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Abstract: This paper addresses the problem of optimal defense of a high-value unit (HVU) against a
large-scale swarm attack. We discuss multiple models for intra-swarm cooperation strategies and
provide a framework for combining these cooperative models with HVU tracking and adversarial
interaction forces. We show that the problem of defending against a swarm attack can be cast in the
framework of uncertain parameter optimal control. We discuss numerical solution methods, then
derive a consistency result for the dual problem of this framework, providing a tool for verifying
computational results. We also show that the dual conditions can be computed numerically, providing
further computational utility. Finally, we apply these numerical results to derive optimal defender
strategies against a 100-agent swarm attack.

Keywords: optimal control; parameter uncertainty; swarming

1. Introduction

Swarms are characterized by large numbers of agents which act individually, yet
produce collective, herd-like behaviors. Implementing cooperating swarm strategies for
a large-scale swarm is a technical challenge which can be considered to be from the “in-
sider’s perspective”. It assumes inside control over the swarm’s operating algorithms.
However, as large-scale ‘swarm’ systems of autonomous systems become achievable—
such as those proposed by autonomous driving, UAV package delivery, and military
applications—interactions with swarms outside our direct control become another chal-
lenge. This generates its own “outsider’s perspective” issues.

In this paper, we look at the specific challenge of protecting an asset against an adver-
sarial swarm. Autonomous defensive agents are tasked with protected a high-value unit
(HVU) from an incoming swarm attack. The defenders do not fully know the cooperating
strategy employed by the adversarial swarm. Nevertheless, the task of the defenders is to
maximize the probability of survival of the HVU against an attack by such a swarm. This
challenge raises many issues—for instance, how to search for the swarm [1], how to observe
and infer swarm operating algorithms [2], and how to best defend against the swarm given
algorithm unknowns, and only limited, indirect control through external means. In this
paper, we restrict ourselves to the last issue. However, these problems share multiple
technical challenges. The preliminary approach we apply in this paper demonstrates some
basic methods which we hope will stimulate the development of more sophisticated tools.

For objectives achieved via external control of the swarm, several features of swarm
behavior must be characterized: capturing the dynamic nature of the swarm, tracking
the collective risk profile created by a swarm, and engaging with a swarm via dynamic
inputs, such as autonomous defenders. The many modeling layers create a challenge
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for generating an effective response to the swarm, as model uncertainty and model error
are almost certain. In this paper, we look at several dynamic systems where the network
structure is determined by parameters. These parameters set neighborhood relations and
interaction rules. Additional parameters establish defender input and swarm risk.

We consider the generation of optimal defense strategies given uncertainty in param-
eter values. We demonstrate that small deviances in parameter values can have catas-
trophic effects on defense trajectories optimized without taking error into account. We
then demonstrate the contrasting robustness of applying an uncertain parameter optimal
control framework instead of optimizing with nominal values. The robustness against
these parameter values suggests that refined parameter knowledge may not be necessary
given appropriate computational tools. These computational tools—and the modeling of
the high-dimensional swarm itself—are expensive. To assist with this issue, we provide
dual conditions for this problem in the form of a Pontryagin minimum principle and prove
the consistency of these conditions for the numerical algorithm. These dual conditions can,
thus, be computed from the numerical solution of the computational method and provide
a tool for solution verification and parameter sensitivity analysis.

Although in this paper, optimal strategies against swarms motivate the framework
of uncertain parameter optimal control, and the subsequent development of the dual
conditions, both the framework and the dual conditions have many applications beyond
swarm defense. Optimal control with parameter uncertainty is relevant to robotics—where
parts, such as wheels, may have small size and calibration uncertainties; aerospace—where
both components and exogeneous factors, such as wind, may be modeled using parameter
uncertainty; and search and rescue—where the location of a target object can be considered
a parameter uncertainty [3,4]. It is also an instance of mean-field optimal control (which
includes this framework, but also more general probability distributions), which is finding
application in the training of neural networks [5]. The dual conditions provided in this
paper provide both a tool for verification of numerical solutions, as well as another potential
route for generating numerical solutions.

The structure of this paper is as follows. Section 2 provides examples of dynamic
swarming models and extensions for defensive interactions. Section 3 discusses optimiza-
tion challenges and describes a general uncertain parameter optimal control framework that
this problem could be addressed with. Section 4 provides a proof of the consistency of the
dual problem for this control framework, which expands on the results initially presented
in the conference paper [6]. Section 5 gives an example of numerical implementation that
demonstrates optimal defense against a large-scale swarm of 100 agents. Section 6 discusses
the results and future work.

2. Modeling Adverserial Swarms
2.1. Cooperative Swarm Models

The literature on the design of swarm strategies which produce coherent, stable
collective behavior has become vast. A quick review of the literature points to two main
trends/categories in swarm behavior design. The first relies on dynamic modeling of the
agents and potential functions to control their behavior (see [7,8] and references therein).
The second trend relates to the use of rules to describe agents’ motion and local rule-based
algorithms to control them [9,10].

We present two examples of dynamic swarming strategies from the literature. These
examples are illustrative of the forces considered in many swarming models:

• collision avoidance between swarm members;
• alignment forces between neighboring swarm members;
• stabilizing forces.

These intra-swarm goals are aggregated to provide a swarm control law, which we
will refer to as FS, to each swarm agent. Both example models in this paper share the same
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double integrator form with respect to this control law. For n swarm agents, the dynamics
are defined by

ẍi = ui. i = 1, . . . , n, (1)

ui = FS(xi, ẋi, ∀j 6= i : xj, ẋj|θ). (2)

2.1.1. Example Model 1: Virtual Body Artificial Potential

In this model [11,12], swarm agents track to a virtual body (or bodies) guiding their
course, while also reacting to intra-swarm forces of collision avoidance and group cohe-
sion. The input ui is the sum of intra-swarm forces, virtual body tracking, and a velocity
dampening term. In addition, in this adversarial scenario, swarm agents are influenced
to avoid intruding defense agents. The intra-swarm force between two swarm agents has
magnitude f I and is a gradient of an artificial potential VI . Let

xij = xi − xj. (3)

The artificial potential VI depends on the distance ||xij|| between swarm agents i and
j. The artificial potential VI is defined as:

VI =


α

(
ln
(
||xij||

)
+

d0

||xij||

)
, 0 < ||xij|| < d1

α

(
ln(d1) +

d0

d1

)
, ||xij|| ≥ d1

(4)

where α is a scalar control gain, and d0 and d1 are scalar constants for distance ranges. Then
the magnitude of interaction force is given by

f I =

{
∇||xij ||VI , 0 < ||xij|| < d1

0, ||xij|| ≥ d1
(5)

The swarm body is guided by ‘virtual leaders’, non-corporeal reference trajectories
which lead the swarm. We assign a potential Vh on a given swarm agent i associated with
the k-th virtual leader, defined with the distance ||hik|| between the swarm agent i and
leader k. Mirroring the parameters α, d0, and d1 defining VI , we assign Vh the parameters
αh, h0, and h1. An additional dissipative force fvi is included for stability. The control law
ui for the vehicle i associated with m defenders is given by

ui = −
n

∑
j 6=i
∇xi VI(xij)−

m

∑
k=1
∇xi Vh(hik) + fvi

= −
n

∑
j 6=i

f I(xij)

||xij||
xij −

m

∑
k=1

fh(hik)

||hik||
hik + fvi .

(6)

2.1.2. Example Model 2: Reynolds Boid Model

In this model [8,13], for radius r, j = 1, . . . , N, define the neighbors of agent i at
position xi ∈ Rn by the set

Ni = {j|j 6= i ∧ ‖xi − xj‖ < r} (7)

Swarm control is designated by three forces.
Alignment of velocity vectors:

fal = −wal

(
ẋi −

1
|Ni| ∑

j∈Ni

ẋj

)
(8)
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Cohesion of swarm:

fcoh = −wcoh

(
xi −

1
|Ni| ∑

j∈Ni

xj

)
(9)

Separation between agents:

fsep = −wsep
1
|Ni|

(
∑

j∈Ni

xj − xi

‖xi − xj‖

)
(10)

for positive constant parameters wal , wcoh, wsep.

ui = fal + fcoh + fsep (11)

2.2. Adversarial Swarm Models

The previous subsection provides several examples of inner swarm cooperative forces,
FS. In order to enable adversarial behavior and defense, these inner swarm cooperative
forces need to be supplemented by additional forces of exogenous input into the collective.
As written, the above cooperative swarming models neither respond to outside agents nor
‘attack’ (swarm towards) a specific target. We, thus, supplement the control laws above
with two additional forces. The first, we refer to as FHVU ; the goal of the swarm, in this
paper, is limited to tracking an HVU. An example of FHVU is provided in the example of
Section 5, in Equation (28).

We also supplement by an adversarial force, which we refer to as FD. The review [7]
discusses several approaches to adversarial control. Examples include containment strate-
gies modeled after dolphins [14], sheep-dogs [15,16], and birds of prey [17]. In [18], the
authors studied the interaction between two swarms, one of which could be considered
adversarial. In these examples of adversarial swarm control, the mechanism of interaction
and defense is provided through the swarm’s own pursuit and evasion responses. This
indirectly uses the swarm’s own response strategy against it—an approach which can be
termed ‘herding’.

In addition to herding reactions, one can consider more direct additional forces of
disruption, to model neutralizing swarm agents and/or physically remove them from the
swarm. One form this can take, for example, is the removal of agents from the communica-
tions network, as considered in [19]. Another approach is taken in [20], which uses survival
probabilities based on damage attrition. Defenders and the attacking swarm engage in
mutual damage attrition while the swarm also damages the HVU when in proximity to
it. Probable damage between agents is tracked as damage rates over time, where the rate
of damage is based on features such as distance between agents and angle of attack. The
damage rate at time t provides the probability of a successful ‘hit’ in time period [t, t + ∆t].
The probability of agent survival can be modeled based on the aggregate number of hits
it takes to incapacitate the agent. The authors of [20] provide derivations for multiple
possibilities, such as single-shot destruction and N-shot destruction. These probabilities
take the form of ODE equations. Tracking survival probabilities thus adds an additional
state to the dynamics of each agent—a survival probability state.

We, thus, summarize a control scheme with HVU target-tracking and herding driven
by the reactive forces of collision avoidance with the defenders as the following, for HVU
states y0 and defender states yk, k = 1, . . . , K:

ui =FS(xi, ẋi, ∀j 6= i : xj, ẋj|θ) ← intra-swarm

+FHVU(xi, ẋi, y0, ẏ0|θ) ← target tracking

+FD(xi, ẋi, ∀k : yk, ẏk|θ) ← herding and/or damage (12)
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Example Attrition Model: Single-Shot Destruction

From [20]: let P0(t) be the probability the HVU has survived up to time t, Pk(t),
k = 1, . . . , K, the probability defender k has survived, and Qj(t), j = 1, . . . , N the probability

swarm attacker j has survived. Let dj,k
y (xj(t), yk(t)) be the damage the defender yk inflicts

on swarm attacker xj and let dk,j
x (yk(t), xj) be the damage the swarm attacker xj inflicts on

the defender yk, with the HVU represented by k = 0.
Then the survival probabilities for attackers and defenders from single-shot destruction

are given by the coupled ODEs:{
Q̇j(t) = −Qj(t)∑K

k=1 Pk(t)d
j,k
y (xj(t), yk(t)), Qj(0) = 1

Ṗk(t) = −Pk(t)∑N
j=1 Qj(t)d

k,j
x (yk(t), xj(t)), Pk(0) = 1

for j = 1, . . . , N, k = 0 . . . , K.

3. Problem Formulation

The above models depend on a large number of parameters. The dynamic swarming
model coupled with attrition functions results in over a dozen key parameters, and many
more would result from a non-homogeneous swarm. A concern would be that this adds
too much model specificity, making optimal defense strategies lack robustness due to
sensitivity to the specific set of model parameters. This concern turns out to be justified.
When defense strategies are optimized for fixed, nominal parameter values, they display
catastrophic failure for small perturbations of certain parameters, as can be seen in Figure 1.
In fact, the plots included in Figure 1 clearly demonstrate that the sensitivity of the cost with
respect to the uncertain parameters is highly non-linear. Thus, generating robust defense
strategies requires a more sophisticated formalism introduced in the next Section 3.1.

Figure 1. Example performance of solutions calculated using nominal values when parameter value
is varied. Calculated using values in Section 5.1. Magenta dot marks the nominal value used in the
optimization problem. In the left panel, d0 is varied as the parameter; in the right panel h0 is varied.

3.1. Uncertain Parameter Optimal Control

The class of problems addressed by the computational algorithm is defined as follows:

Problem P. Determine the function pair (x, u) with x ∈ W1,∞([0, T] × Θ;Rnx ), u ∈
L∞([0, T];Rnu) that minimizes the cost

J[x, u] =
∫

Θ

[
F(x(T, θ), θ)+

∫ T

0
r(x(t, θ), u(t), t, θ)dt

]
dθ (13)
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subject to the dynamics

∂x
∂t

(t, θ) = f (x(t, θ), u(t), θ), (14)

initial condition x(0, θ) = x0(θ), and the control constraint g(u(t)) ≤ 0 for all t ∈ [0, T]. The
set L∞([0, T];Rnu) is the set of all essentially bounded functions, W1,∞([0, T]×Θ;Rnx ) the
Sobolev space of all essentially bounded functions with essentially bounded distributional
derivatives, and F : Rnx × Rnθ 7→ R, r : Rnx × Rnu × R × Rnθ 7→ R, g : Rnu 7→ Rng .
Additional conditions imposed on the state and control space and component functions are
specified in Appendix A.

In Problem P, the set Θ is the domain of a parameter θ ∈ Rnθ . The format of the cost
functional is that of the integral over Θ of a Mayer–Bolza type cost with parameter θ. This
parameter can represent a range of values for a feature of the system, such as in ensemble
control [21], or a stochastic parameter with a known probability density function.

For computation of numerical solutions, we introduce an approximation of Problem P,
referred to as Problem PM. Problem PM is created by approximating the parameter space,
Θ, with a numerical integration scheme. This numerical integration scheme is defined in
terms of a finite set of M nodes {θM

i }
M
i=1 and an associated set of M weights {αM

i }
M
i=1 ⊂ R

such that ∫
Θ

h(θ)dθ = lim
M→∞

M

∑
i=1

h(θM
i )αM

i . (15)

given certain function smoothness assumptions. See Appendix A Assumption A1 for
formal assumptions. Throughout the paper, M is used to denote the number of nodes used
in this approximation of parameter space.

For a given set of nodes {θM
i }

M
i=1, and control u(t), let x̄M

i (t), i = 1, . . . , M, be defined
as the solution to the ODE created by the state dynamics of Problem P evaluated at θM

i :{
dx̄M

i
dt (t) = f (x̄M

i (t), u(t), θM
i )

x̄M
i (0) = x0(θ

M
i ),

i = 1, . . . , M. (16)

Let X̄M(t) = [x̄M
1 (t), . . . , x̄M

M(t)]. The system of ODEs defining X̄M has dimension
nx ×M, where nx is the dimension of the original state space and M is the number of nodes.
The numerical integration scheme for parameter space creates an approximate objective
functional, defined by:

J̄M[X̄M, u]=
M

∑
i=1

[
F
(

x̄M
i (T), θM

i

)
+
∫ T

0
r(x̄M

i (t), u(t), t, θM
i )dt

]
αM

i . (17)

In [4], the consistency of PM is proved. This is the property that, if optimal solutions to
Problem PM converge as the number of nodes M→ ∞, they converge to feasible, optimal
solutions of Problem P. See [4] for detailed proof and assumptions.

3.2. Computational Efficiency

The computation time of the numerical solution to the discretized problem defined
in Equations (16) and (17) will depend on the value of M. Ideally, it should be sufficiently
small so as to allow for a fast solution. On the other hand, a value of M that is too small will
result in a solution that is not particularly useful, i.e., too far from the optimal. Naturally,
the question arises: how far is a particular solution from the optimal? One tool for assessing
this lies in computing the Hamiltonian and is addressed in Section 4.

4. Consistency of Dual Variables

The dual variables provide a method to determine the solution of an optimal control
problem or a tool to validate a numerically computed solution. For numerical schemes
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based on direct discretization of the control problem, analyzing the properties of the
dual variables and their resultant Hamiltonian may also lead to insight into the va-
lidity of an approximation scheme [22,23]. This could be especially helpful in high-
dimensional problems, such as swarming, where parsimonious discretization is crucial to
computational tractability.

Previous work shows the consistency of the primal variables in approximate Problem
PM to the original parameter uncertainty framework of Problem P. Here, we build on
that and prove the consistency of the dual problem of Problem P as well. This theoretical
contribution is diagrammed in Figure 2. The consistency of the dual problem in parameter
space enables approximate computation of the Hamiltonian from numerical solutions.

Figure 2. Diagram of primal and dual relations for parameter uncertainty control. Red lines designate
the contribution of this paper.

In [24], necessary conditions for Problem P were established. These conditions are
as follows:

Problem Pλ [([24], pp. 80–82)]. If (x∗, u∗) is an optimal solution to Problem P, then
there exists an absolutely continuous costate vector λ∗(t, θ), such that for θ ∈ Θ:

∂λ∗

∂t
(t, θ) = −∂H(x∗, λ∗, u∗, t, θ)

∂x
,

λ∗(T, θ) =
∂F(x∗(T, θ), θ)

∂x
(18)

where H is defined as:

H(x, λ, u, t, θ) =

λ f (x(t, θ), u(t), θ) + r(x(t, θ), u(t), t, θ). (19)

Furthermore, the optimal control u∗ satisfies

u∗(t) = arg min
u∈U

H(x∗, λ∗, u, t),

where H is given by

H(x, λ, u, t) =
∫

Θ
H(x, λ, u, t, θ)dθ. (20)

Because Problem PM is a standard non-linear optimal control problem, it admits a
dual problem as well. Problem PMλ, provided by the Pontryagin minimum principle (a
survey of minimum principle conditions is given by [25]). Applied to PM this generates:
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Problem PMλ. For feasible solution (X̄M, u) to Problem PM, find Λ̄(t) = [λ̄M
1 (t), . . . λ̄M

M(t)],
λ̄M

i : [0, T]→ RNx , that satisfies the following conditions:

dλ̄M
i

dt
(t) = −

∂H̄M(x̄M
i , λ̄M

i , u, t)
∂xM

i
,

λ̄M
i (T) = αM

i
∂F(x̄M

i , θM
i )

∂x̄M
i

, (21)

where H̄M is defined as:

H̄M(X̄M, Λ̄M, u, t) =
M

∑
i=1

[
λ̄M

i f (x̄M
i (t), u(t), θM

i ) + αM
i r(x̄M

i (t), u(t), t, θM
i )
]
. (22)

An alternate direction from which to approach solving Problem P overall is to ap-
proximate the necessary conditions of Problem P , i.e., Problem Pλ, directly rather than to
approximate Problem P. This creates the system of equations:

dλ

dt
(t, θM

i ) = −
∂H(x, u, t, θM

i )

∂x

λ(T, θM
i ) =

∂F(x(T, θM
i ), θM

i )

∂x
(23)

for i = 1, . . . , M, where H is defined as:

H(x, λ, u, t, θ) = λ f (x(t, θ), u(t), θ) + r(x(t, θ), u(t), t, θ).

This system of equations can be re-written in terms of the quadrature approximation
of the stationary Hamiltonian defined in Equation (20). Define

H̃M(x, λ, u, t) :=
M

∑
i=1

αM
i H(x(t, θM

i ), λ(t, θM
i ), u(t), t, θM

i ).

Let
Λ̃(t) = [λ̃M

1 (t), . . . λ̃M
M(t)] = [λ(t, θM

1 ), . . . , λ(t, θM
M)]

and let
X̃M = [x̃M

1 (t), . . . , x̃M
M(t)]

denote the semi-discretized states from Equation (16). Equation (23) can then be written as:

dλ̃M
i

dt
(t) = − 1

αM
i
· ∂H̃M(X̃M, Λ̃, u, t)

∂x̃M
i

λ̃M
i (T) =

∂F(x̃M
i (T), θM

i )

∂x̃M
i

(24)

for i = 1, . . . , M. Thus, we reach the following discretized dual problem:

Problem PλM . For feasible controls u and solutions X̃M to Equation (16), find
Λ̃(t) = [λ̃M

1 (t), . . . λ̃M
M(t)], λ̃M

i : [0, T]→ Rnx , that satisfies the following conditions:

dλ̃M
i

dt
(t) = − 1

αM
i
· ∂H̃M(X̃M, Λ̃, u, t)

∂x̃M
i

,

λ̃M
i (T) =

∂F(x̃M
i , θM

i )

∂x̃M
i

, (25)
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where H̃M is defined as:

H̃M(X̃M, Λ̃M, u, t) =
M

∑
i=1

[
αM

i λ̃M
i f (x̃M

i (t), u(t), θM
i ) + αM

i r(x̃M
i (t), u(t), t, θM

i )
]
. (26)

Lemma 1. The mapping:

(x̄M
i , ū) 7→ (x̃M

i , ũ),
λ̄M

i
αM

i
7→ λ̃M

i ,

for i = 1, . . . , M is a bijective mapping from solutions of Problem PMλ to Problem PλM .

Proof. In the case of this particular problem, unlike standard control, the collocation of the
relevant dynamics involves no approximation of differentiation (since the discretization is
in the parameter domain rather than the time domain), and, thus, the mapping of covectors
between Problem PMλ and Problem PH̃M(X̃M ,Λ̃M ,u,t)=λM is straightforward and simply
constructively provided by the lemma itself. The two mappings of the lemma, (x̄M

i , ū) 7→
(x̃M

i , ũ) (identity mapping) and λ̄M
i

αM
i
7→ λ̃M

i (scaling by 1
αM

i
) are both bijections.

Theorem 1. Let {X̃M, Λ̃M, uM}M∈V be a sequence of solutions for Problem PλM with an accu-
mulation point {X̃∞, Λ̃∞, u∞}. Let (x∞, λ∞, u∞) be the solutions to Problem Pλ for the control
u∞. Then

lim
M∈V

H̃M(X̃M, Λ̃M, uM, t) = H(x∞, λ∞, u∞, t)

where H̃M is the Hamiltonian of Problem PλM as defined by Equation (26) and H is the Hamiltonian
of Problem P as defined by Equation (20). The proof of this theorem can be found in the Appendix B.

The convergence of the Hamiltonians of the approximate, standard control problems
to the Hamiltonian of the general problem, H(x∞, λ∞, u∞, t), means that many of the
useful features of the Hamiltonians of standard optimal control problems are preserved.
For instance, it is straightforward to show that the satisfaction of Pontryagin’s minimum
principle by the approximate Hamiltonians implies minimization of H(x∞, λ∞, u∞, t) as
well. That is, that

H(x∞, λ∞, u∞, t) ≤ H(x∞, λ∞, u, t)

for all feasible u. Furthermore, when applicable, the stationarity properties of the standard
control Hamiltonian, such as a constant-valued Hamiltonian in time-invariant problems, or
stationarity with respect to u(t) in problems with open control regions, are also preserved.

5. Numerical Example

In a slight refashioning of the notation in the Section 2.2, Equation (12), let the parame-
ter vector θ be defined by all the unknown parameters defining the interaction functions.
Assuming prior distribution φ(θ) over these unknowns and parameter bounds Θ, we
construct the following optimal control problem for robustness against the unknown pa-
rameters.

Problem SD (Swarm Defense). For K defenders and N attackers, determine the defender
controls uk(t) that minimize:

J =
∫

θ

[
1− P0(t f , θ)

]
φ(θ)dθ (27)
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subject to: 

ẏk(t) = f (yk(t), uk(t)), yk(0) = yk0

ẍj(t, θ) =

FS(t, θ) + FHVU(t, θ) + FD(t, θ), xj(0, θ) = xj0(θ)

Q̇j(t, θ) =

−Qj(t, θ)∑K
k=1 Pk(t, θ)dj,k

y (xj(t, θ), yk(t)), Qj(0, θ) = 1
Ṗk(t) =

−Pk(t, θ)∑N
j=1 Qj(t, θ)dk,j

x (yk(t), xj(t, θ)), Pk(0, θ) = 1

for swarm attackers j = 1, . . . , N and controlled defenders k = 1 . . . , K.
We implement Problem SD for both swarm models in Section 2.1, for a swarm of

N = 100 attackers and K = 10 defenders.

5.1. Example Model 1: Virtual Body Artificial Potential

The cooperative swarm forces FS are defined with the Virtual Body Artificial Potential
of Section 2.1 with parameters α, d0 and d1. In lieu of a potential for the virtual leaders, we
assign the HVU tracking function:

fHVU = −K1(xi − y0)

‖xi − y0‖
(28)

where y0 ∈ R3 is the position of the HVU. The dissipative force fvi = −K2 ẋi is employed
to guarantee stability of the swarm system. K1 and K2 are positive constants. The swarm’s
collision avoidance response to the defenders is defined by Equation (4) with parameters αh,
h0 and h1. Since there is only a repulsive force between swarm members and defenders, not
an attractive force, we set h1 = h0. For attrition, we use the the damage function defined in
Equation (21) of [20]:

FD = λΦ
(

F− ar2

σ

)
, r = ‖xi − yj‖2 (29)

where Φ is the cumulative normal distribution and ‖ · ‖2 is the vector 2-norm. This function
smoothly penalizes proximity, with the impact decreasing with distance. The parameters λ,
F, a, and σ shape the steepness of this function and the decline of damage over distance. For
the damage rate of defenders inflicted on attackers, we calibrate by the parameters λD, σD.
For the damage rate of attackers inflicted on defenders, we calibrate by the parameters λA,
σA. In both cases, the parameters F and a in [20] are set to F = 0, a = 1. Table 1 provides
the parameter values that remain fixed in each simulation, and and Table 2 provides the
parameters we consider as uncertain.

Table 1. Model 1 Fixed Parameter Values.

Parameter Value Meaning

t f 45 final time
K1 5 tracking coefficient
K 10 number of defenders
h1 h0 interaction parameter
λD 2 defender weapon intensity
σD 2 defender weapon range
N 100 number of attackers
K2 5 dissipative force
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Table 2. Model 1 Varied Parameter Values.

Parameter Nominal Range Meaning

α 0.5 [0.1, 0.9] control gain
d0 1 [0.5, 1.5] lower range limit
d1 6 [4, 8] upper range limit
λA 0.05 [0.01, 0.09] weapon intensity
σA 2 [1.5. 2.5] weapon range
αh 6 [5, 7] herding intensity
h0 3 [2, 4] herding range

We first use the nominal parameter values provided in Tables 1 and 2 to find a nominal
solution defender trajectories that result in the minimum probability of HVU destruction.
With the results of these simulations as a reference point, we consider as uncertain each
of the parameters that define attacker swarm model and weapon capabilities. In this
simulation, these parameters are considered individually. The number of discretization
nodes for parameter space was chosen by examination of the Hamiltonian. To illustrate this
method and the results obtained in Section 4 we compute Hamiltonians for the Problem
SD and Model 1 with θ = d0, d0 ∈ [0.5, 1.5] and M = [5, 8, 11]. As M increases the sequence
of Hamiltonians should converge to the optimal Hamiltonian for the Problem SD. For
Problem SD that should result in a constant, zero-valued Hamiltonian. Figure 3 shows the
respective Hamiltonians for M = [5, 8, 11]. The value M = 11 was chosen for simulations,
based on the approximately zero-valued Hamiltonian it generates.

Figure 3. Convergence of Hamiltonion as number of parameter nodes M increases.

We compare the performance of the solution generated using uncertain parameter
optimal control Problem SD versus a solution obtained with the nominal values. Figure 4
shows the nominal solution trajectories. The comparitive results of the nominal solutions
vs the uncertain parameter control solutions are shown in Figure 5, where the performance
of each is shown for different parameters values.
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Figure 4. Shown are four snapshots during a simulations at t = 0, 15, 30, and 45 (time units are
arbitrary). Defenders are represented by blue spheres and attackers by red spheres. The HVU is the
yellow sphere. Below these snapshots, we show full trajectories for the entire simulation, which is the
result of an optimization protocol using the parameters shown in Table 1.
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Figure 5. Performance of Solutions of Swarm Model 1 as parameter values are varied. Each panel
illustrates a different varied parameter, stated on the x-axis.

As seen in Figure 5 the trajectories generated by optimization using the nominal values
perform poorly over a range of α, d0, σA, αk and h0. In the case of h0, for example, this is
because the attackers are less repelled by the defenders when h0 is decreased, and they are
more able to destroy the HVU from a longer distance as σA is increased. The parameter
uncertainty solution, however, demonstrates that using the uncertain parameter optimal
control framework a solution can be provided which is robust over a range of parameter
values. We contrast these results with the case of uncertain parameters d1 and λA, also
shown in Figure 5. It can be seen that robustness improvements are modest to non-existent
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for these parameters. This suggests an insensitivity of the problem d1 and λA parameters.
This kind of analysis can be used to guide inference and observability priorities.

5.2. Example Model 2: Reynolds Boid Model

To demonstrate flexibility of the proposed framework to include diverse swarm models
we have applied the same analysis as was done in Section 5.1 to the Reynolds Boid Model
introduced in Section 2.1. We apply the same HVU tracking function as Equation (28). The
herding force FD of the defenders repelling attackers is applied as a separation force in the
form of Equation (10). The fixed parameter values are the same as those in Table 1; the
uncertain parameters and ranges are given in Table 3. The results are shown in Figure 6.
Again, we see that the tools developed in this paper can be used to gain an insight into the
robustness properties of the nominal versus uncertain parameter solutions. For example,
we can see that the uncertain parameter solutions perform much better than the nominal
ones for the cases where λ, σ and wI are uncertain.

Figure 6. Performance of Solutions of Swarm Model 2 as parameter values are varied.
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Table 3. Model 2 Varied Parameter Values.

Parameter Nominal Range Meaning

λA 0.05 [0.01, 0.09] weapon intensity
σA 2 [1.5, 2.5] weapon range
ral 2 [1.5, 2.5] alignment range
wal 0.75 [0.25, 1.25] alignment intensity
rcoh 2 [1.5, 2.5] cohesion range
wcoh 0.75 [0.25, 1.25] cohesion intensity
rsep 1 [0.5, 1.5] separation range
wsep 0.5 [0.1, 0 .9] separation intensity

rI 2 [1.5, 2.5] herding range
wI 4.5 [3.5, 5.5] herding intensity

6. Conclusions

In this paper, we have built on our previous work on developing an efficient numerical
framework for solving uncertain parameter optimal control problems. Unlike uncertainties
introduced into systems due to stochastic “noise”, parameter uncertainties do not average
or cancel out in regard to their effects. Instead, each possible parameter value creates a
specific profile of possibility and risk. The uncertain optimal control framework which has
been developed for these problems exploits this inherent structure by producing answers
which have been optimized over all parameter profiles. This approach takes into account
the possible performance ranges due to uncertainty, while also utilizing what information
is known about the uncertain features, such as parameter domains and prior probability
distributions over the parameters. Thus, we are able to contain risk, while providing
plans which have been optimized for performance under all known conditions. The
results reported in this paper include analysis of the consistency of the adjoint variables
of the numerical solution. In addition, the paper includes a numerical analysis of a large
scale adversarial swarm engagement that clearly demonstrates the benefits of using the
proposed framework.

There are many directions for future work for the topics of this paper. The numerical
simulations in this paper consider the parameters individually, as one-dimensional param-
eter spaces. However, Problem P allows for multi-dimensional parameter spaces. A more
dedicated implementation, taking advantage of the parallelizable form of Equation (16), for
example, could certainly manage several simultaneous parameters. Exponential growth
as parameter space dimension increases is an issue for both the quadrature format of
Equation (15) and handling of the state space size for Equation (16). This can be some-
what mitigated by using sparse grid methods for high-dimensional integration to define
the nodes in Equation (15). For large enough sizes, Monte Carlo sampling, rather than
quadrature might be more appropriate for designating parameter nodes.

A further direction for future work would be to incorporate these methods into
the design of more responsive closed-loop control solutions. The optimization methods
in this paper provide open-loop controls. While useful, closed-loop controls would be
more ideal for dynamic situations with uncertainty. There are many ways, however, that
open-loop solutions can provide stepping stones to developing closed-loop solutions.
For instance, Ref. [26] utilizes closed-loop solutions to train a neural network to learn an
optimal closed-loop control strategy. Open-loop solutions can also be used to provide initial
guesses to discretized closed-loop optimizations, seeding the optimization algorithm.

Another direction for future work is in the greater application of the duality results of
Section 4. The numerical results in this paper simply utilize the Hamiltonian consistency.
The proof of Theorem 1, however, additionally demonstrates the consistency of the adjoint
variables for the problem. As the results demonstrate, parameter sensitivity for these swarm
models is highly non-linear. The numerical solutions of Section 5 are able to demonstrate
this sensitivity by applying the solution to varied parameter values. However, this is
actually a fairly expensive method for a large swarm, as it involves re-evaluation of the
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swarm ODE for each parameter value. More importantly, it would not be scalable to high-
dimensional parameter spaces, as the exponential growth of that approach to sensitivity
analysis would be unavoidable. The development of an analytical adjoint sensitivity
method for this problem could be of great utility for paring down numerical simulations to
only focus on the parameters most relevant to success.
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Appendix A. Assumptions and Definitions

We we impose the assumptions in Section 2 of [4]. The definition of accumulation point
used in the following proof can be found in Definition 3.2 of [4]. The following assumption
is placed on the choice of numerical integration scheme to be utilized in approximating
Problem P:

Assumption A1. For each M ∈ N, there is a set of nodes {θM
i }

M
i=1 ⊂ Θ and an associated set of

weights {αM
i }

M
i=1 ⊂ R, such that for any continuous function h : Θ→ R,

∫
Θ

h(θ)dθ = lim
M→∞

M

∑
i=1

h(θM
i )αM

i .

This is the same as Assumption 3.1 of [4]; we include it for reference.
In additions to the assumptions of [4], we also impose the following:

Assumption A2. The functions f and r are C1. The set Θ is compact and x0 : Θ 7→ Rnx is
continuous. Moreover, for the compact sets X and U defined in Assumptions 2.3 and 2.4 of [4],
and for each t ∈ [0, T], θ ∈ Θ, the Jacobians rx and fx are Lipschitz on the set X ×U, and the
corresponding Lipschitz constants Lr and L f are uniformly bounded in θ and t. The function F is
C1 on X for all θ ∈ Θ; in addition, F and Fx are continuous with respect to θ.

Appendix B. Main Theorem Proof

The theorem relies on the following lemma:

Lemma A1. Let {uM} be a sequence of optimal controls for Problem PM with an accumulation
point u∞ for the infinite set V ⊂ N. Let (x∞(t, θ), λ∞(t, θ)) be the solution to the dynami-
cal system: {

ẋ∞(t, θ) = f (x∞(t, θ), u∞(t), θ)

λ̇∞(t, θ) = − ∂H(x∞(t,θ),λ∞(t,θ),u∞(t),t,θ)
∂x

(A1)
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{
x∞(0, θ) = x0(θ)

λ∞(T, θ) = ∂F(x∞(T,θ),θ)
∂x

(A2)

where H is defined as per Equation (19), and let {(xM(t, θ), λM(t, θ))} for M ∈ V be the sequence
of solutions to the dynamical systems:{

ẋM(t, θ) = f (xM(t, θ), uM(t), θ)

λ̇M(t, θ) = − ∂H(xM(t,θ),λM(t,θ),uM(t),t,θ)
∂x

(A3)

{
xM(0, θ) = x0(θ)

λM(T, θ) = ∂F(xM(T,θ),θ)
∂x

(A4)

Then, the sequence {(xM(t, θ), λM(t, θ))} converges pointwise to (x∞(t, θ), λ∞(t, θ)) and
this convergence is uniform in θ.

Proof. The convergence of {xM(t, θ)} is given by Lemmas 3.4 and 3.5 of [4]. The conver-
gence of the sequence of solutions {λM(t, θ)} is guaranteed by the optimality of {uM}.
The convergence of {λM(t, θ)} then follows the same arguments given the convergence
of {xM(t, θ)}, utilizing the regularity assumptions placed on the derivatives of F, r, and
f with respect to x to enable the use of Lipschitz conditions on the costate dynamics and
transversality conditions.

Remark A1. Note that λM(t, θ) is not a costate of Problem PλM , since it is a function of θ.
However, when θ = θM

i , then λM(t, θM
i ) = λ̃M

i (t), where λ̃M
i is the costate of Problem PλM

generated by the pair of solutions to Problem PM, (x̃M
i , u∗M) . In other words, the function λM(t, θ)

matches the costate values at all collocation nodes. Since these values satisfy the dynamics equations
of Problem PλM , a further implication of this is that the values of λM(t, θM

i ) produce feasible
solutions to Problem PλM .

Remark A2. Since the functions {(xM(t, θ), λM(t, θ))} obey the respective identities xM(t, θM
i ) =

x̃M
i (t) and λM(t, θM

i ) = λ̃M
i (t), their convergence to (x∞(t, θ), λ∞(t, θ)) also implies the conver-

gence of the sequence of discretized primals and duals, {X̃M} and {Λ̃M}, to accumulation points
given by the relations

lim
M∈V

x̃M
i (t) = x∞(t, θM

i ), lim
M∈V

λ̃M
i (t) = λ∞(t, θM

i )

We now prove Theorem 1. Let {(xM(t, θ), λM(t, θ))} for M ∈ V be the sequence
of solutions defined by Equation (A3) and let (x∞(t, θ), λ∞(t, θ)) be the accumulation
functions defined by Equation (A1). Incorporating Remarks A1 and A2, we have:

lim
M∈V

H̃M(X̃M, Λ̃M, uM, t) =

lim
M∈V

M

∑
i=1

αM
i

[
λ̃M

i (t) f (x̃M
i (t), u(t), θM

i ) + r(x̃M
i (t), u(t), t, θM

i )
]

= lim
M∈V

M

∑
i=1

αM
i

[
λM(t, θM

i ) f (xM(t, θM
i ), u(t), θM

i ) + r(xM(t, θM
i ), u(t), t, θM

i )
]

Due to the results of Lemma A1, and applying Remark 1 of [4] on the convergence of
the quadrature scheme for uniformly convergent sequences of continuous functions, we
find that:

lim
M∈V

H̃M(X̃M, Λ̃M, uM, t) =
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∫
Θ
[λ∞(t, θ) f (x∞(t, θ), u∞(t), θ) + r(x∞(t, θ), u∞(t), t, θ)]dθ = H(x∞, λ∞, u∞, t)

thus proving the theorem.
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