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Abstract

The purpose of this paper is to introduce differential forms in the study of tensor calculus.
The reader should have general knowledge of vector calculus along with knowledge in advanced
calculus and some linear algebra. The motivation behind this paper is to show students im-
portant introductory level concepts in differential forms along with a few concepts in tensor
calculus by applying some important concepts in vector calculus.

1 Introduction

Assume we just finished a multivariable basis vector calculus class. Differential forms are not
easy to understand right away. More so, it might not be immediately clear how differential forms
are related or applied in calculus. For this reason, this paper focuses on explaining differential
forms from a tensor calculus perspective. Albert Einstein used tensor calculus to formulate general
relativity . Those not familiar with tensors or tensor calculus should not worry since this paper is
an introduction to differential forms. Like all mathematics, tensor calculus takes much practice to
grasp as a subject. For our purpose, we are treating differential forms as a new mathematical topic
to the reader.

2 Tensors

We begin with a series of definitions to help the reader follow along with the process of solving the
tensor problems. The idea of a tensor is fairly simple one. Students may initially think of a tensor
as a generalization of a linear transformation to copies of a vector space.

Definition 2.1. Let V be a vector space, and let V N = V×V×...×V . With v1, v2, ..., vi+1, vi−1, ...vn
constant, let f(v1, v2, ..., v, vi−1, ..., vn) be linear. In this case, f is said to be linear in the i-th
variable. If f is linear in the i-th variable for 1 ≤ i ≤ n, then we say that f is a multilinear function.

Definition 2.2. Let ϕ : V k → R be a function. We define ϕ to be a k-tensor on V if ϕ is multilinear.

Strictly speaking, we have defined a covariant tensor. This is the concept we need in order to
discuss differential forms. For a deeper discussion of contravariant and covariant tensor see [2].

Definition 2.3. The set of all k-tensors on a vector space V is denoted T k(V ). For ϕ, η ∈ T k(V ),
and c ∈ R, we define

(ϕ+ η)(v1, ..., vk) = ϕ(v1, ..., vk) + η(v1, ..., vk)

(cϕ)(v1, ..., vk) = c(ϕ(v1, ..., vk))
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With the definitions stated above we can say that for k ∈ N, T k(V ) is in fact a vector space.
We can use the standard scalar multiplication and addition to see that we can satisfy the axioms of
a vector space. The function whose value is zero on every k-tuple of our vector space is known as
the zero element of V . Based on our definitions above, T 1(V ) is the set of all linear transformations
T : V → R, and we set T 0(V ) = R. The following lemma tells us that tensors are uniquely
determined by their values on basis elements.

Lemma 2.1. Let b1, ..., bn be a basis for a vector space V . Let ϕ, η : V K → R be k-tensors on V
satisfying ϕ(bi1 , ..., bik) = η(bi1 , ..., bik) for every k-tuple I = (i1, ...ik), where 1 ≤ im ≤ n. Then
ϕ = η.

The proof for this lemma is trivial.
Differential forms are essentially alternating (i.e. completely antisymmetric) tensors. For exam-

ple, a 2-tensor ϕ ∈ T 2(V ) is alternating if

ϕ(u, v) = −ϕ(v, u)

for all u, v ∈ V . Now lets consider a 3-tensor ϕ ∈ T 3(V ). What could it mean to say that ϕ is
completely antisymmetric? Based on Definition 2.3 and Lemma 2.1, it makes sense to require the
relationships

ϕ(u, v, w) = −ϕ(v, u, w)

ϕ(u, v, w) = −ϕ(u,w, v)

ϕ(u, v, w) = −ϕ(w, v, u)

(1)

i.e. the interchange of any two arguments of the 3-form ϕ introduces a minus sign. To help the
reader see the usefulness of (1), we prove the cyclic permutation rule

ϕ(u, v, w) = ϕ(v, w, u) = ϕ(w, u, v).

To prove ϕ(u, v, w) = ϕ(v, w, u), we note that ϕ(u, v, w) = −ϕ(v, u, w) = ϕ(v, w, u) by applying (1)
twice.

Definition 2.4. A permutation σ of a set A is a bijection from A to itself. The set of all permu-
tations of {1, ..., k} is denoted by Sk.

An easy way to think about permutations is in terms of order. The operation of a permutation
essentially changes the structure of the order of the elements of the set. In mathematics, particularly
in differential geometry, linear algebra, and tensor calculus there is a symbol known as the Levi-
Civita symbol, named after the Italian mathematician and physicist Tullio Levi-Civita , and it
represents a function that maps ordered n-tuples of integers in {1, 2, ..., n} to the set {1,−1, 0}.
These numbers are defined from the sign of a permutation of natural numbers 1, 2, ..., n, for some
positive integer n. The standard notation of Levi-Civita symbol is the Greek lower case epsilon ε
or ε, or, less commonly, the Latin lower case e. Its value is defined by

εi1i2...in =

 +1 (i1, . . . , in)is an even permutation of (1, 2, . . . , n)
−1 (i1, . . . , in)is an even permutation of (1, 2, . . . , n)
0 if ip = iq for some p 6= q

.

Index notation allows one to display permutations in a way compatible with tensor analysis. For 
example, the Levi-Civita symbol in two dimensions n = 2 has the properties

ε12 = 1, ε21 = −1, ε11 = 0, ε22 = 0.
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This rule is necessary because we want an alternating multilinear form to behave so that switching
any two arguments imposes a negative sign. Applying an even permutation to the coordinates is
equivalent to applying an even number of switches, hence applying an even number of negative
signs, which does nothing. With these preliminaries, we can state the definition of a k-form:

Definition 2.5. Let ϕ ∈ T k(V ). ϕ is called a k-form, or alternating multilinear form if

ϕ(v1, . . . , vk) = εσ(1)...σ(k)ϕ(vσ(1), . . . , vσ(k))

for all permutations σ of 1, . . . , n.

For the following definition 2.6, let M be an open set in ordinary n-dimensional Euclidean space.

Definition 2.6. A mapping ω that associates to each x ∈M an alternating k-tensor ω(x) and such
that x→ ω is smooth is called a k−form. The space of k-forms on M is denoted Ωk(M).

The definition generalizes to manifolds: a k-form ω on a differentiable manifold M is a smooth
section of the bundle of alternating k-tensors on M . For a more thorough discussion of manifolds,
see [1].

For our purpose, we will say a 1-form is a covector field and a 0-form as being a smooth function
on M , so Ω0(M) = C∞(M) (= infinitely differentiable functions on M). Next, we consider an
example in three-dimensional Euclidean space. A differential 1-form in the three-dimensional space
is an expression

ω = F (x, y, z)dx+G(x, y, z)dy +H(x, y, z)dz (2)

where F,G, and H are functions on an open set M . How does this tie in with our definition of
forms? To see the connection, we take V = R3 and define dx, dy, dz to be forms that act as follows:

dx(i) = 1, dx(j) = 0, dx(k) = 0

dy(i) = 0, dx(j) = 1, dy(k) = 0

dz(i) = 0, dz(j) = 0, dz(k) = 1

where i, j,k are the three standard basis vectors of R3. So ω acts on a vector a = a1i + a2j + a3k
in the following way:

ω(a) = F (x, y, z)dx(a) +G(x, y, z)dy(a) +H(x, y, z)dz(a)

= F (x, y, z)a1 +G(x, y, z)a2 +H(x, y, z)a3.

This process is useful to discuss the differential of a function f(x, y, z) defined on M , which is defined
as

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz. (3)

To see that (3) makes sense and has a familiar interpretation, we let df act on a unit vector a:

df(a) =
∂f

∂x
a1 +

∂f

∂y
a2 +

∂f

∂z
a3 = ∇f(x, y, z) · a,
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i.e. df(a) gives the directional derivative of f in direction a. The meaning of 2-forms in three-
dimensional Euclidean space will be discussed further in 4 in connection with the concept of inte-
gration.

Next, we discuss an important product operation for forms, called the wedge product. The
wedge product is an operator which takes a k-form and an j-form to a k+j-form, that is associative,
distributive and anticommutative. It is uniquely determined by the properties that follow - for a
constructive definition of the wedge product, we refer to [1].

An important consequence of antisymmetry is that the wedge of any 1-form with itself is zero:

α ∧ α = −α ∧ α = 0

However, it is imperative to know that the previous statement is not purely an algebraic fact. The
reason the wedge of two 1-forms is zero is that it represents projection onto a plane of zero area.
Assuming the wedge product is associative and distributive, we can always wedge together any two
forms. The wedge product of a p-form with a q-form is a (p+q)-form.

Definition 2.7. We will use the symbol ∧, known as the wedge, as a binary operation on differential
forms called the wedge product. The wedge product has the following properties for any k-form α,
l-form β, and m-form γ:

• Antisymmetry: α ∧ β = (−1)klβ ∧ α

• Associativity: α ∧ (β ∧ γ) = (α ∧ β) ∧ γ

• Homogeneity: (cα) ∧ β = c(α ∧ β) for any real number c

And in the case where l = m, we have

• Distributivity: α ∧ (β + γ) = α ∧ β + α ∧ γ

Here is an example:
We calculate the wedge product of two 1-forms ω, η in R2

ω = Fdx+Gdy, η = Udx+ V dy.

We write

ω ∧ η = (Fdx+Gdy) ∧ (Udx+ V dy)

= FUdx ∧ dx+ FV dx ∧ dy +GUdy ∧ dx+GV dy ∧ dy

Since dx ∧ dx = dy ∧ dy = 0 and dx ∧ dy = −dy ∧ dx,

ω ∧ η = (FV −GU)dx ∧ dy. (4)

The wedge product is associative, but not generally commutative. The wedge product is uniquely
characterized by the properties of associativity, distributivity, homogeneity and anticommutativity
(see [1]).

Finally, we discuss briefly the concept of exterior derivative, where for simplicity, we work with
differential forms in R3. Every 1-form in R3 can be written as (dx1 = dx, dx2 = dy, dx3 = dz)

ω = ω1dx
1 + ω2dx

2 =
2∑
i=1

ωidx
i.
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Every 2-form X can be written as

η = η12dx
1 ∧ dx2 + η23dx

2 ∧ dx3 + η13dx
1 ∧ dx3 =

∑
i<j

ηijdx
i ∧ dxj

and more generally, a k-form ζ is

ζ =
∑

i1<i2<...<ik

ζi1i2...ikdx
i1 ∧ dxi2 ∧ . . . dxik .

Definition 2.8. The exterior derivative of a differential form of degree k is a differential form of
degree k+1. If f is a smooth function (a 0-form), then the exterior derivative of f is the differential
of f . If ω is a k-form, we write

ω =
∑

i1<i2<...<ik

ωi1i2...ikdx
i1 ∧ dxi2 ∧ . . . dxik .

and define the exterior derivative dω by the formula

dω =
∑

i1<i2<...<ik

dωi1i2...ik ∧ dxi1 ∧ dxi2 ∧ . . . dxik . (5)

We should note the appearance of an additional ∧ between the differential of the coefficients and
the remaining dxi’s.

Here is an example:
Suppose we are given the 1-form

ω = x2dx+ xydy + dz

and we need to compute dω. Definition 2.8 above tells us that we need the differentials of the
coefficients x2, xz and 1. So

d(x2) = 2xdx, d(xy) = ydx+ xdy, d(1) = 0.

Hence

dω = 2xdx ∧ dx+ (ydx+ xdy) ∧ dy + d(1) ∧ dz
= ydx ∧ dy

where we have used dx ∧ dx = 0, dy ∧ dy = 0.

3 Differential forms and signed areas/volumes

In this section, we discuss a connection between the wedge product and ordinary vectors. Up to 
now, we defined the wedge product in relation to differential forms. We can, however, associate any

vector u with a form, if a symmetric inner product is given. For R3, we can take the inner product 
to be the usual dot product between vectors: u · v.

Definition 3.1. For any u ∈ R3, we define a 1-form ωu by

ωu(v) = u · v.
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We should note that ωu is defined by the way it acts on v, and yields a scalar. It is easy to
check that if u1, u2, u3 are the components of u, ωu is

ω = u1dx+ u2dy + u3dz.

As an example, we can then take the wedge product of ωa, ωb to get

ωa ∧ ωb = (a1dx+ a2dy + a3dz) ∧ (b1dx+ b2dy + b3dz)

= (a2b3 − a3b2)dy ∧ dz + (a3b1 − a1b3)dz ∧ dx+ (a1b2 − a2b1)dx ∧ dy

Note that the wedge product ωu ∧ ωv contains the same information as the cross product u× v: it
simply equals ωu×v. It is interesting to see what happens when we compute the wedge product of
three one-forms ωu, ωv, ωw:

ωu ∧ ωv ∧ ωw = det[u,v,w]dx ∧ dy ∧ dz. (6)

So the wedge product can also be used to compute determinants. It should be noted that the alge-
braic properties of the wedge product are consistent with the way signed volumes and determinants
behave. For example, the signed volume of the parallelepiped defined by three vectors u,v,w in
R3 is given by their determinant - if we reverse the order of two vectors u ↔ v for example, the
determinant changes its sign. Moreover, if say u = v, we get

ωu ∧ ωv ∧ ωw = 0

because ω∧ω = 0 for any 1-form ω. This form reflects the fact that the volume of the corresponding
parallelopided becomes zero.

There is also a related concept of bi- and multivectors (see [3]). These work by directly defining
wedge products of vectors, instead of forms.

4 Differential forms and surfaces

In this section, we see an important application of differential forms: They can be integrated
over manifolds. A manifold is a generalization of a surface. More specifically, an n-dimensional
manifold is a set that looks like Rn. It is a union of subsets each of which may be equipped with
a coordinate system with coordinates running over an open subset on Rn. Consider a surface S in
R3 parameterized by a vector function

r(u,w)

where u,w are in [0, 1]× [0, 1]. Consider now a 2-form

ω = a(x, y, z)dx ∧ dy + b(x, y, z)dy ∧ dz + c(x, y, z)dx ∧ dz

in R3, with variable coefficients a, b, c. Given a point (x, y, z) and two vectors k, l, we can imagine a
small parallelogram spanned by the vectors k∆u, l∆w attached at the point (x, y, z). Here, ∆u,∆w
are small positive numbers. Evaluating

ω(k∆u, l∆w) = ω(k, l)∆u∆w (7)

gives a real number. We may imagine the 2-form ω describing the flux density of a physical quantity, 
for example the mass flow of a fluid. In that case, (7) gives the mass of fluid crossing the small
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Figure 1: A surface in three-dimensional space

parallelogram per unit time. Close to any point of the surface S, the surface can be approximated
by a small parallelogram as in Figure 1, where k, l are the surface tangent vectors ∂r

∂u ,
∂r
∂w . The total

flux through the surface should then be the sum of terms of the form (7). The Riemann integral,
this suggests defining ∫

S

ω :=

∫∫
[0,1]×[0,1]

ω

(
∂r

∂u
,
∂r

∂w

)
dudw (8)

as the flux through the surface. So we see that a 2-form may be integrated over a 2-dimensional
surface, and more generally an n-form can be integrated over an n-dimensional manifold. A devel-
opment of these concepts leads directly to Stokes’ theorem [1].

5 Examples of Differential Forms

In this section, we show some concrete computations and examples using differential forms.

Example 1. Let a be a vector in R3. Consider a two-form ϕ given by:

ϕ(v, w) = det(a, v, w) (v, w ∈ R3)

We write this two-form as a linear combination of fundamental forms, expressed as coordinates of a.
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Solution.
If we write

a =

a1a2
a3

 v =

v1v2
v3

 w =

w1

w2

w3

 .
Then we write

ϕ(v,w) =

∣∣∣∣∣∣
a1 v1 w1

a2 v2 w2

a3 v3 w3

∣∣∣∣∣∣
= a1

∣∣∣∣v2 w2

v3 w3

∣∣∣∣− a2 ∣∣∣∣v1 w1

v3 w3

∣∣∣∣+ a3

∣∣∣∣v1 w1

v2 w2

∣∣∣∣
We can see that (see (4))

dx ∧ dy(v,w) = det

[
v1 w1

v2 w2

]
dy ∧ dz(v,w) = det

[
v2 w2

v3 w3

]
dx ∧ dz(v,w) = det

[
v1 w1

v3 w3

]
By substitution, we have

ϕ(v,w) = a1dy ∧ dz(v,w)− a2dx ∧ dz(v,w) + a3dx ∧ dy(v,w)

Therefore,

ϕ = a1dy ∧ dz − a2dx ∧ dz + a3dx ∧ dy

Example 2. This example involves integration on manifolds and Stokes’ Theorem (see [1]). Let U
be a compact manifold of dimension 3 in R3 with boundary U and a two-finite volume. The volume
is given by

Vol3 U =
1

3

∫
∂U

x3dx1 ∧ dx2 + x2dx3 ∧ dx1 + x1dx2 ∧ dx3

Solution. Let w =
1

3
(x3dx1 ∧ dx2 + x2dx3 ∧ dx1 + x1dx2 ∧ dx3). We can compute the exterior

derivative term by term. For example,

d(x3dx1 ∧ dx2) =

(
∂

∂x1
x3 +

∂

∂x2
x3 +

∂

∂x3
x3

)
dx1 ∧ dx2

= (0 + 0 + 1dx3) ∧ dx1 ∧ dx2.
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So after a calculation, we can say

dw =
1

3
(dx3 ∧ dx1 ∧ dx2 + dx2 ∧ dx3 ∧ dx1 + dx1 ∧ dx2 ∧ dx3)

Using the property dy ∧ dx = −dx ∧ dy, we have:

dw =
1

3

(
dx1 ∧ dx2 ∧ x3 + dx1 ∧ dx2 ∧ dx3 + dx1 ∧ dx2 ∧ dx3

)
=

1

3

(
3dx1 ∧ dx2 ∧ dx3

)
= dx1 ∧ dx2 ∧ dx3

So we can say by Stokes’ Theorem that∫
∂U

1

3
(x3dx1 ∧ dx2 + x2dx3 ∧ dx1 + x1dx2 ∧ dx3) =

∫
U

dx1 ∧ dx2 ∧ dx3.

dx1 ∧ dx2 ∧ dx3 is the form that defines the volume in Euclidean space (see e.g.[2]).

Example 3. Find a 1-form ϕ such that dϕ = ydz ∧ dx − xdy ∧ dz. Write ϕ = adx + bdy + cdz
(1-form) where a, b, c are functions of x, y, z.

Solution.

dϕ =
(∂a
∂y
dy +

∂a

∂z
dz
)
∧ dx+

( ∂b
∂x
dx+

∂b

∂z
dz
)
∧ dy +

( ∂c
∂x
dx+

∂c

∂y
dy
)
∧ dz +

∂c

∂y
dy ∧ dz

=
( ∂b
∂x
− ∂a

∂y

)
dx ∧ dy +

( ∂c
∂x
− ∂a

∂z

)
dx ∧ dz +

( ∂c
∂y
− ∂b

∂z

)
dy ∧ dz

= 0 + (−y)dx ∧ dz + (−x)dy ∧ dz
= ydz ∧ dx = xdy ∧ dz

For a = xy, b = xz, and c = 0:

( ∂b
∂x
− ∂a

∂y

)
= 0⇒ ∂b

∂x
=
∂a

∂y( ∂c
∂x
− ∂a

∂z

)
= −y ⇒ ∂c

∂x
− ∂b

∂y
= −y( ∂c

∂y
− ∂b

∂z

)
= −x⇒ ∂c

∂y
− ∂a

∂z
= −x

Therefore,

ϕ = yzdx + xzdy.

6 Conclusion

In this paper, we discussed the definition of differential forms along with some examples. For further
reading, we recommend [1, 2].
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