
This solvability condition is always satisfied. To see this, we note that the integrand
has the form pv-T, where T does not depend on v, and therefore it is an odd function
with respect to v;. Hence already the integrals over v; vanish.
We now consider the last term of R. Recalling the separation ansatz (3.33) for
11 and for part of the solution of 1, we have (up to a constant)

Fdo

a3 (@)

e1(x,m) = x1(n) - Vapo(z) + /Ow

1
+ Z O'Onmwnm (’y) |:071Lm ((.(}) awcnm

(num) 0
Y1(x,m) = x2(n) - Varbo(z),

with x1(w) = (0,0, —w) = x2(w). Using these relationships for u;, we find that the
last term becomes

)]

B 2‘
0wC? 1 |

Nopv - Vyur = Nopw + (Vi x1 Vo + VX2 Vatho + Vie!),

with
Fe Ot
L w 1 whnm 2
Vap1 = a53(0) + Z 700nmv(y,w) <1/)nm(y) [Cnm(w) - &UCQnm‘ Cnm(w)]> :
(n,m)#£0 o0

We define
0, := L™ (),
021 := L™ (v - Vaxi)s
020 := L7 (v - Vyx2),

0 =L (pv - Vye!),

and using these new variables, (3.40) for f; becomes

J1=(VaNo + NoVzug) - 01 + NoVapo - 021 + NoVtbg - 022 + Noby.
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The equation for f, obtained from (3.2) at the next order ! is

Orfo+v-Vafi —Vaug - Vo fi — Vaur -V fo+v -V fa
- Vnuo . vva - vnul . vvfl - vnu2 ' vvf() = Q(f2)7

which can be rewritten as

Lfs=0rfo+v-Vafi —Vaug-Vyfi —Vauy -V fo — Vyuy - Vo f1 — Vyug - Vo fo.

The solvability condition for this last equation is again that the integral over the
right-hand side vanishes, i.e., that

// [Orfo+v-Vafi —Vaug-Vyfi = Vaur - Vi fo — Vyur - Vo ft — Vyus -V, fo] dndo
=0

holds. The first two terms are survivors. The last four terms vanish after partial
integration with respect to v, since the u; do not depend on v.
Therefore, the condition simplifies to

L
ngr;o (8TN0 / /0 pdndv
L
+// U'Vz((VzNo-i-Nonuo)'91+N0st00'921+N0Vzl/10'922+N09L)d7]dv> =0.
0

This can be rewritten as

L
ngrolo <8TNO / /0 pdndv
L
+Vz'// ((VaNo+NoVaug)-61+ NoVapo-Oa1 +N0Vx¢0'922+N09L)UdTIdU) =0
0

and furthermore as

L L
lim (GTNO / / pdndv + V7, - ( / / v @ 01dndo(Vy No + NoVauo)
0 0

L—oo
L L L
+ / / v@01dndv(NoVap0)+ / / v®0a2dndv(NoVa1ho)+ / / v@Ldnva())) = 0.
0 0 0
Dividing by L and considering the limit L — oo, we obtain
L
lim (8TN0 + V.- (/][ v ® 01dndv(V.No + NoVauo)
L—oo 0

L L L
+/][ v®921dndv(NoVIgoo)+/][ v®922dndv(Nonwo)+/][ UGLdnvao)) —0.
0 0 0
This is a drift-diffusion equation with four different drift coefficients according to the

kind of electric field and potential considered in the limit as L — oo, the last term
being related to the contribution of the surface charge and the force generated by it.
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4. Conclusion. We have homogenized the Boltzmann-Poisson system for sur-
face problems under a periodic permittivity and periodic charge density conditions
in the background medium. Formal results were obtained for this problem. Further-
more, we have shown the existence and uniqueness of the solutions of the Laplace
and Poisson problems in the fast variables with periodic and surface charge bound-
ary conditions generating an electric field at infinity. We have considered diagonal
permittivity matrices which are functions of the fast variable orthogonal to the bound-
ary, and we have obtained solutions for the potential in terms of Magnus expansions.
We have also performed the two-scale homogenization expansion for the Boltzmann—
Poisson system, considering the electric potential as the sum of a stationary part and
a self-consistent one. A drift-diffusion-type equation is obtained for this problem by
applying a solvability condition, which is characteristic of homogenization problems.

Appendix A. Solvability condition for elliptic problems.

PROPOSITION A.1 (Solvability condition). Suppose that f € Li(Td) and A €
My (o, 8, T%) with A= AT. Then the Poisson equation

-V (AVu) = f

has a unique (up to an additive constant a.e.) weak solution u € H if and only if

(f,1)=0.
Proof. See, for example, [8, section 7.2]. 0
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