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Abstract In this paper, a battery energy storage system

(BESS) based control method is proposed to improve the

damping ratio of a target oscillation mode to a desired level

by charging or discharging the installed BESS using local

measurements. The expected damping improvement by

BESS is derived analytically for both a single-machine-

infinite-bus system and a multi-machine system. This

BESS-based approach is tested on a four-generator, two-

area power system. Effects of the power converter limit,

response time delay, power system stabilizers and battery

state-of-charge on the control performance are also inves-

tigated. Simulation results validate the effectiveness of the

proposed approach.
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1 Introduction

Power system oscillation, whose frequency typically

ranges from 0.2 to 2.5 Hz, often occurs in interconnected

power grids, and is one of the major concerns in power

system operations [1]. The phenomenon of power system

oscillation can be caused by many factors such as insuffi-

cient system damping, forced oscillation [2], external

periodic load perturbation [3], parametric resonance [4]

and modal interaction [5], etc. Conventionally, this prob-

lem can be partially solved by fine-tuning the parameters of

power system stabilizers (PSSs) of the involved generators.

However, for an interconnected bulk power system, the

offline tuning of PSS parameters of different generators by

a coordinated scheme may involve the regulatory entities

from different regions that require high-standard coopera-

tion and information sharing. Furthermore, many

researchers proposed to use a centralized control system for

online tuning PSSs. However, this approach will also

introduce the problems of the time delay and communi-

cation cost among different interconnected areas. An

alternative option for oscillation damping is to use local

flexible AC transmission system (FACTS) devices such as

static var compensator (SVC), thyristor controlled series

capacitor (TCSC), and static synchronous compensator

(STATCOM) to provide extra damping support for the

system [6–8]. Basically, those are passive elements/sources

alleviating oscillations mainly by controlling reactive

power or changing the line admittance.

With the fast development of energy storage and power

electronics technologies, many utility-scale battery energy

storage systems (BESSs) have been deployed in the power

system industry and have participated in the power mar-

kets. As an active source, the BESS can be used for bal-

ancing the power systems to provide the ancillary services.
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In normal conditions of a power system, a BESS is oper-

ated in the normal state, i.e. either charging or discharging

in a scheduled mode. However, due to their considerable

initial investment, its function can be further exploited not

only as a system balancing unit, but also to provide extra

damping for system oscillations.

Some studies have been reported in recent literatures

[9–15]. In [11], the analysis and design of a BESS con-

troller for a two-machine system are discussed and tested,

but the analysis for general multi-machine systems is not

comprehensively covered. Designing the damping con-

troller based on certain damping-torque relationships and

indices is also a focused topic [12]. Those indices can be

regarded as a generalization of the damping-torque coef-

ficients in a single machine infinite bus (SMIB) system and

can be combined with classic residual methods [13] in

designing the PSS. Regarding robust control for damping

oscillation by BESS, there are two mainstreams: linear and

nonlinear robust control. In [14], the linear matrix

inequality (LMI) method is used, which requires the solv-

ing of an optimization problem. In [15], the Port-Hamil-

tonian formulation and the related controller design method

are applied on BESS to improve the transient stability.

This paper investigates this problem from an alternative

view point, i.e. symbolically solving the equations

regarding eigenvalues and then applying the analytical

results on the design of the BESS based damping con-

troller. Typically, the inter-area oscillation mode is the

main concern for system operators and can be extremely

harmful to power system reliability, which is required high

priority to be damped. The method proposed here can

damp a target mode to an expected damping ratio and,

meanwhile, will not worsen other oscillation modes.

The remaining parts of this paper are organized as fol-

lows. In Sect. 2, based on the analysis of the power-elec-

tronics converter of a BESS, the model is simplified by a

proper approximation. In Sect. 3, the linearized state-space

model for a power system with a BESS is derived and the

eigenvalues are solved. The solution is then used to design

the controller to improve the damping ratio of a target

mode to an expected value. Section 4 evaluates the effec-

tiveness of the proposed method on both the SMIB system

and the two-area system. Conclusions and discussions

about the future work are given in Sect. 5.

2 BESS model for system oscillation study

Typically, a BESS includes a storage part comprised of

battery cells and a converter interface called a power con-

ditioning system (PCS), as shown in Fig. 1. The PCS is

essentially the set of power converters used to maintain the

pre-specified voltage and power output. For the BESS, the

PCS is typically composed of a DC/DC converter mainly

used for battery charging/discharging control and a DC/AC

converter (voltage source converter)mainly used for theAC-

grid integration with desired voltage and power output.

Sincemost grid related control strategies are implemented

in the DC/AC stage, in this paper, the PCS is modeled as

voltage source converter focusing on the DC/AC part.

2.1 Storage part: battery cells

A battery can be modeled as an equivalent voltage

source with the voltage dependent state of charge (SOC).

Its equivalent circuit model considering SOC is shown in

Fig. 2. Assumptions for this model are: � the battery can

never be discharged to a level under 20%. In this case the

voltage is assumed to be linearly dependent on the SOC as

shown in Fig. 3 [16]; ` the internal resistance is assumed

to be a constant impedance Z, since it is typically very

small when the battery is used in high power

applications.

With the above assumptions, the equation for the battery

is given as:

Vt ¼ Emax � SOC þ Eminð1� SOCÞ � I � Z ð1Þ

where Emin is the cell voltage when fully discharged; Emax

is the cell voltage when fully charged; Z is the cell internal

resistance; I is the cell discharge ([ 0)/charge (\ 0) cur-

rent; Vt is the cell terminal voltage.

In power industry applications, the cell should be pro-

tected from deep charging/discharging for life-span

DC/
DC

DC/AC

Vt
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Qes
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Fig. 1 Topology of grid-connected BESS
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Fig. 2 Equivalent circuit model of battery considering SOC
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consideration. An allowable depth of discharge (DOD) is

typically 75% or 80% [17]. Thus, a preferable range of

SOC is [20%, 80%] in this paper.

2.2 PCS: P-Q decoupled control

The classic P-Q decoupled control strategy has been

widely applied [18, 19]. Figure 4 shows the basic control

idea of the outer loop using the signal of frequency or

voltage deviation to generate reference values for the inner

loop. The inner-loop then generates the pulse width mod-

ulation (PWM) signal for the power converter, where Pref

and Qref are the reference values. In this paper, the pro-

posed method focuses on devising the Pref. The inner loop

structure as shown in Fig. 5 is the same as the classic P-

Q decoupled control scheme, which can be found in liter-

ature [18, 19]; thus, its details are not expanded here.

2.3 Power output model for BESS

The proposed damping controller adjusts the active

power output meanwhile maintaining the BESS reactive

output to zero, since the active power and system fre-

quency are highly correlated [20]. Thus, the local generator

speed (or approximately the terminal bus frequency)

deviation can be used as the input signal for Pref :

Pref ¼ �kesDx ¼ �kesðx� x0Þ , �kesðx� 1Þ ð2Þ

In a typical P-Q decoupled control scheme, the active

and reactive power can be regulated to their reference

values. On the other hand, usually: (1) the response of the

power-electronics device (i.e. switching on/off) is much

faster than the dynamics of most electromechanical

devices, such as synchronous generators; (2) the

controller time constants, (e.g. the integral time constants

of the PI controller) are typically much smaller than both

the cycles of line frequency (e.g. 0.02 s) and the periods of

the electromechanical oscillation modes (frequency in the

range of 0.2–2.5 Hz). Thus the power output of the BESS

can be modeled by a first order transfer function in the

power system oscillation study [9, 18] as shown in Fig. 6,

where Tes is the time constant of the BESS power response.

2.4 Effect of Tes on proposed damping control

The effect of Tes is slightly reducing the desired damping

ratio of the target mode, which will be verified in later sec-

tions. Tes usually ranges from 0.01 s to 0.05 s, depending on

different specifications of the BESS. Thus, in the following

section of small signal analysis, Teswill be set temporarily to

zero during the mathematic derivation, while given as 0.05 s

in simulations. Since Tes ismuch smaller than the inertia time

constant of a generator [18, 21], in the following analysis, the

actual power output of the BESS is approximated by the

power output reference, i.e.:

Pes ¼
Pref

1þ Tess
) Pref � Pes ¼ Tes

dPes

dt
� 0

) Pes � Pref ¼ �kesðx� 1Þ
ð3Þ
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3 Proposed BESS based damping control

The basic idea of the proposed damping control is:

1) Deriving the analytic relationship between the gain kes
in BESS damping controller and the damping ratio n
for a target oscillation mode.

2) Implementing that gain in the outer-loop controller of

the BESS placed nearby the generator’s terminal

bus.

In the following part, the SMIB system will be inves-

tigated first to derive the damping control algorithm. Then,

the algorithm will be extended to multi-machine systems

having a BESS placed near each generator.

3.1 BESS in SMIB system

3.1.1 Case 1: BESS at generator terminal bus

In Fig. 7, x1 is the sum of the generator transient reac-

tance xd
0 and the transformer reactance xT, and x is the

transmission line reactance.

The system differential algebraic equations (DAEs) are:

dd
dt

¼ X0ðx� 1Þ
dx
dt

¼ 1

M
ðPm � Pe � Dðx� 1ÞÞ

Pes ¼ �kesðx� 1Þ

Pes þ Pe ¼ PL �
E0
q0V

x
sin d

8
>>>>>>><

>>>>>>>:

ð4Þ

where X0 = 377 rad/s for 60 Hz system; x is the generator

angular frequency and d is the rotor angle; E0
q is the

transient q-axis voltage of the generator. Pm and Pe are the

mechanic power and electric power respectively. Pes is the

active power output of energy storage. M (= 2H) is the

generator inertia time constant. The last equation holds

approximately in the SMIB system, in which the generator

connected to the infinite bus by a long transmission line,

i.e. x0d ? xT\\ x.

Then, linearize (4) around the equilibrium (the quanti-

ties with subscript ‘‘0’’ represent the steady-state value,

which can be solved from the power flow solution).

dDd
dt

¼ X0Dx

dDx
dt

¼ 1

M
ðDPm � DPe � DDxÞ

DPes ¼ �kesDx

DPes þ DPe ¼ DPL �
E0
q0V

x
cos d0Dd

8
>>>>>>><

>>>>>>>:

ð5Þ

Linearize DPe w.r.t. two state variables Dd and Dx:

DPe ¼ K1Ddþ K2Dx ð6Þ

where K1 and K2 are constant coefficients to be determined.

Substitute them into the swing equation (5):

dDx
dt

¼ 1

M
ðDPm � K1Dd� K2Dx� DDxÞ ð7Þ

Apply Laplace transformation to the swing equation and

assume the mechanical power input of generator does not

change, i.e. DPm = 0 [21]:

sDdðsÞ ¼ X0DxðsÞ
sDxðsÞ ¼ 1

M
ð�K1Dd� K2Dx� DDxÞ

(

ð8Þ

Then, the characteristic equation is:

s2 þ X0

ðDþ K2Þ
M

sþ X0

K1

M
¼ 0 ð9Þ

Compare it with the standard characteristic equation of a

second-order system,

s2 þ 2nxnsþ x2
n ¼ 0 ð10Þ

Equating (9) and (10) yields:

xn ¼
ffiffiffiffiffiffiffiffiffiffiffi
X0K1

M

r

n ¼ Dþ K2

2Mxn

8
>><

>>:

ð11Þ

Then, consider M = 2H in the above expression, we

have:

n ¼ Dþ K2

4Hxn

ð12Þ

In practice, D needs to be estimated from real system

data [23]. For simulation studies, it can be treated as zero if

generation and load are modeled in detail [20, 21].

Consider D = 0 here, then:

K2 ¼ 4Hxnn ¼ 8pfnHn ð13Þ

Therefore, the damping ratio n is related to K2, i.e. the

partial derivative of Pe to x. From the last equation in (5),

it then leads to:

G

ES

′Eq  ∠δ Pe

Pes

V=1∠0°

x

PL

x1=xd  +xT′

Fig. 7 Case 1 of SMIB system
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DPe �
E0
q0V

x
cos d0Dd� DPes �

E0
q0V

x
cos d0Ddþ kesDx

ð14Þ

Thus, by (13) and (14) the relationship between n and kes
is:

kes ¼ K2 ¼ 8pfnHn ð15Þ

3.1.2 Case 2: BESS at general locations

Now consider a more general case. As shown in Fig. 8,

x1 = x0d ? xT ? xline-1, x2 = xline-2, where xline-1 ? xline-

2 = x (i.e. the total reactance of the previous transmission

line).

The following (16) and (17) can be derived based on the

power balance equation.

Pe ¼
E0
qVes sinðd� hÞ

x1
¼ VesV

x2
sin h� Pes ð16Þ

ðE0
qVes cosðd� hÞ � V2

esÞx2 ¼ x1ðV2
es � VesV cos hÞ ð17Þ

By linearizing (16) and (17), the following expression is

finally obtained after some manipulation:

DPe ¼ K7Ddþ K8DPes ¼ K7Dd� K8kesDx

ð*DPes ¼ �kesDxÞ
ð18Þ

The coefficient K8 can be named as the ‘‘location effect

constant’’ and its expression is given in (19). Then, to

check the correctness of this formula for Case 1, letting

x1 = 0 and K8 becomes - 1 as shown in (20) and (21).

K8 ¼
�E0

qðE0
qx

2
2 � 2Ves0x

2
2 cosðd0 � h0ÞÞ

E02
q x

2
2 � 2E0

qVes0x
2
2 cosðd0 � h0Þ

¼ �
E02
q x

2
2 � 2E0

qVes0x
2
2 cosðd0 � h0Þ

E02
q x

2
2 � 2E0

qVes0x
2
2 cosðd0 � h0Þ

¼ �1

ð20Þ

DPe ¼ K7Dd� DPes ¼ K7Ddþ kesDx ð21Þ

It can be noticed that in (21), the coefficient of Dx is

exactly the same as that in Case 1 when neglecting x1.

Finally, kes is given by:

n ¼ K2

4Hxn

¼ �K8kes

4Hxn

) kes ¼
8p fnHn
�K8

ð22Þ

To investigate the impact of the BESS installing

location, denote k = x1/(x1 ? x2). d is the rotor angle of

the generator, typically within [- p/2, p/2] [20, 21]; E0
q, is

the generator transient q-axis voltage with a typical range

[0.5, 2.5].

Figure 9 depicts how - K8 changes w.r.t. k for different

combinations of d and E0
q. - K8 achieves its maximum

value 1.0 at x1 = 0. When the specified damping ratio n is

given, the larger - K8 leads to smaller kes. Since kes rep-

resents the BESS energy injection/absorption per unit time,

a smaller kes means a smaller BESS discharge/charge

depth. This will be more attractive for utility companies

′Eq  ∠δ Pe

Pes

V=1∠0°PL

G

ES

x1=xd  +xT+xline 1′ x2=xline 2

Ves∠ es

Fig. 8 SMIB system with BESS in Case 2

Fig. 9 Plot of - K8 versus different d and E0
q under different line

ratio k

K8 ¼
�E0

qx2ðE0
qx2 þ Vx1 cos d0 � 2Ves0ðx1 þ x2Þ cosðd0 � h0ÞÞ

E02
q x

2
2 þ V2x21 � 2E0

qVes0x
2
2 cosðd0 � h0Þ þ 2E0

qVx2x1 cos d0 � 2Ves0Vðx1 þ x2Þx1 cos h0
ð19Þ
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and system planners, i.e. the BESS can be used as an

ancillary service for oscillation damping with potentially

lower energy cost.

3.2 BESS in multi-machine system

3.2.1 Small signal state space model

In an n-generator system, similar to the SMIB case, the

BESS device can be installed at the terminal buses or

nearby buses of generators. As shown in Fig. 10. Pei, Pesi,

Pgi are the electromagnetic power, the BESS output power

and active power output of the ith generator

respectively.

Apply the reduced network technique [20] by keeping

only the generator buses, the system model is:

dd

dt
¼ Xðx� 1Þ

dx

dt
¼ M�1ðPm � Pe � Dðx� 1ÞÞ

8
><

>:

Pe ¼ Pg � Pes

ð23Þ

where M�1 ¼ diag½M�1
i �n�n; X ¼ diag½X0�n�n; d ¼ ½di�n�1;

x ¼ ½xi�n�1; Pe ¼ ½Pei�n�1; Pm ¼ ½Pmi�n�1; Pes ¼ ½Pesi�n�1;

Pg ¼ ½Pgi�n�1; D¼diagðD1;D2; � � � ;DnÞ; Di is the damping

constant for the ith generator; Pgi can be approximately

expressed by [20]:

Pgi ¼ E2
i Gii þ Ei

Xn

j¼1; 6¼i

EjðGij cos dij þ Bij sin dijÞ ð24Þ

where Gij and Bij are the real and imaginary part of the Yij
in the reduced nodal admittance matrix [21].

Power output of each BESS in a compact form are:

Pesi ¼ �kesiDxi ) Pes ¼ �KesDx ð25Þ

where Kes ¼ diag½kesi�n�n; kesi � 0.

Then, linearize the above equations around the equilib-

rium point:

ð26Þ

Here, the Jacobian matrix Jp is:

JPðdÞ ¼
oðPe1;Pe2; . . .;PenÞ
oðd1; d2; . . .; dnÞ

�
�
�
�
di¼di0

¼

oPe1

od1
� � � oPe1

odn
..
. . .

. ..
.

oPen

od1
. . .

oPen

odn

0

B
B
B
B
@

1

C
C
C
C
A

�
�
�
�
�
�
�
�
�
�
di¼di0

ð27Þ

3.2.2 Analytic eigenvalue solutions

Step 1: Determinant simplification

From above section, the 2n-by-2n system matrix A is:

ð28Þ

The eigenvalues k are the roots of the determinant

equation:

ð29Þ

where I is the identity matrix of n-by-n.

Then the following block matrix lemma is utilized to

derive the analytic solution. Its proof can be found in

[24].

For matrix M ¼ A B
C D

� �

, if CD ¼ DC, then

detM ¼ detðAD� BCÞ

To apply this lemma to (29), it requires:

M�1JPðkI þM�1ðDþ KesÞÞ ¼ ðkI þM�1ðþKesÞÞM�1JP

) M�1JPM
�1ðDþ KesÞ ¼ M�1ðDþ KesÞM�1JP

ð30Þ

Denoting S ¼ M�1ðDþ KesÞ, it is easy to see that S is a

diagonal matrix. If S is equal-diagonal, i.e. S = diag[S]n9n:

ðD1 þ kes;1Þ
M1

¼ ðD2 þ kes;2Þ
M2

¼ � � � ¼ ðDn þ kes;nÞ
Mn

¼ S

ð31Þ

Then, it is easy to verify that (30) can hold.

Pgn

G1

ES

Pes2Pe2

Pg2

G2

Pes1

Pg1Pe1

Gn

Pesn

Pen

LoadLoad Load

ES ES

Fig. 10 Multi-machine system with BESS integration
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Thus, if the unknowns kesi are selected based on (31),

then (32) can be obtained:

detðkI � AÞ ¼ detððk2 þ kSÞI þX0M
�1JPÞ ð32Þ

For matrix product M-1JP, by eigenvalue

decomposition [23], it can be transformed to:

M�1JP ¼ T�1KT

K ¼

l1 � � � 0

..

. . .
. ..

.

0 � � � ln

0

B
B
@

1

C
C
A

8
>>>><

>>>>:
ð33Þ

where li is the eigenvalue of M
-1JP. The real matrix JP is

semi-definite and nearly symmetric [13]. M-1 is diagonal.

By matrix theory, li is real non-negative number and the

above diagonalization process can be guaranteed [24].

Step 2: Analytic solution of each eigenvalue

Apply the Laplace theorem [24] for the determinant of

product matrices on (32):

detðkI�AÞ ¼ detðT�1Þ det ðk2 þ kSÞI þX0K
� �

detðTÞ
¼ detðT�1Þ detðTÞ det ðk2 þ kSÞI þX0K

� �

¼ det ðk2 þ kSÞI þX0K
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diagonal

¼
Yn

i

ðk2 þ kSþX0liÞ

ð34Þ

Thus, eigenvalues of the original system are the roots for

each of the above n quadratic equations, i.e.:

k ¼ �S�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � 4X0li

p

2
ð35Þ

Furthermore,

If S2 � 4X0li � 0 k 2 R

If S2 � 4X0li\0 ) complext roots ðli [ 0Þ :

ki ¼
�S� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4X0li � S2

p

2
, ri � jxdi

¼ �nixni � j

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2i

q

xni )

ni ¼
S

2
ffiffiffiffiffiffiffiffiffiffi
X0li

p

S ¼ 2ni
ffiffiffiffiffiffiffiffiffiffi
X0li

p
¼ 2nixni

xdi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4X0li � S2

p

2

8
>>>>><

>>>>>:

ð36Þ

Step 3: Calculate kesi
To make (31) hold, suppose the kth mode is our target

mode (this can be easily identified by its natural oscillation

frequency xnk). Then substitute S = 2nkxnk into (31):

Di þ kesi

Mi

¼ 2nkxnk ) kesi ¼ 4Hinkxnk � Di

i ¼ 1; 2; . . .; n
ð37Þ

Especially when Di ¼ 0 ) kesi ¼ 4Hinkxnk.

4 Simulation study

4.1 SMIB system

To test the proposed method for the general location

case, the system parameter for the SMIB system are:

x1 = x0d ? xT1 = 0.05 ? 0.10 = 0.15, x2 = 0.35, k = x1/

(x1 ? x2) = 0.3, i.e. about 1/3 of the electric distance

between generator and infinity bus. Note that here x1 is not

much smaller than x2. Mechanical input power Pm = 1.0

p.u., D = 0 and the nominal frequency f0 = 60 Hz.

K8 = 0.71898 by (19).

Two groups of tests on the SMIB system with BESS

under different generator inertia parameters (H = 5 s and

H = 10 s) are performed targeting at 5% damping ratio. A

three-phase fault is applied at infinite bus from 1 s and

cleared at 1.1 s. Prony analysis is used to estimate the

actual damping ratio from generator angle and speed

waveforms. The results can closely match the expected

damping ratio as shown in Table 1. Figure 11 illustrates

Table 1 Control performance of BESS in SMIB Case 2

Expected

damping

ratio (%)

H = 5 s H = 10 s

Actual

damping ratio

from Prony

analysis (%)

kes Actual

damping ratio

from Prony

analysis (%)

kes

5 5.009 11.518 5.015 20.036

10 10.03 23.036 10.072 46.072

20 20.16 46.072 20.310 92.144

30 30.37 69.108 30.134 138.22

40 40.21 92.144 40.170 184.29

Fig. 11 Simulation plots for SMIB with 20% damping ratio control
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the 20% damping ratio case to compare with the original

system without BESS. Note that a damping ratio of 5% is

usually enough for power system operations; here the test

damping ratio ranges from 5% to 40% in order to verify the

accuracy of the derived formula by simulations.

If the impact of Tes, i.e. the converter time constant, is

considered, generally it will slightly reduce the expected

damping ratio. In real power converters, Tes can be up to

50 ms. Consider the worst case here i.e. Tes = 50 ms. The

result is listed in Table 2 for the case with H = 5 s.

From Table 2, the maximum reduction of damping ratio

is only 20.16% - 19.26% = 0.009 for 20% case, so the

negative impact of Tes is not severe for the proposed con-

trol method. A comparison on the active power output of

the BESS for n = 20% is shown in Fig. 12.

4.2 Two-area system

In this section, the Kundur’s two-area system model [21]

is used to investigate the performance of the proposed

method on a multi-machine power system. The single line

diagram is shown in Fig. 13. The simulation model is built

in DIgSILENT/PowerFactory. The battery storage device

is modeled by the DIgSILENT simulation language (DSL)

[22].

By modal analysis, the system has three oscillation

modes: (1) 0.548 Hz with a damping ratio of 4.38%, is an

inter-area mode between Area-1 (G1, G2) and Area-2 (G3,

G4); (2) 1.002 Hz with a damping ratio of 4.86%; (3)

1.036 Hz with a damping ratio of 4.92%. The last two are

local modes. The 0.548 Hz mode has the weakest damping,

so its damping ratio needs to be improved. In simulation, a

temporary three-phase ground fault is added at bus-8 at

2 sec and cleared after 0.02 s. The objective damping ratio

is set to 5%. By (37), the kesi (i = 1*4) is:

kesi ¼ 4Hin1
ffiffiffiffiffiffiffiffiffiffi
X0l1

p
� Di � 4Hixn1Dn1

Dn1 ¼ ðn	1 � n1Þ

	

ð38Þ

where n1* = 5% and n1 is 4.38%, xn1 = 2pfn1 is the

natural oscillation frequency for mode-1, i.e. the target

mode.

4.2.1 Case a: adding BESS in original system

Control effects on three modes are shown in Table 3. It

can be observed that the damping ratios of all the threemodes

have been improved. The improvement for the targetmode is

the most significant and reaches the 5% goal.
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Fig. 12 Comparison of BESS active power response considering Tes

Table 2 Effect of converter time constants Tes

Expected

damping

ratio (%)

Tes = 50 ms Tes = 0

Actual damping

ratio from

Prony analysis

(%)

kes Actual damping

ratio from

Prony analysis

(%)

kes

5 4.565 11.518 5.009 11.518

10 9.299 23.036 10.030 23.036

20 19.260 46.072 20.160 46.072

30 30.030 69.108 30.370 69.108

40 40.160 92.144 40.210 92.144

G2

G1

Bus-1 Bus-5 Bus-6

Bus-2

G4

G3

Bus-3Bus-11Bus-10

Bus-4

Bus-8 Bus-9Bus-7

BESS-1 BESS-2 BESS-4 BESS-3

Load-1 Load-2

Fig. 13 Single line diagram of the Kundur two area system
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In Table 4, the performance of the proposed method is

tested for expected damping ratios changing from 5% to

10%. Each result is close to the expectation.

4.2.2 Case b: impact of converter power limit

Either for the sake of protecting the power switch device

due to their thermal limits or other technical reasons, a

realistic power converter will have a power limit, which

may have impact on the control effect of the proposed

method. On the other hand, utility-scale power converter

output levels have been improved in recent years allowing

the maximum power limit to reach 5 MW for single utility

scale power converter [17, 25]. If considering aggregating

configuration of multi-converters like in a wind farm or

battery park [25], this limit can be enhanced to 30 MW

[25].

To investigate the power limit impact on the proposed

control, similar tests are done with results listed in

Table 5.

To visually inspect the nonlinear effect of converter

power limit, the following case study is presented with a

10% damping ratio requirement for the target mode. Typ-

ically, that means more and faster energy injection/ab-

sorption from the BESS than 5% damping ratio

requirement.

The power limit is set to 3 MW for each BESS. The

BESS power output result is shown in Fig. 14. From the

plots, it shows that each BESS is in charging state nearly

all the time during this disturbance.

The relative generator rotor angles are shown in Fig. 15.

Gen-1 and Gen-4 belong to different areas. Thus, d14
mainly reflects the target mode at 0.548 Hz; the other two

modes (1.002 Hz and 1.036 Hz) are mainly caused by

oscillations between local generators inside each area, as

shown by d12 and d34 respectively. Damping improvement

for d14 is the most significant. The damping ratios for other

two relative angles are also improved. This phenomenon

verifies the control effect and is in consistence with the

previous modal analysis result.
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Fig. 14 BESS active power responses for n* = 10% in Kundur

system

Table 3 Control effect of BESS on each mode

Oscillation modes (Hz) Without BESS With BESS

Damping ratio (%) Frequency (Hz) Damping ratio (%) Frequency (Hz)

0.548 4.38 0.54865 5.04 0.54857

1.002 4.86 1.00218 5.00 1.00205

1.036 4.92 1.03642 5.06 1.03628

Table 4 Control performance test for target mode with BESS

Expected

damping ratio

(%)

Actual damping ratio of

target mode (%)

Actual frequency of

target mode (Hz)

5 5.04 0.549

6 5.99 0.548

7 6.93 0.548

8 7.89 0.548

9 8.84 0.548

10 9.79 0.547

Table 5 Control performance test considering BESS power limit

Expected

damping ratio

(%)

Actual damping ratio of

target mode (%)

Actual frequency of

target mode (Hz)

5 4.99 0.548

6 5.92 0.548

7 6.92 0.547

8 7.84 0.547

9 8.79 0.547

10 9.71 0.546
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4.2.3 Case c: impact of converter time constant Tes

Like the previous study in SMIB case, the Tes is set to

50 ms. To better demonstrate the impact of Tes, no con-

verter power limit is assumed here. Results are shown in

Table 6.

In Table 6, as expected, the effect of Tes is to slightly

lower down the damping ratio, and its largest error is only

9.79% - 9.688% & 0.001. This magnitude of error is

acceptable in practical power system operations. This result

again validates the assumption that, in the proposed

method, the converter time constant can be ignored during

the analytic formula derivation with small errors intro-

duced. In Table 7, effect on each mode is listed. The target

mode can meet the 5% damping ratio goal with other two

modes slightly improved as in Table 3.

The BESS power responses are shown in Fig. 16.

4.2.4 Error analysis

The absolute percentage error (APE) of the damping

ratio (|De| = |n - n*|/|n*|) for the above three cases are

compared in Fig. 17, from which there are following36.5
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Fig. 15 Relative generator rotor angles for n* = 10% in Kundur

system

Table 6 Control performance test considering time constant Tes

Expected

damping ratio

(%)

Tes = 50 ms Tes = 0

Damping

ratio (%)

Frequency

(Hz)

Damping

ratio (%)

Frequency

(Hz)

5 5.029 0.549 5.04 0.549

6 5.951 0.550 5.99 0.548

7 6.888 0.551 6.93 0.548

8 7.819 0.551 7.89 0.548

9 8.753 0.552 8.84 0.548

10 9.688 0.553 9.79 0.547

Table 7 Effect of converter time constant Tes on each mode

Oscillation

modes (Hz)

Before control After control

(Tes = 50 ms)

Damping

ratio (%)

Frequency

(Hz)

Damping

ratio (%)

Frequency

(Hz)

0.548 4.38 0.54865 5.029 0.549

1.002 4.86 1.00218 4.997 1.002

1.036 4.92 1.03642 5.053 1.037
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Fig. 16 Zoom-in plot of BESS active power responses when

Tes = 50 ms
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Fig. 17 Performance comparison and error analysis

842 Yongli ZHU et al.

123



observations: � the APE for each case is below 5% which

can satisfy practical engineering needs; ` the power con-

verter time constant Tes has slightly more influence on the

accuracy of the proposed method than other factors,

because in the second subplot of Fig. 18, the mean values

of APE for the three cases are respectively 1.20%, 1.65%

and 1.85%, where the mean APE of case-c considering Tes
is the largest; ´ the APE will slightly increase with the

increase of the desired damping ratio. This can be

explained because the proposed BESS controller is essen-

tially a linear type. For most systems, a 5% to 10%

damping ratio will be sufficient and reasonable for small-

signal stability.

4.2.5 Case study on power system with PSSs

In a real power system, there could be multiple existing

PSSs for oscillation damping control. To investigate the

damping improvement by the proposed BESS controller on

such a system, each generator in the two-area system is

equipped with a PSS. All PSSs are designed to make the

damping ratio of the target mode reach 4.99% without

BESS. Suppose that a higher damping ratio is expected by

adding the proposed controller. Then, the new damping

ratio goal is set from 6% to 10%, respectively, to design the

controller based on (37). The test results are in Table 8.

The APE of the damping ratio is depicted in Fig. 18, which

are all less than 2%. Note that here n1 in (37) becomes

4.99%, so the calculated value of kes is smaller than its

values in previous case studies without a PSS. Since the kes

can be interpreted as the power output coefficient of the

BESS converter during the disturbance, a smaller kes means

a smaller converter capacity required for the BESS. Since

the converter capacity takes a major portion of the overall

cost of a BESS, the investment on the BESS for damping

control in a power system that already has PSSs can be

decreased.

4.2.6 Impact on battery SOC

Consider the worst case in subsection-b, i.e. with 3 MW

converter power limit for each BESS and 10% damping

ratio requirement for the target mode. In Fig. 15, it is

observed that the battery is mainly charged during the

disturbance. The energy charged is nothing but the area

under the power (absorption) curve during disturbance as

shown in Fig. 19 (red section) of the zoom-in plot for

- Pes4.

For example, for BESS-4, the energy absorbed is:

Ees4 ¼
Z t¼16:0

t0¼1:99

Pes4ðtÞdt ¼ 5:6483 MJ , 0:0016 MWh

To evaluate the impact on SOC, assume a small energy

capacity for BESS-4 (SOCs of other three BESS units can

be calculated similarly) as 0.5 MWh (in utility scale BESS,

this value can be larger [17, 25]). Then:

Depth of charge = 0.0016/0.5 = 0.0032.

A typical SOC range is [0.2, 0.8]. Thus the theoretical

maximum and minimum new SOC are respectively:

SOCnew,max = 0.8 ? 0.0032 = 0.8032, and the rela-

tively change is only: 0.0032/0.8 = 0.4%;

SOCnew,min = 0.2 ? 0.0032 = 0.2032, and the rela-

tively change is only: 0.0032/0.2 = 1.6%.

Thus, in both cases the impact on SOC is small,

implying that using a BESS for oscillation damping may

not weaken its available capacity for other functions like

1

2

* (%)

|
e|

(%
)

0
6 7 8 9 10

Fig. 18 Error analysis for BESS damping control considering PSS

Table 8 Test results on power system with PSS

Expected

damping ratio

(%)

Actual damping ratio of

target mode (%)

Actual frequency of

target mode (Hz)

6 5.97 0.543

7 6.93 0.542

8 7.90 0.542

9 8.86 0.542

10 9.82 0.542
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Fig. 19 Zoom-in plot of BESS-4 active power response
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load following/balancing because the energy provided/ab-

sorbed by oscillation is much smaller than the total BESS

capacity during disturbance. Moreover, a small portion of

energy means potentially a low cost in using BESS for

damping oscillation. Due to this fact, the BESS is very

promising as a new kind of ancillary service in providing

auxiliary damping when needed.

5 Conclusion

This paper proposed a novel damping control method

based on the usage of BESS. Analytic eigenvalue solutions

were derived on both the SMIB and multi-machine sys-

tems. Controller based on those solutions was verified

successfully by simulation. The results demonstrated a

promising performance in damping target oscillation mode

with quantifiable improvement of damping ratio. Thus, to

alleviate system oscillations by providing extra damping

support based on the proposed method is validated.

Future work includes time delay compensation of the

converter time constant for higher control accuracy and

studying potential combination of other successful methods

like robust control considering parameters uncertainty.
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