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ABSTRACT 

This paper deals with the problem of fault detection filter design for a class of networked control systems. Under 
the assumptions of network-induced time delay being unknown but bounded, packet dropouts and packets out of 
sequence being unavoidable, a system model for networked control system is firstly introduced in the 
continuous-time domain. Then an observer-based H∞ fault detection is formulated and, by applying the 
Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition on the existence of the H∞ fault 
detection filter (FDF) is derived in terms of matrix inequality. Furthermore, an algorithm is proposed to get a 
feasible solution to the H∞ fault detection filter gain matrices in terms of linear matrix inequalities (LMIs) using a 
cone complementary technology. A simulation example is given to demonstrate the effectiveness of the proposed 
method. 

1. INTRODUCTION 

Over the past decades, fault detection and isolation (FDI) was an active field of research due to an increasing 
demand for higher performance, as well as higher safety and reliability standards 

[1~3]
. Furthermore, with the rapid 

development and wide application of communication networks, the FDI problem for networked control systems 
(NCSs) has also received much attention recently  

[4~7]
. It is noted that models of NCSs in the above references were 

discrete-time system and, therefore, the discretization  were needed  for NCSs with continuous-time dynamic processes, 
such that the inter-sampling behaviors were not taken into account. When the network-induced delay is unknown but 
bounded, the continuous-time system model proposed in references [8, 9] are more reasonable. To authors’ best 
knowledge, however, Zhong and Han 

[10]
 studied the problem of fault detection filter design in the continuous-time 

domain, which is on the assumption of network induced delay (controller-to-actuator) being known. Due to time-delays 
frequently encountered in practical control systems, and  packet dropouts and packets out of sequence is also 
unavoidable, the problem of fault detection for NCSs is still open and remains challenging, which is the main 
motivation of this study. 

In this paper, we will design the fault detection filter for a class of networked control systems. Under the 
assumptions of network-induced time delay being unknown but bounded, packet dropouts and packets out of sequence 
being unavoidable, the FDF design will be investigated in the continuous-time  domain. 

2. PROBLEM FORMULATION 

Consider an NCS with plant, actuators, sensors, a controller and an FDF, which is depicted in Figure 1. The plant is 

a continuous-time linear time-invariant (LTI) process, which can be expressed by 
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Fig. 1. The structure of an NCS. 

It is assumed that the actuator and controller are event driven, the sensor is time driven, and the data are transmitted 

with a single packet. The real input u(t) and the Fault detection unit input v(t)  is realized through a zero-order hold in 

(1) and given by 
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K is the known state feedback matrix. As pointed out in references [8, 9], kk ii >+1 is not required, and 

kk ii >+1 means that the data sequence received by the actuator is the same as that of the sensor sampling 

data.{ } { }KK ,2,1,0,,, 321 =iii  means that no packet dropout occurs in the data transmission. If 11 +=+ kk ii , it 

implies that kk h ττ >++1 , which includes hk <τ and ττ ˆ=k as special cases, where τ̂ is a constant. 

Throughout this paper, it is also assumed that there exist constants 0,0 21 ≥≥ mm ττ and 0≥η  such that 
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Then we have 
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In order to detect the fault, we propose to design an observer-based FDF for the NCS through an H∞ filtering 

formulation in the continuous-time domain such that 
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where 0>γ  is a prescribed scalar, )(tr  is the generated residual, [ ]TTT )()()( tftdtw = , 

∞∈ RHsW f )( is a weighting matrix used to limit the frequency interval of the fault being interested. Let 
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be a minimal state space realization of )(sW f , wn

f Rtx ∈)(  is the state vector, 0fx denotes the initial condition, 

wfA , wfB , wfC are known matrices with appropriate dimensions. In this paper, an observer-based FDF is proposed as 

the residual generator, which is described by 
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with
nRtx ∈)(ˆ and wn

f Rtx ∈)(ˆ are the estimation of the state )(tx  and )(tx f respectively， )(tr is the residual 

signal, H1 and H1 are the FDF gain matrix to be determined. It follows from (2)-(6) that 
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3. DESIGN OF THE   H∞-FDF FOR NCS 

In this section, by applying the Lyapunov-Krasovskii functional approach, we will concentrate our attention on the 

delay-dependent sufficient condition to solve the H∞-FDF problem, and obtain a solution of H1 and H2. Following 

lemma is required in the later development. 
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From Lemma 1, the delay-dependent sufficient condition to the H∞-FDF problem is given in thereom 1, and the 

solution of H1 and H2 is given in the algorithm 1. 
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where 0>P , 0>iQ , 0>iR , 0>iS )2,1( =i . From lemma 1, we can get the main result of this paper. Due to 

limited space, the detailed process is omitted here. 

Then we are in the position to present the solution of the FDF gain matrices H1 and H2. Let 
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which can be solved by the following algorithm, moreover the FDF gain matrices H1 and H2 can be given by 
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From the above analysis, we can get the following algorithm to the solution of the FDF gain matrices. 

Algorithm 1: 

Step 1. For giving scalars 0>γ , 0≥η , )2,1(0 =≥ imiτ  and the iteration number 0max >K , find a feasible 
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Step 3. Let 1+= kk . Repeat the operation in step 2 till the matrix inequality 0<Γ  is satisfied or maxKk > . 

4. A NUMERICAL EXAMPLE 

The continuous-time LTI process is described by  
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Let 5.0=γ , 200max =K . Applying Algorithm 1, we have 





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
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
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9.196
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for [ ]200,0∈t sec, it is assumed that the unknown input d(t) is a band-limited white noise with power 0.1 

(zeroth-order hold with sampling time 0.1 sec) a fault signal f(t) is shown in figure 2, the generated residual r(t) is 

shown in Figure 3. 

 

       Fig. 2. The fault signal f(t).                                                         Fig. 3. The residual signal r(t).  

   From the simulation result we can see the effectiveness of the proposed method. 

5. SUMMARY 

FDF design problem for NCSs has been investigated in this paper. Based on the model of an NCS in the 

continuous-time domain, we apply the H∞ estimation of W(f)f(s) as the residual signal. Furthermore, a delay-dependent 
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sufficient condition on the existence of the problem is derived by using the Lyapunov-Krasovskii functional approach, 

an algorithm is proposed to get a feasible solution to the FDF gain matrices in terms of LMIs by using a cone 

complementary technology. A simulation example is given to demonstrate the effectiveness of the proposed method. 
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