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ABSTRACT 
 

Microarray analysis can help identify 
changes in gene expression which are 
characteristic to human diseases. Although 
genomewide RNA expression analysis has 
become a common tool in biomedical 
research, it still remains a major challenge to 
gain biological insight from such 
information. Gene Set Analysis (GSA) is an 
analytical method to understand the gene 
expression data and extract biological insight 
by focusing on sets of genes that share 
biological function, chromosomal regulation 
or location. This systematic mining of 
different gene-set collections could be useful 
for discovering potential interesting gene-
sets for further investigation. Here, we seek 
to improve previously proposed GSA 
methods for detecting statistically significant 
gene sets via various score transformations.  
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INTRODUCTION 
 

Gene expression analysis, also known as 
pathway analysis, has become a pillar in 
genomics research; see Figure 1 below. 
Although the field has been around for more 
than a decade and is continually evolving, the 
problems still arise in identifying 
differentially expressed groups of genes from 
a set of microarray experiments. In the usual 
case, we have N genes measured on n 

microarrays under 2 distinct experimental 
conditions. Let  and  denote the sizes of 
microarray samples from the control and 
treatment groups, respectfully. Typically, N 
is large, say a few thousands while n is small, 
say a hundred or fewer [1]. The issue with 
this is multiple hypothesis testing, which is 
common in proteomics and genomics. 
Previously proposed methods compute a two-
sample t-test score for each gene. Genes that 
have a t-statistic significantly larger than the 
pre-defined cutoff value are considered 
significant. The family-wise error rate 
(FWER) and false discovery rate (FDR) of 
the resulting genes are evaluated using the 
null distribution of the statistic. 

A widely applied method called Gene 
Set Enrichment Analysis (GSEA), which is 
based on the signed version of Kolmogorov-
Smirnov statistic, assesses the significance of 
predefined gene-sets, rather than individual 
genes. GSEA determines if members of a 
given gene-set are enriched using a 
normalized Kolmogorov-Smirnov statistic. A 
robust method known as Gene Set Analysis 
(GSA) proposes an alternative summary 
statistic for a given gene-set, called the 
maxmean statistic. It computes the average of 
positive (and negative) test scores for a given 
gene-set, and picks the larger of statistics in 
the absolute scale.  

In studying GSEA and GSA, we 
found shortcomings and proposes a new way 
they could be improved. In our proposed 
methods GSA.p, we operate under the 
framework of GSEA and GSA to create a 
new summary statistic. We take the mean and 
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the maxmean of GSA and raise the test 
statistics to the power p. This increases (or 
decreases) the magnitudes of test scores of 
GSA to improve sensitivity of picking up 
significant gene-sets. In addition to raising 
test statistics to the power p, we also suggest 
an exponentiated version of the test statistics 
in order to transform the test scores of each 
gene and amplify the difference between two 
or more groups of the expression samples. 
Here, we provide the theoretical framework 
that allows us to gain biological insight in 
gene-set inference.  
 

 
Figure 1.   A sample image of a microarray 
experiment result; Green and red spots show 
differences in gene expression between two 

samples. Yellow spots show similar expression in 
both samples [5]. 

 
 
STATISTICAL METHODS 
 

Overview of GSEA     GSEA determines 
statistically if members of a gene-set are 
enriched from differentially expressed genes 
between two classes. First, gene expressions 
are ordered using signal-to-noise ratio (SNR) 
difference metric. The SNR is the difference 
of means of two classes, divided by the sum 
of standard deviations of the two diagnostic 
classes [2]. Then, for each gene-set, an 
enrichment measure, also known as 
Enrichment Score (ES), is calculated, which 
is the normalized Kolmogorov-Smirnov 

statistic. Let us consider ordered gene 
expressions , , …	 ,  based on the 
difference metric between two diagnostic 
classes and a gene-set  comprised of  
members. Let  be the gene index and  be the 
sample index. Then, 
 

 

 
if  is not a member of , or 
 

	  

 
if  is a member of . 

Then, a ranking sum across all  
genes is computed. We define ES to be  
 

					  

 
This is also known as the maximum observed 
deviation of the running sum, and it records 
the maximum enrichment score (MES). The 
significance of MES is computed by a 
permutation test of diagnostic labels from 
individuals. For example, consider a case 
where an individual is diagnosed with DM2 
or NGT. DM2 is type 2 diabetes mellitus and 
it is a key contributor to atherosclerotic 
vascular disease, blindness, kidney failure, 
and amputation [2] while NGT stands for 
normal glucose tolerance. The null 
hypothesis is that no gene-set is associated 
with class distinction and the alternative is 
that the gene-set is associated with class 
distinction. To assess if a gene-set shows 
association with different phenotype class 
distinctions, class labels are permuted 1000 
times and each time MES is recorded over all 
gene-sets. Permutation testing involves 
randomization of diagnostic labels and is a 
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dependent test on the primary diagnostic 
status of affected individuals.  
 
Overview of GSEA.abs     This version of 
GSEA also determines the significance of 
predefined gene-sets instead of individual 
genes by focusing on gene-sets, which are 
derived from groups of genes that share 
similar biological functions, chromosomal 
locations or regulations [3]. Similar to 
GSEA, GSEA.abs also considers gene 
expression profiles from samples that belong 
to two distinct classes. Then, genes are 
ranked based on their correlation between 
their expression and class distinctions by 
using any appropriate difference metric. To 
obtain the Enrichment Score (ES), let  
represent the number of genes,  the number 
of samples, the exponent p for controlling the 
weight of each step along with a gene-set . 
Then, we have the following: 
 

, 	

∈
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	∈  and 
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We evaluate the genes in  (hit) weighted by 
their correlation and genes not in  (misses) 
given position  in .  

To determine if the ES of a gene-set  
is significant, first we randomly assign 
phenotype labels and samples, reorder genes 
and recalculate ES. Next, we repeat the first 
step 1,000 times, and create a histogram of 

. Finally, a nominal p-value of gene-
set  from  is calculated by using the 
positive and negative portions of the 
distribution corresponding to the sign of 
observed ES [3]. This method does many 

permutations of the sample labels and 
recomputes the test statistic for each 
permuted dataset. From this information, we 
can compute the False Discovery Rate (FDR) 
of the list of significant gene-sets. Roughly 
speaking, FDR is equivalent to the Type-I 
error rate. In our situation, the FDR 
represents the proportion of non-significant 
genes-sets that were incorrectly found to be 
significant.  
 
Overview of GSA     In GSA, three summary 
statistics are calculated to determine the 
significance of a gene-set [1]. Given a gene 
expression data matrix  consisting of  
genes in rows and  samples in columns, 
separated into two classes,  control and  
treatment, a two-sample t-test statistic is 
computed for each gene in , comparing the 
two classes. For convenience, let us 
transform the t-score  into the z-score  for 
the ith gene in X. This is done by applying the 
cumulative distribution function (CDF) of the 
t-distribution to the t-score and then applying 
the quantile function of the standard normal 
distribution. Theoretically, we now have the 
following: 
 

 	~	 0,1      under  
 

Let , , … ,  represent the set of 
 gene -values in the gene-set  and define 

the gene-set enrichment test statistic to be  
 

 
 

A large value of  indicates greater 
enrichment. For instance, applying a selected 
transformation function s() to the individual 
-scores, we have  and the gene-

set score  can be defined as the average of 
 in   so that 
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Efficient testing requires specification of the 
alternatives to the null selection [1]. The 
Poisson selection model starts with 
independent Poisson indicators given by 
 

~    where   /   
 

for 1,2, … , . The effective choice of 	
 depends on the individual scoring 

function . Consider the following 
two cases. 
 

     and     | | 
 

 being mean has power against shift 
(location) in values while  being 
absmean (absolute value of the mean) has 
power against scale alternatives. A two-
dimensional scoring function is also 
suggested as follows. 
 

, 	 ,
max , 0

				 min , 0
 

 
and the maxmean statistic is defined to be  
 

max	 ,  
 

 is able to detect large -values in either 
or both directions of departure. In essence, 
we have the following summary statistics for 
GSA. 
 

   																	

| |
                      

	 , 			

 

 
Overview of GSA.p     Similar to GSA, our 
proposed methods take the mean and 

maxmean summary statistics and raise the 
test scores to the power p. In addition to 
raising test statistics to the power p, we also 
suggest an exponentiated version of the test 
statistics in order to transform the test scores 
of each gene and amplify the difference 
between two classes. This increases (or 
decreases) the magnitudes of test scores to 
improve sensitivity of picking up significant 
gene-sets.  
 To define the methodology, let us 
consider a gene expression data matrix  
consisting of  genes in rows and  samples 
in columns, separated into two classes,  
control and  treatment. A two-sample t-test 
statistic is computed for each gene in , 
comparing the two classes. Again, for 
convenience, let us transform the t-score  
into the z-score  for the ith gene in X so that 
 

 	~	 0,1      under  
 

Let , , … ,  represent the set of 
 gene -values in the gene-set  and define 

the gene-set enrichment test statistic to be  
 

 
 

Applying a selected transformation function 
s() to the individual -scores, we have 

 and the gene-set score  can be defined 
as the average of  in   so that 
 

 

 
This entails us to specify the alternative to the 
null distribution. The Bernoulli selection 
model starts with independent selection 
indicators given by 
 

	~	      with  
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for 1,2, … , . Fundamentally, this binary 
indicator  randomly assigns the ith gene to 
the gene-set  when 1 with the selection 
probability specified by . Using a logistic 
regression model, the value of  influences 
the selection probability as desired. Under 
this framework, the gene-set  can be 
represented by  
 

:	 1  
 
with the number of selected genes specified 
by 
 

 

 
Then, the effective choice of 	

 depends on the individual scoring 
function . Let us consider the 
following two cases as before. 
 

     and     | | 
 

 being mean has power against shift 
(location) in values while  being 
absmean (absolute value of the mean) has 
power against scale alternatives. A two-
dimensional scoring function is also 
suggested as follows. 
 

, 	 ,
max , 0

				 min , 0
 

 
and the maxmean statistic is defined to be  
 

max	 ,  
 

 is able to detect large -values in either 
or both directions of departure. Our newly 
proposed summary statistics GSA.p are then 
 

.
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 , 			 .

 

 
along with an exponentially transformed 
version given by 
 

. .
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The exponential transformation of the test 
scores of each gene is designed to amplify the 
significant difference between two or more 
groups of the given expression samples. In 
the next section, we study the performance of 
the newly proposed methods in comparison 
to the previously proposed methods through 
a simulation study. It was found that in some 
cases, the newly proposed methods are 
competitively better than the conventional 
methods in detecting significant gene-sets.  
 
 
SIMULATION STUDY  
 

We simulated 1000 gene expression values 
for 50 samples in each of two classes, control 
and treatment. Additionally, 50 gene-sets 
were also generated, each containing 20 
genes. All measurements were standard 
normal random variates before the treatment 
effect was added under 5 different scenarios.  
 

(1) All 20 genes of gene-set 1 are .2 units 
higher in class 2. 

(2) The first 15 genes of gene-set 1 are .3 units 
higher in class 2. 

(3) The first 10 genes of gene-set 1 are .4 units 
higher in class 2. 

(4) The first 5 genes of gene-set 1 are .6 units 
higher in class 2. 

(5) The first 10 genes of gene-set 1 are .4 units 
higher in class 2, and the second 10 genes 
of gene-set 1 are .4 units lower in class 2. 
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Table 1 

The results of average p-values from the simulation study under 5 different scenarios using 200 permutations and 20 repetitions 
 

 mean absmean maxmean GSEA GSEA.abs 
mean.p 
(p = 2) 

maxmean.p 
(p = 2) 

mean.p 
(p = 3) 

maxmean.p 
(p = 3) 

(1)          

mean .0028 .0590 .0008 .0320 .1920 .0380 .0020 .0113 .0058 

sd .0094 .0790 .0024 .0170 .0600 .0550 .0041 .0165 .0098 

(2)          

mean .0008 .0085 .0005 .0160 .0740 .0010 .0008 .0005 .0008 

sd .0024 .0182 .0022 .0080 .0340 .0021 .0018 .0015 .0024 

(3)          

mean .0005 .0055 .0008 .0310 .0570 .0005 .0263 .0023 .0025 

sd .0015 .0119 .0034 .0180 .0320 .0022 .1174 .0057 .0111 

(4)          

mean .0013 .0045 .0015 .0690 .0370 .0043 .0290 .0010 .0008 

sd .0036 .0089 .0024 .0380 .0140 .0190 .1297 .0045 .0034 

(5)          

mean .0178 .0000 .0003 .2330 .0110 .0000 .0005 .0623 .0000 

sd .1490 .0000 .0011 .0630 .0090 .0000 .0022 .0938 .0000 

    Note: The mean and standard deviation for GSEA and GSEA.abs were obtained from [1].  
The results are based on 20 repeated simulations.  

 
In each scenario, only the first gene-

set was of interest. The results of the average 
p-values based on various summary statistics 
are tabulated in Table 1 above under 5 
different scenarios using 200 permutations 
and 20 repetitions. The method that has 
consistently low p-values across all 5 
different scenarios is considered the best. 
While maxmean is found to be such, our 
proposed method GSA.p in some scenarios is 
competitively better than GSA, GSEA, and 
GSEA.abs. In particular, under scenario (2), 
GSA.p has lower p-values than other 
previously proposed methods. The lower the 
p-value is, the more sensitive the method is in 
detecting significant gene-sets.  
 
 
APPLICATION TO P53 DATA  
 

p53 is a tumor protein and its gene codes for 
a protein that regulates the cell cycle and 
functions as a tumor suppressor. In principle, 
it is a cancer suppressor. The p53 signaling 

pathway activation is prompted by numerous 
cellular stress signals such as DNA damage, 
oxidative stress, and activated oncogenes [4]. 
For example, in normal cells, p53 protein 
level is low and stress signals may trigger the 
increase of p53 protein. Therefore, if a person 
inherits only one functional copy of the p53 
gene, then that person is predisposed to 
cancer and will likely develop a variety of 
independent tumors. Here, the p53 protein is 
employed as a transcriptional activator of 
p53-regulated genes. This in turn gives three 
major outputs: cell cycle arrest, cellular 
senescence or apoptosis.  

The p53 data containing the catalog 
of 522 gene-sets was obtained from [2], and 
Tables 2 to 5 below provide the lists of 
significant gene-sets found from p53 data by 
applying the methods mean.p and 
maxmean.p with FDR cutoff .10 and 200 
permutations. 
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Table 2 
The results of mean.p with p = 2; 25 significant 

gene-sets found from p53 data with FDR cutoff .10 
and 200 permutations  

1. p53 pathway *           
2. p53 hypoxia *            
3. hsp27 pathway *           
4. p53 UP *            
5. SA G1 and S phases *           
6. radiation sensitivity *           
7. MAP000251            
8. rap down            
9. glut down             
10. atm pathway            
11. bad pathway 
12. bcl2family  
13. CA NF at signaling  
14. cell cycle regulator 
15. ceramide pathway 
16. DNA damage signal 
17. drug resistance 
18. G1 pathway 
19. G2 pathway 
20. P53 signaling 
21. raccyc pathway 
22. insulin signaling 
23. SA TRKA receptor 
24. calcineurin pathway 
25. mitochondria pathway 

* demonstrates significant gene-sets in [3].  
 

Table 3  
The results of mean.p with p = 3; 30 significant 

gene-sets found from p53 data with FDR cutoff .10 
and 200 permutations  

1. hsp27 pathway *          
2. p53 signaling *          
3. p53 hypoxia *           
4. radiation sensitivity *           
5. SA G1 and S phases *          
6. p53 UP *            
7. ccr3 pathway   
8. atm pathway  
9. bad pathway            
10. bcl2 family            
11. CA NF at signaling              
12. calcineurin pathway             
13. cell cycle arrest                    
14. cell cycle regulator               
15. cell cycle pathway                
16. ceramide pathway 
17. chemical pathway 

18. CR death 
19. DNA damage signaling 
20. drug resistance 
21. G1 pathway 
22. G2 pathway 
23. mitochondria pathway 
24. p53 pathway 
25. raccycd pathway 
26. SA TRKA receptor 
27. SIG IL4 receptor 
28. ST Fas signaling 
29. breast cancer strong 
30. pml pathway 

* demonstrates significant gene-sets in [3]. 
 

Table 4 
The results of maxmean.p with p = 2; 5 significant 
gene-sets found from p53 data with FDR cutoff .10 

and 200 permutations  

1. p53 hypoxia * 
2. p53 pathway * 
3. radiation sensitivity * 
4. SA G1 and S phases * 
5. p53 UP * 

* demonstrates significant gene-sets in [3]. 
 

Table 5 
The results of maxmean.p with p = 3; 10 

significant gene-sets found from p53 data with 
FDR cutoff .10 and 200 permutations 

1. fmlp pathway *      
2. p53 hypoxia *       
3. p53 pathway *       
4. radiation sensitivity *       
5. SA GA and S phases *     
6. p53 UP 
7. ccr3 pathway 
8. atm pathway 
9. ceramide pathway 
10. p53 signaling 

* demonstrates significant gene-sets in [3]. 
 

Table 6 
The results of maxmean.p with p = 2 and 

exponential transformation; 5 significant gene-sets 
found from p53 data with FDR cutoff .10 and 200 

permutations  
1. radiation sensitivity * 
2. p53 pathway * 
3. cell cycle regulator 
4. bad pathway 
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5. SA TRKA receptor  

* demonstrates significant gene-sets in [3]. 
 

Table 7 
The results of maxmean.p with p = 3 and 

exponential transformation; 5 significant gene-sets 
found from p53 data with FDR cutoff .10 and 200 

permutations 

1. radiation sensitivity * 
2. p53 pathway * 
3. p53 hypoxia  
4. RAP UP 
5. SA TRKA receptor  

* demonstrates significant gene-sets in [3]. 
 

Tables 6 and 7 above provide the lists 
of significant gene-sets found from p53 data 
by applying the method maxmean.p with 
exponential transformation, again with FDR 
cutoff .10 and 200 permutations. The 
significant gene-sets detected by our 
proposed methods are indeed in agreement 
with the gene-sets detected by conventional 
GSEA, along with new gene-sets which were 
not discovered before. This demonstrates the 
stronger sensitivity of our proposed methods 
compared to the previously utilized methods.  
 
 
SUMMARY & FUTURE STUDY  
 

The proposed methods discover statistically 
significant gene-sets in microarray analysis. 
Through our foundation, new transformation 
functions and summary statistics are 
currently being explored to improve the 
sensitivity of uncovering significant gene-
sets. The new approaches will be applied to 
various datasets including the Molecular 
Signature Databases to test their efficacy.  
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