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A B S T R A C T

This paper presents the use of full-field kinematic measurements obtained using the digital image correlation
(DIC) procedure and load–displacement data to determine constitutive material properties by solving an
inverse finite element optimization problem. A key ingredient in the proposed approach is computing accurate
sensitivities with respect to the unknown parameters. These sensitivities were used to solve the optimization
problem using an accurate, efficient, gradient-based method, and were computed using the complex-variable
finite element method, ZFEM. The use of ZFEM’s gradients to inversely determine material properties is
demonstrated with two examples. First, the elastic–plastic material properties of DP-590 steel are obtained
using a tensile test specimen. Second, the cohesive material parameters of an adhesive are determined using
a double cantilever beam test. A significant outcome of this paper is that the use of a weighted residual
formulation of the interfacial strain fields and the load–displacement data within the optimization procedure
provides better estimates of the constitutive properties than using only the load–displacement data. This
technique minimizes the relative error in both the strain fields and the load–displacement curve, which is
important to obtain accurate interfacial properties.
1. Introduction

The use of adhesively bonded joints in the automotive and aerospace
industries is continuously increasing because they reduce both stress
concentrations and weight compared to traditional joining techniques
such as welded, bolted, and riveted joint (Ebnesajjad and Landrock,
2014; Ramalho et al., 2020). In addition, adhesively bonded joints
allow the effective assembly of multiple lightweight materials such as
carbon fiber reinforced composites, aluminum alloys, and high-strength
steels, which reduces the structure’s weight without compromising
its structural performance and increases fuel efficiency. Thus, several
analytical, experimental, and numerical methods have been developed
to characterize these joints.

The simplest approach among analytical methods is to consider
a single-lap joint (SLJ) where the adhesive is considered to deform
only in shear. This allows one to obtain an analytical expression for
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the adhesive shear stress. Using this assumption, (Volkersen, 1938)
introduced the concept of differential shear that accounts for the de-
formation in tension from the adherends. Then, Goland and Reissner
(2021) considered the effects of the eccentric load path of an SLJ by
adding a bending moment factor and a transverse force factor. These
analytical methods have since been replaced by numerical methods,
but they provide an indication of the overall strength of the joint.
These methods are restricted to very simple geometries and loading
cases (Ramalho et al., 2020).

Experimental methods are used to determine the critical energy
release rate of a joint, 𝐺𝑐 , which quantifies the resistance to crack
propagation of an adhesive joint. However, 𝐺𝑐 cannot be considered
the only property that characterizes the interfacial behavior of a joint
because it depends on the mode of loading (modes I, II, and III) (da
Silva et al., 2009; Ramirez Tamayo et al., 2018). Hence, different
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tests are used to characterize the critical energy release rate for each
mode of loading of an adhesive joint. The most commonly used tests
to obtain the mode-I critical energy release rate (𝐺𝐼𝑐) are the dou-
ble cantilever beam (DCB) (Prasad and Carlsson, 1994), the tapered
double cantilever beam (TDCB) (Marzi et al., 2011) and the single-
edge notched bending (SENB) tests (Quan et al., 2018). Similarly, to
obtain the mode-II critical energy release rate (𝐺𝐼𝐼𝑐), one can use
the end-notched flexure (ENF) test (Ji et al., 2012), or the four-point
ENF (4ENF) test (Wang et al., 2009). For problems dealing with mode
mixity, Reeder and Crews (Reeder and Crews, 1990) determined 𝐺𝑐 for
a wide range of mixed-mode ratios for a mixed-mode bending specimen
by combining the DCB and the ENF tests on a laminated composite.
However, all previous experimental techniques to characterize adhesive
joints place restrictions on the test geometries and require the existence
of analytical solutions (Shah et al., 1995; van Mier and van Vliet, 2002).

The cohesive zone model (CZM), a numerical technique presented
by Barenblatt (Barenblatt, 1959) and Dugdale (Dugdale, 1960), has
been widely used to investigate fracture, seams, and joints (Mi et al.,
1998). In the CZM formulation, the traction values at the interface
and the separation of the adherend surfaces are related through a con-
stitutive law. For mode-I (normal) loading, the traction–displacement
behavior of the adhesive joint is governed by two parameters: the
mode-I fracture toughness, 𝜙𝑁 , and the normal cohesive strength,
𝜎𝑚𝑎𝑥. Typically, the CZM parameters (𝜙𝑁 and 𝜎𝑚𝑎𝑥) are determined
by matching a numerical simulation to the experimental-load displace-
ment curve (Valoroso et al., 2013). However, this approach might
result in inaccuracies on the adopted model because the solution is
not unique and several combinations of the cohesive parameters can
re-create the global behavior (load–displacement) of the joint, while
the near interface strain fields are incorrect (Shen and Paulino, 2011;
Ramirez-Tamayo et al., 2021; Liljedahl et al., 2006). In addition, the
existing mechanical test techniques to obtain the CZM parameters
place restrictions on the test geometries and sometimes require the
existence of analytical solutions, making these techniques unsuitable
for joints obtained using new technologies such as Friction stir Assisted
Scribe Technique (FAST) (Wang et al., 2020). To address this issue,
some inverse methods use full-field kinematic data obtained using
the digital image correlation (DIC) method, and obtain the cohesive
parameters by solving an optimization problem by minimizing the
discrepancy between simulated and experimental results. Shen and
Paulino (Shen and Paulino, 2011) used DIC data from SENB specimens
to inversely determine the elastic properties of bulk materials through
a gradient-free minimization process. Then, using the same approach,
they determined the cohesive fracture properties of the adhesive. The
use of a gradient-free method adds simplicity because derivatives are
usually difficult to obtain during finite element (FE) analysis. How-
ever, gradient-free methods are known to converge more slowly than
gradient-based methods (Ramirez-Tamayo et al., 2021).

The hypercomplex-variable FE method, ZFEM, incorporates the
complex Taylor series expansion (CTSE) method (Squire and Trapp,
1998) to compute highly accurate, subtraction-error-free derivatives
within an FE analysis. Through a systematic complexification of an
existing FE formulation, ZFEM has shown to be an effective tool to com-
pute highly accurate estimates of arbitrary shape, material property,
or loading sensitivities. ZFEM has been verified in several engineering
areas, such as linear elastic fracture mechanics (Millwater et al., 2016;
Aguirre-Mesa et al., 2019), elastic–plastic fracture mechanics (Montoya
et al., 2018), thermoelastic fracture (Ramirez-Tamayo et al., 2018),
mixed-mode loading and interface cracks (Ramirez Tamayo et al.,
2018), and functionally graded materials (Ramirez-Tamayo et al.,
2020), among others. All of these applications have been implemented
through user element subroutines in Abaqus (2015).

In a recent publication, Ramirez-Tamayo et al. (2021) showed the
development of a complex-variable version of the Park–Paulino–Roesler
(PPR) cohesive zone element (Park et al., 2009), aka ‘‘ZPPR’’, and its
2

application to determining material properties of an adhesively bonded
DCB using synthetically generated experimental data. The ZPPR formu-
lation was shown to compute highly accurate and subtraction-error-free
derivatives of the nodal displacements with respect to the unknown
cohesive parameters. During optimization, the use of these derivatives
resulted in faster convergence and a more accurate answer than either
gradient-free or finite-difference gradient methods (Ramirez-Tamayo
et al., 2021).

This paper develops a comprehensive optimization algorithm that
incorporates DIC-based strain data along with the force–displacement
data within a weighted residual formulation. Accurate derivatives com-
puted using ZFEM were used to inversely determine material param-
eters for two examples. First, the mechanical properties of DP-590
steel were obtained using a tensile test specimen. Second, the cohesive
material parameters of an adhesive were determined using a DCB
test. The results demonstrate the value of using highly accurate and
truncation-error-free first-order derivatives and the advantages of a
weighted residual formulation that incorporates DIC strain data.

The paper is organized as follows. First, the methodologies of DIC,
cohesive zone modeling, and CTSE are discussed. Then, the Abaqus
implementation of the ZFEM is presented. Next, the optimization al-
gorithm is discussed, in which the objective function minimizes the
discrepancies between experimental and computational results. Then,
two numerical examples are provided that demonstrate use of ZFEM’s
sensitivities to inversely determine constitutive material parameters for
both elastic–plastic and cohesive zone models. Next, a study of the
effect of the residual weights on both the load–displacement curve and
strain field is presented. Finally, concluding remarks are provided.

2. Background and methodology

2.1. Digital image correlation (DIC)

2.1.1. Overview of the DIC method
DIC is an optical measurement technique that provides full-field

deformation measurements of the surface of a sample. A computer
program compares images of a sample before and after deformation.
The image from before deformation is referred to as the “reference
image”. The deformation measurements can then be used to determine
the in-plane strain over the surface of the sample and, if multiple
cameras are used, the out-of-plane deformation as well. To perform a
DIC analysis, a high-contrast speckle pattern must first be applied to
the surface of the sample to track the deformation over a sequence
of images taken during the mechanical testing. The best results are
achieved with a pattern that is both isotropic and non-repeating; see
Fig. 1. In this work, spray paint along with a stamp and ink were used
to apply the pattern.

Deformation is then calculated. First, the reference image is broken
into subsets of pixels. For this experiment, the subset used was 25 by
27 pixels. The center-to-center spacing between subsets is called the
step size. In this work, the step sizes varied from 7 to 9 pixels. The
standard practice is to use a step size that is less than half the size of the
subset so that all the available pixels are being used. Each subsequent
image is then searched for the same collection of subsets. Once a
subset has been found, the displacement vector between the reference
and the deformed subsets is calculated; see Fig. 1. This results in a
displacement measurement for each subset within the region of interest
(ROI). Post-processing of the measured displacements then produces a
strain measurement for each subset in each subsequent image. In this
paper, the Vic-3D software (Correlated Solutions, Inc., 2010) was used

to perform the DIC analysis for both the tensile and DCB tests.
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Fig. 1. Speckle pattern and illustration of the undeformed subset and the corresponding deformed subset during a DIC analysis .
Source: Taken from Pan and Li (2011).
Fig. 2. DIC set-up.

2.1.2. Experimental setup and resulting DIC data (tensile test and DCB)
Tensile tests were performed on DP590 specimens with dimensions

according to ASTM standard E8 (ASTM International, 2001). A white
base coat was applied using Rust-Oleum 2x spray paint, after which
a black speckle pattern was applied using a stamp with an average
speckle size of 3 pixels. Two cameras were mounted to a fixture on
a tripod and a blue LED light panel provided additional light. Tensile
tests were performed using an MTS 312.21 hydraulic testing system.
Analog data from this frame was passed to the computer controlling the
cameras, which allowed load measurements to be synchronized with
images when recorded for each set of pictures, see Fig. 2.

DCB tests were performed using DP590 steel specimens bonded
with adhesive (Whitney et al., 1982). Both the white base coat and
black speckle pattern were applied using Rust-Oleum 2x cover paint.
An ADMET micro tensile frame was used to perform the DCB tests. This
frame applied load by moving both the top and bottom grips at the
same rate in opposite directions. The symmetric motion was helpful,
because displacement of only a single grip would result in translation
of the sample, which often causes the specimen to move out of the field
of view and may introduce noise in the data. Load data from the frame
were passed to the computer controlling the cameras, allowing load
measurements to be synchronized with images when recorded for each
set of pictures. The experimental parameters used for the tensile and
DCB tests are swhon in Table 1.
3

Table 1
Experimental parameters for tensile and DCB tests.

Hardware parameters Tensile test DCB test

Camera 5 MP Basler 12 MP Basler
Lens 50 mm 50 mm
Field of view 43 mm 34 mm
Aperture f/5.6 f/8.0
Image scale 0.0185 mm/px 0.0185 mm/px
Stereo angle 16◦ 24◦

Stand-off distance 363 mm 204 mm
Image acquisition rate 10 Hz 1 Hz
Speckle size 3 px 3 px

Analysis Parameters
Software Vic-3D Version 8.4 Vic-3D Version 8.4
Subset size 25 px 27 px
Step size 9 px 7 px
Strain formulation Engineering Engineering
Strain window 15 px 15 px

Calibration Parameters
Focal length 19,750 px 23,355 px
Distance between cameras 102 mm 86.6 mm

2.1.3. Region of interest and comparison of DIC and FE fields
While performing a DIC analysis, an ROI must be selected by the

user. Within this region, the full-field kinematic measurements such as
displacements and strains will be obtained and then compared against
FE fields. This region must be selected carefully and the DIC lenses must
be well focused to obtain good quality measurements. Fig. 3 shows a
schematic of the location of the ROI (red shaded region) within a DCB
specimen.

Fig. 4 shows the strain in the 𝑦-direction (𝜖𝑦𝑦) for two different
loading magnitudes during a DCB test. Note that the ROI was selected
such that the strain fields near the crack tip were included for the
duration of the test.

Section 2.4 shows the computation of the residual function, which
reflects the mismatch between computational and experimental data.
Hence, direct comparison between DIC data and FE strain fields is
needed. However, the DIC strain fields do not necessarily match the
location of an FE integration point. Thus, DIC data from nearby points
was interpolated to approximate the strain value at the exact location of
the FE sample point. Fig. 5 depicts how the interpolation between DIC
data and FE strain sampling points was conducted. Six elements that
lie within the ROI were chosen, as shown in Fig. 5. Strain values for
nearby DIC data points were chosen according to their distance from
the point that marks the middle of the FE (black triangles in Fig. 5)
to estimate the strain at the element’s center. This approach allows a
direct comparison between DIC and FE strain fields.

The ‘‘scipy.interpolate.griddata’’ function from SciPy (Virtanen et al.,
2020) was used to estimate strain from DIC data to the center of the
element. Given the fact that the DIC data density is very high, the SciPy
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Fig. 3. Location of the ROI within a DCB sample (not to scale).
Fig. 4. Strain fields from the ROI during the DIC analysis performed on a DCB sample: (a) Beginning and (b) end of the test.
Fig. 5. Schematic of interpolation of DIC data to FE sampling points. The strain value
at the nearest DIC point is used at the element Gauss point. An asterisk ‘‘*’’ denotes
the DIC data point closest to the FE sampling point.

method ‘‘nearest’’ was used. This algorithm returns the value at the data
point closest to the point of interpolation (black triangle/center of the
element). For this particular example, element 1 will be assigned the
strain value of the green point, element 2 from the yellow, element
3 from the orange, element 4 from yellow, element 5 from gray, and
element 6 from green. The DIC point density in the cartoon shown in
Fig. 5 was made very low for illustration purposes. For the examples
shown in this paper, approximately 40 DIC points lie within each FE.

2.2. Cohesive zone modeling

The CZM has been used to simulate singular crack tip behavior,
and thus also can simulate the nonlinear fracture processes of several
engineering problems such as adhesively bonded joints (Xu et al.,
2003). In the CZM, the stresses ahead of the crack tip are bounded
and a traction-separation law is used to describe the fracture pro-
cess (Freed and Banks-Sills, 2008). Selection of this traction-separation
law is a critical aspect of the CZM, because it can lead to a variety
of structural responses that in some cases do not reflect experimental
4

observations. These traction-separation relations are either potential-
based or non-potential-based. For more information about the available
traction-separation laws, refer to Park and Paulino (2013), Park et al.
(2016), Ramirez-Tamayo et al. (2021).

In Park and Paulino (2012), Park and Paulino presented a com-
putational implementation of the PPR model (potential-based) (Park
et al., 2009), into the commercial FE software Abaqus (Abaqus, 2015),
through the use of a user-defined element (UEL) subroutine. The
fact that the authors provided source code facilitated the develop-
ment of a complex-variable version of the PPR cohesive element, aka
ZPPR (Ramirez-Tamayo et al., 2021). The ZPPR element enabled the
computation of highly accurate first-order derivatives of the nodal
displacements and other post-processing quantities such as strain and
stresses with respect to all the PPR cohesive parameters. These deriva-
tives were used to inversely determine the interfacial properties of
an adhesively bonded DCB with synthetically generated experimental
data. It is known that non-potential-based models can provide non-
physical behavior for certain separation paths because the model does
not always provide a negative tangent stiffness within the softening re-
gion (Park et al., 2016). Hence, the ZPPR (potential-based) formulation
was selected to re-create the fracture behavior of adhesively bonded
joints that will be considered in this paper as well as computing highly
accurate first-order derivatives with respect to the cohesive parameters.

The cohesive traction-separation relationship is obtained from the
PPR model, in which a fracture potential is given by

𝛹 (𝛥𝑛, 𝛥𝑡) = min(𝜙𝑛, 𝜙𝑡) +
[
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|

|

𝛿𝑡

)𝑛
+ ⟨𝜙𝑡 − 𝜙𝑛⟩

]

(1)

where 𝛥 is the separation along the fracture surface, 𝛤 is an energy
constant, 𝛿 is the final crack opening width, 𝛼 and 𝛽 are the shape
parameters, 𝑚 and 𝑛 are dimensionless exponents, and 𝜙 is the frac-
ture energy. The subscripts ‘‘𝑛’’ and ‘‘𝑡’’ denote normal and tangential
directions, respectively, and ⟨.⟩ is the Macaulay bracket.

In this cohesive model, four fracture parameters are employed for
each fracture mode: fracture energy (𝜙𝑛 and 𝜙𝑡), cohesive strength
(𝜎𝑚𝑎𝑥 and 𝜏𝑚𝑎𝑥), shape parameters (𝛼 and 𝛽), and initial slope indicator
(𝜆 and 𝜆 ). Fig. 6 shows a schematic of the PPR traction-separation
𝑛 𝑡
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Fig. 6. Potential-based traction-separation law.
Source: Adapted from Park and Paulino (2012).

aw for mode-I loading. Softening starts after the normal cohesive
trength (𝜎𝑚𝑎𝑥) is reached. Complete separation occurs once the final
rack opening width (𝛿𝑛) is reached, and the area under the (𝜎𝑛 − 𝛥𝑛)
urve yields the fracture energy (𝜙𝑛). The normal shape parameter
𝛼) controls the fracture behavior during the softening region. When
≈ 2, the PPR model exhibits behavior similar to that of the bilinear
odel (Wittmann et al., 1988) which is available in most commercial

oftware programs including Abaqus (Abaqus, 2015). More information
bout potential-based models and the PPR model in particular can be
ound in Park and Paulino (2012), Park (2009).

.3. Complex-variable finite element method (ZFEM)

ZFEM calculates sensitivities with respect to variables of interest
ased on a CTSE method. The CTSE method is a first-order numeri-
al differentiation technique similar in concept but superior to finite
ifferencing (FD). FD requires at least two real-valued-based analyses
o obtain the derivative information. In addition, the appropriate step
ize depends on the problem and its parameters; too large a step
ize leads to truncation error, while too small a step size leads to
ubtraction error. In contrast, with CTSE, the derivative information
an be obtained in a single FE run and the step size issues associated
ith FD are circumvented. The perturbation of the variable of interest,
, is made along the imaginary axis, becoming 𝑥∗ = 𝑥 + 𝑖ℎ, where ℎ is
he step perturbation size along the imaginary axis and the superscript
‘∗’’ denotes a complex variable; see Fig. 7. Using the Taylor series, a
unction 𝑓 can be expanded as

(𝑥 + 𝑖ℎ) = 𝑓 (𝑥) + 𝑓 (1)(𝑥) 𝑖ℎ
1!

+ 𝑓 (2)(𝑥)
(𝑖ℎ)2

2!
+ 𝑓 (3)(𝑥)

(𝑖ℎ)3

3!
+ H.O.T. (2)

where H. O. T. denotes higher-order terms, 𝑓 (1) denotes the first deriva-
tive, 𝑓 (2) the second, etc. Taking the imaginary parts of both sides,
Im[ ], solving for the first derivative, and ignoring the (ℎ2) terms, the
first derivative can be obtained as

𝑓 (1)(𝑥) =
𝑑𝑓
𝑑 𝑥

≈
Im[𝑓 (𝑥 + 𝑖ℎ)]

ℎ
(3)

The step perturbation size ℎ can be made arbitrarily small with no
concern about round-off error (Squire and Trapp, 1998). Hence, higher-
order effects of 𝑂(ℎ2) can be made negligible through the use of a
small ℎ. The Appendix shows the use of the CTSE method to obtain
numerically exact derivatives of a multivariate function.

The CTSE method can be implemented within an FE code through
a systematic complexification of its formulation. ZFEM has been imple-
mented in Abaqus through a user element subroutine (UEL)
(Ramirez Tamayo et al., 2018; Ramirez-Tamayo et al., 2021; Mill-
water et al., 2016; Aguirre-Mesa et al., 2019; Montoya et al., 2018;
Ramirez-Tamayo et al., 2018; Montoya et al., 2015; Gomez-Farias et al.,
2015).
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f

Fig. 7. CTSE vs. FD perturbations.

2.3.1. ZFEM Abaqus implementation
ZFEM has been implemented in Abaqus through the complexifi-

cation of a user element subroutine (UEL) (Ramirez Tamayo et al.,
2018; Ramirez-Tamayo et al., 2021; Millwater et al., 2016; Aguirre-
Mesa et al., 2019; Montoya et al., 2018; Ramirez-Tamayo et al., 2018;
Montoya et al., 2015; Gomez-Farias et al., 2015). In a real-valued UEL,
the elemental stiffness matrix, 𝐊𝑒, and load vector, 𝐟𝑒, are computed and
returned to Abaqus for assembly and solution of the system of equations

𝐊𝐮 = 𝐟 (4)

where 𝐊, 𝐮 and 𝐟 are the global stiffness matrix, displacement vector,
and force vector, respectively.

In ZFEM, the FE variables are now complex and the solution of a
complex-valued system of equations is needed. As Abaqus does not have
a built-in complex solver, a Cauchy–Riemann (CR) representation of a
complex variable must be employed to return a real-valued system of
equations to Abaqus. This results in a 2𝑁 × 2𝑁 system of equations,

here 𝑁 is the number of real degrees of freedom. The additional run-
time using ZFEM depends upon the analysis type. For an analysis using
the ZPPR element with a symmetric solver, the additional computing
time is approximately half that of a real analysis (Ramirez-Tamayo
et al., 2021). Eqs. (5) and (6) show the complex system of equations
and its CR representation used in a ZFEM analysis:

𝐊∗𝐮∗ = 𝐟∗ (5)

[

𝐊Re −𝐊Im
𝐊𝐈𝐦 𝐊Re

] [

𝐮𝐑𝐞
𝐮𝐈𝐦

]

=
[

𝐟𝐑𝐞
𝐟𝐈𝐦

]

(6)

here an asterisk ∗ denotes a complex variable and the subscripts ‘‘Re’’
nd ‘‘Im’’ denote the real and imaginary components of a complex
ariable, respectively. After the CR system of equations is solved,
he displacement vector contains the nodal displacements and their
erivatives with respect to the perturbed variable (PPR variables in this
ase). Other quantities such as strains, stresses, and potential energy
an be computed using the complex nodal displacement vector.

In Ramirez-Tamayo et al. (2021), the authors discussed the steps
ecessary to complexify an existing Abaqus UEL implementation-in
articular, the PPR element (Park and Paulino, 2012). The described
rocess is a generic approach that can be used to obtain highly ac-
urate derivatives. In addition, as demonstrated in Aguirre-Mesa et al.
2019), Ramirez-Tamayo et al. (2020), with the use of a hypercomplex-
ariable library such as MultiZ (Aguirre-Mesa et al., 2020), higher-
rder derivatives can be obtained with this approach (Lantoine et al.,
012).

Modifications to the input file and UEL source code are required
o compute first-order sensitivities using ZFEM. The nodes must be
uplicated in the input file to represent the imaginary nodes and then
orm a complex-valued element; see Fig. 8. If a displacement boundary
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Fig. 8. Eight-noded (four real and four imaginary) element.

Fig. 9. Stress–strain curve using Ramberg–Osgood material model.

condition is specified in the real-valued analysis, the corresponding
imaginary degrees of freedom must also be constrained through the
input file.

A few procedures are required in order to implement the complex-
variable operations. First, the UEL variables that are affected by the
perturbed variable (variable of interest) must be redefined as complex-
type. Then, the stiffness matrix and right-hand side vector must be
converted to CR form before being returned to Abaqus for assembly
and solution of the system of equations. The CR expansion is necessary
because Abaqus lacks a complex-type solver. Ramirez-Tamayo et al.
(Ramirez-Tamayo et al., 2021) discussed these changes in the context
of creating the complex-valued version of the PPR element (ZPPR) and
its input file.

2.3.2. Ramberg–Osgood material model
The Ramberg–Osgood material model was used in ZFEM’s simu-

lations to describe the nonlinear post-yielding behavior of a mate-
rial (Ramberg and Osgood, 1943) (Section 3.1). This material model
has previously been used with ZFEM for sensitivity analysis and to
compute the energy release rate in nonlinear materials undergoing
plastic deformation (Montoya et al., 2018, 2015). The one-dimensional
model consists of the superposition of a linear elastic term and a
power-law term:

𝜖𝐸 = 𝜎 + 𝛼
(

𝜎
𝜎𝑦

)𝑛−1
𝜎 (7)

where 𝜖 is the strain, 𝜎 is stress, 𝐸 is the elastic modulus, 𝜎𝑦 is the yield
strength, and 𝑛 and 𝛼 are material constants describing the hardening
behavior of the material. The value 𝛼𝜎𝑦∕𝐸 is the yield offset, which is
equal to 0.2% (see Fig. 9).

Eq. (7) is generalized to multiaxial stress states as

𝜖𝐸 = (1 + 𝜈)𝐒 + (1 − 2𝜈)𝑝𝐈 + 3𝛼
(

𝜎𝑒
)𝑛−1

𝐒 (8)
6

2 𝜎𝑦
where 𝜈 is the Poisson’s ratio, 𝐒 is the stress deviator tensor, 𝑝 is the
hydrostatic stress, and 𝜎𝑒 is the effective von-Mises stress.

2.4. Optimization framework

The mode-I traction-separation behavior of the PPR constitutive
model is defined by four parameters: normal fracture energy (𝜙𝑛),
maximum normal traction (𝜎𝑚𝑎𝑥), normal shape parameter (𝛼), and
the normal slope indicator (𝜆𝑛). To inversely determine the cohesive
material parameters, a residual function, 𝑤, which compares the ex-
perimental and computational load–displacement curves and DIC data,
is defined as

𝑤(𝜽) = 𝛼𝑃 ‖

‖

𝑹𝑃
‖

‖

2 + 𝛼𝜖𝑦𝑦
‖

‖

‖

𝑹𝜖𝑦𝑦
‖

‖

‖

2
(9)

where 𝜽 is a vector consisting of the material parameters to be opti-
mized as

𝜽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜙𝑛
𝜎𝑚𝑎𝑥
⋮
𝐸
𝜈
𝜎𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)

and 𝑅𝑃 and 𝑅𝜖𝑦𝑦 are the residual vectors of the reaction force and the
strain in the 𝑦𝑦-direction, respectively, computed as

𝑹𝑃 =
∑

𝑡

𝑃DIC − 𝑃 ZFEM(𝜽)
‖𝑃DIC

‖

; 𝑹𝜖𝑦𝑦 = 1
𝑁𝜖𝑝𝑜𝑖𝑛𝑡𝑠

∑

𝑡

∑

𝑁𝜖𝑝𝑜𝑖𝑛𝑡𝑠

𝜖DIC
𝑦𝑦 − 𝜖ZFEM

𝑦𝑦 (𝜽)

‖𝜖DIC
𝑦𝑦 ‖

where the superscripts ‘‘DIC’’ and ‘‘ZFEM’’ denote the reaction forces
obtained experimentally and computationally, respectively. 𝛼𝑃 and 𝛼𝜖𝑦𝑦
are the weights of each residual and these weights sum to one. The
load residual, 𝑹𝑃 , is computed for every loading increment, 𝑡, of the
FE simulation. Similarly, the strain residual, 𝑹𝜖𝑦𝑦 , is computed for every
loading increment (𝑡) and for every point within the ROI (𝑁𝜖𝑝𝑜𝑖𝑛𝑡𝑠 ); see
Section 2.1.3 for more about the ROI and how the DIC strain field is
compared against FE data. This approach can also be used to determine
the material properties that govern the mechanical response of a ma-
terial after certain behavior such as the Ramberg–Osgood material law
(see Section 2.3.2).

The optimization procedure is defined as

𝜽 = arg min
𝜽

𝑤(𝜽) (11)

where a gradient-based optimization algorithm will be used for its
solution.

For a gradient-based optimization algorithm, the derivatives of the
FE output variables with respect to the unknown parameters must be
computed. In this section, ZFEM will be used to compute the derivatives
of the FE solution vector with respect to the cohesive fracture parame-
ters that govern the interfacial behavior of an adhesively bonded joint;
see Section 2.2. Using ZFEM allows one to compute the derivative of
the residual function with respect to the cohesive material parameters
as

𝜕𝑤(𝜽)
𝜕𝜃𝑖

= 2𝛼𝑃

(

𝑃 DIC − 𝑃 ZFEM(𝜽)
‖𝑃 DIC

‖

)

𝜕𝑹𝑃

𝜕𝜃𝑖
+ 2𝛼𝜖𝑦𝑦

(

𝜖DIC
𝑦𝑦 − 𝜖ZFEM

𝑦𝑦 (𝜽)

‖𝜖DIC
𝑦𝑦 ‖

)

𝜕𝑹𝜖𝑦𝑦

𝜕𝜃𝑖

(12)

where 𝜃𝑖(𝑖 = 1,… , 𝑁𝜃) is the i𝑡ℎ element from the solution vector
𝜽 and 𝑁𝜃 is the number of material properties to be optimized. The
derivatives of the load and strain residuals, 𝑹𝑃 and 𝑹𝜖𝑦𝑦 , are given by

𝜕𝑹𝑃
𝜕𝜃

=
∑

−𝜕𝑃 ZFEM

𝜕𝜃𝑖

‖𝑃DIC
‖

,
𝜕𝑹𝜖𝑦𝑦

𝜕𝜃
= 1

𝑁
∑ ∑

−𝜕𝜖ZFEM
𝑦𝑦
𝜕𝜃𝑖

‖𝜖DIC
‖

(13)

𝑖 𝑡 𝑖 𝜖𝑝𝑜𝑖𝑛𝑡𝑠 𝑡 𝜖𝑝𝑜𝑖𝑛𝑡𝑠 𝑦
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Fig. 10. Optimization flowchart.
Fig. 11. Tensile test sample with speckle pattern (post-fracture).
For each material property in 𝜽, a ZFEM analysis is required to compute
the derivative of the residual function (Eq. (12)). Hence, a total of 𝑁𝜃
ZFEM analyses are required per iteration of the nonlinear optimizer.

Fig. 10 shows a schematic of the optimization procedure. A ZFEM
analysis provides the traditional FE outputs and their derivatives, such
as reaction force and strain fields, with respect to the unknown material
properties, as in Eqs. (12) and (13). Then, ZFEM’s reaction force and
strain field are compared against those obtained using DIC, and a
residual function is computed. In addition, derivatives of the residual
function with respect to the unknown parameters are computed using
ZFEM’s derivatives. The derivatives are used to compute a directional
derivative that is used to locate a global minimum. The procedure is
repeated until a tolerance criterion is satisfied; e.g., the norm of the
Jacobian vector is within the desired tolerance, ‖𝐉(𝜽)‖ ≤ 𝑡𝑜𝑙.

3. Numerical results

Use of ZFEM gradients within an optimization process to inversely
determine material constitutive parameters is demonstrated for two ex-
amples. First, the mechanical properties of DP-590 steel were obtained
using a tensile test specimen. Second, the cohesive material proper-
ties of an adhesively bonded joint were obtained using the proposed
approach that combines ZFEM and DIC data.

3.1. Elastic–plastic behavior from a tensile test

A uniaxial tensile test was used to verify the capabilities of the
inverse DIC-ZFEM framework by obtaining the yield strength and non-
linear exponent of the Ramberg–Osgood material model (𝜎𝑦 and 𝑛) of
DP-590 steel. The elastic properties were assumed to be given and only
7

Table 2
Tensile test sample dimensions.

Dimension Symbol Value [mm]

Gauge length 𝐺 25.0 ± 0.1
Width 𝑊 6.0 ± 0.1
Radius of fillet 𝑅 6
Overall length 𝐿 100
Length of the reduced section 𝐴 32
Length of the grip section 𝐵 30
Width of grip section 𝐶 10

𝜎𝑦 and 𝑛 were treated as unknowns. In this test, a sample was subjected
to tension until failure (see Fig. 11).

This problem was simulated with ZFEM using a Ramberg–Osgood
(deformation theory) material model (see Section 2.3.2). The elastic
material properties used DP-590 steel were an elastic modulus of 𝐸 =
200 GPa and a Poisson’s ratio of 𝜈 = 0.3 (Vedantam et al., 2006). Plane
strain conditions were assumed.

The parameters obtained from the optimization procedure were the
yield strength, 𝜎𝑦, and the nonlinear exponent, 𝑛. Hence, the solution
vector to be obtained from the optimization algorithm was

𝜽 =
[

𝜎𝑦
𝑛

]

(14)

Fig. 12 and Table 2 show the dimensions used for the experiment
and the FE simulation. The red shaded region in Fig. 12 denotes the ROI
for which the DIC strains were obtained to compute the strain residual,
𝑹𝜖𝑦𝑦 .

The dog-bone specimen was modeled in 2-D with ZFEM using
16-noded (8 real and 8 imaginary) quadratic complex-variable quadri-
lateral plane strain elements. Fig. 13 shows the FE mesh, consisting of
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Fig. 12. Tensile test specimen geometry.
Fig. 13. Finite element model for the tensile test specimen.
Fig. 14. Force vs. displacement curve for the tensile test.

387 elements, and the boundary conditions applied to the model. A
displacement was applied to the left edge of the specimen, 𝑢̄, and the
nodes at the right end were fixed in the 𝑥- and 𝑦-directions.

A DIC image was obtained every 5 s for a total test duration
of 1,475 s, resulting in 295 DIC datasets. Fig. 14 shows the Load–
Displacement curve corresponding to the test. The red shaded region
denotes the increments that were used for the computation of the
residual, corresponding to the first 143 increments. This corresponds
to all of the loading increments before necking occurs.

The strain fields resulting from the DIC analysis were interpolated
to the FE sampling points to compute the residual function to be
minimized. For this residual, 𝜖𝑦𝑦 strains from the center of the finite
elements that lie inside the ROI which corresponds to an integration
point, were used. Fig. 15(a) shows the DIC strain in the 𝑦-direction,
𝜖𝑦𝑦, for a particular DIC dataset. Fig. 15(b) shows the FE mesh, in which
the red area denotes the elements used in computing the residual and
Fig. 15(c) shows the resulting strain fields that were approximated from
DIC to the FE mesh.

For this example, the weights of the residuals were chosen as 𝛼𝑃 =
0.5 and 𝛼𝜖𝑦𝑦 = 0.5 and a gradient descent method with a fixed step
size of 0.1 was used to minimize the residual function. A detailed
study on the selection of the residual weights and their effect on the
converged results is shown in Section 3.3. An initial educated guess of
8

Fig. 15. (a) Strain in the 𝑦-direction (𝜖𝑦𝑦) from DIC, (b) FE mesh, and (c) strain field
approximated from DIC to the center of the finite elements.

the parameters to be optimized was

𝜽0 =
[

𝜎𝑦0
𝑛0

]

=
[

380MPa
8

]

(15)

With ZFEM, no additional function calls were needed to compute
the gradient, because the derivatives are a by-product of the complex-
variable analysis. For this example involving two parameters, two
ZFEM analyses were needed to compute the residual function (Eq. (11))
and its derivative with respect to the variables being optimized for each
iteration of the optimizer (Eq. (12)). The convergence criterion for this
problem used the norm of the Jacobian vector, i.e., ‖‖

‖

𝐉(𝜎𝑦, 𝑛)
‖

‖

‖

≤ 1×10−4.
Fig. 16 shows a three-dimensional representation of the residual

function and the iterations that were performed during the minimiza-
tion process. A close-up of the region where the proposed method
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Fig. 16. Three-dimensional representation of the residual function and the steps of the
optimization algorithm for the tensile test.

Table 3
Optimization iterations results for tensile test.

Iteration 𝜎𝑦 [MPa] 𝑛

1 380.00 8.000
2 379.91 9.765
3 379.90 9.884
4 379.64 9.889
5 379.55 9.850
6 341.01 7.665
7 340.63 7.674
8 338.59 7.609
9 323.26 6.881
10 322.58 6.854
11 322.58 6.880
12 322.58 6.884
13 322.58 6.885

converges is also shown. The numerical values of 𝜎𝑦 and 𝑛 for each
iteration are given in Table 3. A total of 26 ZFEM analyses were
required.

Fig. 17 shows a comparison of the experimental and computational
strain fields. Fig. 17(a) corresponds to the strain field of DIC dataset
number 130 out of the 143 that were selected for the minimization
process (before necking starts). ZFEM’s strain fields corresponding to
the initial guess of cohesive parameters are shown in Fig. 17(b) and the
converged values are shown in Fig. 17(c). As indicated by the colors of
the fields, there is excellent agreement between the experimental and
ZFEM converged strain fields.

Fig. 18 compares the stress–strain curves for the converged values
of ZFEM against the experimental result. The curve corresponding to
the initial guess of Ramberg–Osgood parameters is also plotted for
reference. The experimental and optimized ZFEM results (red and blue
curves) are in excellent agreement, verifying the accuracy of ZFEM’s
converged cohesive parameters.

3.2. Adhesively bonded double cantilever beam

A DCB test was used to demonstrate the use of ZFEM’s gradients to
inversely determine interfacial properties. For this example, the mode-I
cohesive parameters determined were the normal fracture energy (𝜙𝑛),
and the maximum normal traction (𝜎𝑚𝑎𝑥), see Section 2.2.

Fig. 19 shows the sample (post-fracture) that was used for the DCB
test with the white and black speckle pattern required for the DIC
analysis. Hinges were glued to the steel sheets with a much stronger
adhesive than the one used between the steel sheets.

Fig. 20 illustrates the variables used for the dimensions of the DCB
sample: 𝐿 is the total length of the specimen, 𝐿 is the distance from
9

𝑃

Fig. 17. Strain fields for (a) DIC, (b) initial guess, and (c) converged set of parameters.

Table 4
Dimensions for the DCB test.

Dimension Symbol Value [mm]

Length 𝐿 101.6
Initial crack size 𝑎0 38.57
Distance to applied load 𝐿𝑃 12.96
Arm height 𝐻 1.016
Specimen width 𝐵 25.4

the free end to the point where the load is being applied, 𝑎0 is the initial
crack length, 𝐻 is the thickness of one sheet, and 𝐵 is the specimen
width.

Using the post-failure adherends, Fig. 21, and the DCB specimen,
Fig. 19, the dimensions were retrieved using an image digitizer. The
retrieved dimensions are shown in Table 4. As can be observed from
Fig. 21, the end of the bond line is offset with respect to the initial or
expected location, which was denoted by the marked line. This desig-
nated ‘‘measured bond line location’’ was used for reference purposes
while selecting the ROI for the DIC test.

The ROI and its location within the sample are shown in Fig. 22
(red shaded area). The blue line corresponds to the marked line in
Fig. 21, which denotes the expected bond line (before testing). As can
be observed, there is a 2.0 mm offset between the expected and actual
bond line locations. The strain values were assigned to the centers of
the FEs that lay within the ROI to compute the strain residual during
the optimization process; see Section 2.1.3. The gray color in Fig. 22
denotes the DP-590 steel adherends, green denotes the adhesive, and
red indicates the ROI.

The DCB was modeled using a total of 5,639 eight-noded ZFEM ele-
ments (four real and four imaginary). For the DP-590 steel adherends,
linear elastic material behavior was considered as they are not expected
to undergo plastic deformation during the test. The known elastic
properties were (Vedantam et al., 2006): elastic modulus 𝐸 = 209GPa
and Poisson’s ratio 𝜈 = 0.3. The FE mesh is shown in Fig. 23. As the DCB
test is under pure mode-I loading conditions, the selection of the mode-
II parameters does not affect the results. Hence, it can be assumed that
𝜙𝑡 = 𝜙𝑛, 𝜏𝑚𝑎𝑥 = 𝜎𝑚𝑎𝑥, 𝛼 = 𝛽 and 𝜆𝑡 = 𝜆𝑛. The initial slope indicator in the
normal direction was assumed to be 𝜆𝑛 = 0.005 as this is the same values
used in Ramirez-Tamayo et al. (2021), Park and Paulino (2012) in
their verification examples. Finally, the shape parameter in the normal
direction was assumed to be 𝛼 = 2. When the shape parameters 𝛼 ≈ 2
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Fig. 18. Stress vs. strain optimization results.
Fig. 19. DCB sample with speckle pattern (post-fracture).
Fig. 20. Schematic of the DCB sample.
and 𝛽 ≈ 2, the PPR model exhibits an almost linear softening (post-peak
load) behavior (Ramirez-Tamayo et al., 2021).

The conjugate gradient method available in SciPy (Virtanen et al.,
2020) was used to minimize the residual function with the gradients
provided by ZFEM. The convergence criterion for this problem used the
norm of the Jacobian vector, i.e., ‖

‖

𝐉(𝜙𝑛, 𝜎𝑚𝑎𝑥)‖‖ ≤ 1 × 10−4. Because two
variables are being optimized, two ZFEM analyses were required per
iteration of the nonlinear optimizer to compute the gradient vector. The
weights of the load and strain residuals were 𝛼𝑃 = 0.5 and 𝛼𝜖𝑦𝑦 = 0.5,
respectively. An initial educated guess (Ramirez-Tamayo et al., 2021)
was then provided to the optimizer:

𝜽𝟎 =
[

𝜙𝑛0
]

=
[

0.350
]

(16)
10

𝜎𝑚𝑎𝑥0 10.0
After 14 iterations of the optimizer, the solution converged to the
following values:

𝜽 =
[

2.060
14.07

]

(17)

A comparison of the load–displacement curve obtained with ZFEM’s
converged values is shown in Fig. 24. The curve corresponding to the
initial guess of cohesive parameters is also plotted. The experimental
and converged computational curves are in good agreement. The red
dot in the experimental curve denotes the last load increment that was
used for computing the residuals. After this point, necking was observed
in the experimental results.

Fig. 25 shows the strain and load relative difference between experi-
mental and computational results as a function of the loading increment
(40 increments in total) for the converged set of cohesive parameters.
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Fig. 21. Adherend surfaces after fracture.

The strain relative difference reported was averaged over all nodes at
each loading increment. As it can be observed in Fig. 25(a), the strain
error is relatively low before reaching the peak load near the 25th incre-
ment. However, once the peak load is reached and softening occurs, the
discrepancy between experimental and computational strains increases
with a maximum discrepancy of 33.956% in the 39th increment. It is
worth mentioning that up to the 30th increment, the relative error is
below 1.184%. The critical debonding of the plates that occurs after
the 30th increment is likely the reason of the increase in the relative
difference of the strains. Fig. 25(b) shows the load relative difference
between experimental and computational results as a function of the
loading increment with a maximum discrepancy of 2.164% in the 16th
increment. The average relative difference between experimental and
computational results was 3.92% for the strains and 1.05% for the load.
Further improvement could be obtained by adding the PPR variables
that govern the softening behavior (𝜆𝑛, 𝜆𝑡, 𝛼, and 𝛽) in the optimization
process. As it currently stands, those parameters were chosen based on
those used in Ramirez-Tamayo et al. (2021), Park and Paulino (2012)
in their verification examples. An additional source of discrepancy
could be the uncertainty arising from the experiment itself, including
geometry, test set up, DIC measurements, etc.

3.3. Influence of residual weights on optimized parameters

In this paper, a weighted residual formulation was proposed to
incorporate both local and global behavior during the optimization
procedure. Recall that the residual function is computed as

𝑤(𝜙𝑛, 𝜎𝑚𝑎𝑥) = 𝛼𝑃 ‖

‖

𝑹𝑃
‖

‖

2 + 𝛼𝜖𝑦𝑦
‖

‖

‖

𝑹𝜖𝑦𝑦
‖

‖

‖

2
(18)

where the local behavior is added to the residual function through the
strain fields and the global behavior through the load–displacement
curve. In all the numerical examples discussed in this paper, the resid-
ual weights were 𝛼𝑃 = 𝛼𝜖𝑦𝑦 = 0.5, granting the same importance to both
the local and global behaviors. In this section, different combinations
of residual weights were considered to assess their influence on the
optimized set of parameters for the DCB test discussed in Section 3.2.
Seven cases were analyzed, including a solely load-based residual (𝛼𝑃 =
1, 𝛼𝜖𝑦𝑦 = 0) and a solely strain-based residual (𝛼𝑃 = 0, 𝛼𝜖𝑦𝑦 = 1). The
parameters for each case and the results are summarized in Table 5.
For these results, the convergence criterion had to be increased from
‖

‖

𝐉(𝜙𝑛, 𝜎𝑚𝑎𝑥)‖‖ ≤ 1×10−4 to ‖

‖

𝐉(𝜙𝑛, 𝜎𝑚𝑎𝑥)‖‖ ≤ 5×10−2, because Cases 1 and
2 did not converge with the previous tolerance that was used in the
examples discussed in Sections 3.1 and 3.2. These results used the same
initial guess of cohesive parameters as in example 3.2; see Eq. (16).
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Table 5
Results for different combination of residual weights.

Case ID Weights Residuals Optimized values

𝛼𝑃 𝛼𝜖𝑦𝑦 𝑹𝑃 [%] 𝑹𝜖𝑦𝑦 [%] 𝑤(𝜙𝑛 , 𝜎𝑚𝑎𝑥) [%] 𝜙𝑛 𝜎𝑚𝑎𝑥

1 1.0 0.0 2.353 9.382 2.353 1.557 14.018
2 0.9 0.1 1.791 7.726 2.358 1.608 14.041
3 0.7 0.3 1.204 5.447 2.481 1.700 14.033
4 0.5 0.5 1.056 3.221 2.489 1.789 14.004
5 0.3 0.7 1.174 3.026 2.471 1.857 13.999
6 0.1 0.9 1.329 2.626 2.492 1.899 13.986
7 0.0 1.0 1.426 2.427 2.427 1.918 13.993

The residuals shown in Table 5 can be interpreted as the average rel-
ative error between the computational and experimental results. Case
1, which did not use the strain fields to compute the residual function,
shows a good relative error for the load. However, this is not the case
for the strain fields where a higher relative error is obtained. This
indicates that the strain fields (local behavior) should be added to the
residual formulation. This is confirmed in the following cases, where
increasing the weight of the strain residual (𝛼𝜖𝑦𝑦 ) reduces the relative
error of both the reaction-force and strain-field residuals. As can be
observed, if 𝛼𝜖𝑦𝑦 > 𝛼𝑃 , the relative error of the strains is repeatedly
reduced, but this is not the case for the load relative error where it
increases. Hence, an equally weighted residual formulation (𝛼𝑃 = 𝛼𝜖𝑦𝑦 =
0.5) is recommended to achieve the optimum combination of relative
error for both residuals. As can be expected, different weights results in
different optimized values. In particular, adding the effect of the strain
fields leads to a higher normal fracture energy (𝜙𝑛). In contrast, the
values for the maximum normal traction (𝜎𝑚𝑎𝑥), are almost the same
regardless of the combination of weights used.

Fig. 26 shows a comparison of the load–displacement curves ob-
tained with the different combinations of weights vs. the experimental
results. As can be observed, once 𝛼𝜖𝑦𝑦 ≥ 0.3, the computational and
experimental results agree well. When 𝛼𝜖𝑦𝑦 = 𝛼𝑃 = 0.5, excellent agree-
ment is observed, thus verifying the importance of adding DIC data to
the optimization procedure through a weighted residual formulation.
Compared to the results shown in Fig. 24, where the residual weights
were also 𝛼𝜖𝑦𝑦 = 𝛼𝑃 = 0.5, there is a small variation on the converged
results. This is due to the fact that the tolerance used in this example
was increased because Cases 1 and 2 did not converge with the previous
criterion.

4. Discussion

The additional computational cost when using the ZPPR element is
50% more than that for a real-variable PPR element. The increase in
runtime is a result of the additional degrees of freedom needed to form
a complex element and the use of a CR matrix representation to solve
the complex-valued system of equations in Abaqus; see Section 2.3.1.
Nonetheless, the overall runtime is still less than for a finite differ-
ence approach which requires 2 analyses per derivative. However, the
runtime for ZFEM can be reduced by implementing a block forward
substitution (BFS) solution scheme, as proposed by Aguirre-Mesa et al.
(2021).

The use of complex variables in a PPR element, i.e., ‘‘ZPPR’’, en-
ables computation of highly accurate derivatives of the nodal displace-
ments and post-processing quantities (strain, stresses, and energy) with
respect to any input parameter such as shape, material properties,
or loading conditions. This approach can be scaled for the compu-
tation of higher-order derivatives as shown in Aguirre-Mesa et al.
(2019), Ramirez-Tamayo et al. (2020). However, doing so requires
a hypercomplex-variable library (Aguirre-Mesa et al., 2020) to per-
form hypercomplex operations and the computational times are greatly
increased as a result. As shown in Aguirre-Mesa et al. (2021), the
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Fig. 22. DIC ROI for the DCB test (dimensions in mm). Figure not to scale.
Fig. 23. FE mesh for the DCB specimen.
Fig. 24. Comparison of experimental and computational load–displacement curves.

BFS method can be used to solve a hypercomplex system of equa-
tions to reduce the additional runtime. This capability could improve
ZFEM’s convergence during inverse determination of constitutive pa-
rameters by providing the Hessian matrix (which requires second-order
derivatives) of the objective function to the optimizer.

The proposed methodology can be applied to dissimilar joints
produced using, for example, Friction stir Assisted Scribe Technique
(FAST) (Wang et al., 2020). By assuming a cohesive behavior at the
interface, the cohesive properties that govern the interfacial behavior of
the joint can be inversely determined using DIC and load–displacement
data. The existing mechanical test techniques to obtain the parame-
ters for a cohesive law place restriction on the test geometries and
sometimes require the existence of analytical solutions, making those
techniques unsuitable for FaST obtained joints. In addition, the existing
techniques use a global response (load–displacement curve) to describe
a local material property which results in inaccuracies on the adopted
model as shown in Section 3.3.

Section 3.3 showed the effect of incorporating DIC strain data to
the minimization process. If a load-based residual (𝛼𝑃 = 1, 𝛼𝜖𝑦𝑦 = 0)
formulation is used, there is a noticeable discrepancy between compu-
tational and experimental load–displacement curves during softening;
see Fig. 26. The discrepancy was improved by using a weighted residual
formulation. However, there is still some discrepancy for this case.
Further improvement could be obtained by adding the PPR variables
that govern the softening behavior (𝜆𝑛, 𝜆𝑡, 𝛼, and 𝛽) in the optimization
process. As it currently stands, those parameters were chosen based on
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those used in Ramirez-Tamayo et al. (2021), Park and Paulino (2012)
in their verification examples. An additional source of discrepancy
could be the uncertainty arising from the experiment itself, including
geometry, test set up, DIC measurements, etc.

5. Conclusions

This paper demonstrated the use of a complex-variable finite el-
ement method-based inverse methodology to extract constitutive pa-
rameters using experimental data. A weighted residual optimization
method that combined full-field kinematic measurements obtained us-
ing the digital image correlation (DIC) procedure and load–
displacement data was used to determine the optimum constitutive
properties. Two examples were demonstrated: (1) determining the
Ramberg–Osgood parameters for a DP-590 steel specimen, and (2)
determining the interfacial constitutive parameters of an adhesive using
a DCB specimen. The results showed that the most accurate parameter
values can be determined using a combination of equally-weighted
strain fields and load–displacement data, rather than using solely load–
displacement data. Minimizing the relative error in both the strain
fields and the load–displacement curve is important to obtain accurate
interfacial properties.

The use of the complex-variable finite element method, ZFEM,
provided efficient and accurate derivatives of kinematic and load–
displacement data with respect to the constitutive parameters. These
derivatives were critical in minimizing the relative error in an efficient
manner. An attractive feature of ZFEM is that it is significantly superior
to the finite difference method as the derivative results are largely step-
size independent and that it is computationally more efficient. Although
the method was demonstrated for two materials, the methodology
is general and can be applied to other geometries, materials, and
interfaces obtained by a variety of joining methods.
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Appendix

Consider the multivariate function 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥3𝑦2𝑧. To compute a
first-order derivative with respect to 𝑥, a small perturbation ℎ must be
applied along the imaginary axis as 𝑥∗ = 𝑥 + 𝑖ℎ

𝑓 (𝑥 + 𝑖ℎ, 𝑦, 𝑧) = (𝑥 + 𝑖ℎ)3𝑦2𝑧 (19)

𝑓 (𝑥 + 𝑖ℎ, 𝑦, 𝑧) =
[

𝑥3 + 3𝑥2(𝑖ℎ) − 3𝑥(𝑖ℎ)2 + (𝑖ℎ)3
]

𝑦2𝑧 (20)

Recall from complex-variable algebra that 𝑖2 = −1 and 𝑖3 = −𝑖:

𝑓 (𝑥 + 𝑖ℎ, 𝑦, 𝑧) =
[

𝑥3 + 3𝑥2(𝑖ℎ) − 3𝑥ℎ2 − 𝑖ℎ3
]

𝑦2𝑧 (21)

Neglecting high order terms, the function yields

𝑓 (𝑥 + 𝑖ℎ, 𝑦, 𝑧) =

[

𝑥3 + 3𝑥2(𝑖ℎ) −���⌃
0

3𝑥ℎ2 −��>
0

𝑖ℎ3
]

𝑦2𝑧 (22)

This can be divided into real and imaginary parts:

𝑓 = 𝑥3𝑦2𝑧
⏟⏟⏟

+
[

3𝑥2 𝑖ℎ
]

𝑦2𝑧
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

(23)
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Re Im
where the real part corresponds to the original function and the imag-
inary part contains the derivative, as shown in Eq. (3). Then, the
derivative of the function with respect to the variable of interest, 𝑥,
is obtained as follows:
𝜕𝑓 (𝑥, 𝑦, 𝑧)

𝜕𝑥
=

Im[𝑓 ]
ℎ

=
3𝑥2𝑦2𝑧 ℎ

ℎ
= 3𝑥2𝑦2𝑧 (24)

References

Abaqus, 2015. Abaqus finite element software. Dassault Systèmes Simulia Corp.,
Providence, RI, 2015.

Aguirre-Mesa, A.M., Garcia, M.J., Aristizabal, M., Wagner, D., Ramirez-Tamayo, D.,
Montoya, A., Millwater, H., 2021. A block forward substitution method for solving
the hypercomplex finite element system of equations. Comput. Methods Appl.
Mech. Engrg. 387, 114195. http://dx.doi.org/10.1016/j.cma.2021.114195, https:
//www.sciencedirect.com/science/article/pii/S0045782521005260.

Aguirre-Mesa, A.M., Garcia, M.J., Millwater, H., 2020. MultiZ: A library for computation
of high-order derivatives using multicomplex or multidual numbers. ACM Trans.
Math. Software 46 (3), http://dx.doi.org/10.1145/3378538.

Aguirre-Mesa, A.M., Ramirez-Tamayo, D., Garcia, M.J., Montoya, A., Millwater, H.,
2019. A stiffness derivative local hypercomplex-variable finite element method
for computing the energy release rate. Eng. Fract. Mech. 218, 106581. http:

http://refhub.elsevier.com/S0020-7683(22)00093-2/sb1
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb1
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb1
http://dx.doi.org/10.1016/j.cma.2021.114195
https://www.sciencedirect.com/science/article/pii/S0045782521005260
https://www.sciencedirect.com/science/article/pii/S0045782521005260
https://www.sciencedirect.com/science/article/pii/S0045782521005260
http://dx.doi.org/10.1145/3378538
http://dx.doi.org/10.1016/j.engfracmech.2019.106581
http://dx.doi.org/10.1016/j.engfracmech.2019.106581


International Journal of Solids and Structures 243 (2022) 111545D. Ramirez-Tamayo et al.
//dx.doi.org/10.1016/j.engfracmech.2019.106581, URL http://www.sciencedirect.
com/science/article/pii/S0013794419306666.

ASTM International, 2001. E8/E8M-01, Standard test methods for tension testing of
metallic materials, West Conshohocken, PA.

Barenblatt, G.I., 1959. The formation of equilibrium cracks during brittle fracture.
General ideas and hypotheses. Axially-symmetric cracks. J. Appl. Math. Mech. 23
(3), 622–636. http://dx.doi.org/10.1016/0021-8928(59)90157-1.

Correlated Solutions, Inc., 2010. Vic-3D Manual, Columbia, SC.
da Silva, L.F., das Neves, P.J., Adams, R., Spelt, J., 2009. Analytical models of adhe-

sively bonded joints-Part I: Literature survey. Int. J. Adhes. Adhes. 29 (3), 319–330.
http://dx.doi.org/10.1016/j.ijadhadh.2008.06.005, URL https://www.sciencedirect.
com/science/article/pii/S0143749608000730.

Dugdale, D.S., 1960. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8
(2), 100–104. http://dx.doi.org/10.1016/0022-5096(60)90013-2.

Ebnesajjad, S., Landrock, A.H., 2014. Adhesives Technology Handbook. William
Andrew, Elsevier, URL https://www.elsevier.com/books/adhesives-technology-
handbook/ebnesajjad/978-0-323-35595-7.

Freed, Y., Banks-Sills, L., 2008. A new cohesive zone model for mixed mode interface
fracture in bimaterials. Eng. Fract. Mech. 75 (15), 4583–4593.

Goland, M., Reissner, E., 2021. The stresses in cemented joints. J. Appl.
Mech. 11 (1), A17–A27. http://dx.doi.org/10.1115/1.4009336, arXiv:https:
//asmedigitalcollection.asme.org/appliedmechanics/article-pdf/11/1/A17/
6657406/a17_1.pdf.

Gomez-Farias, A., Montoya, A., Millwater, H., 2015. Complex finite element sensitivity
method for creep analysis. Int. J. Press. Vessels Pip. 132–133, 27–42. http://dx.
doi.org/10.1016/j.ijpvp.2015.05.006, URL http://www.sciencedirect.com/science/
article/pii/S0308016115000587.

Ji, G., Ouyang, Z., Li, G., 2012. Local interface shear fracture of bonded steel joints
with various bondline thicknesses. Exp. Mech. 52 (5), 481–491.

Lantoine, G., Russell, R.P., Dargent, T., 2012. Using multicomplex variables for
automatic computation of high-order derivatives. ACM Trans. Math. Software 38
(3), 16:1–16:21. http://dx.doi.org/10.1145/2168773.2168774, URL http://doi.acm.
org/10.1145/2168773.2168774.

Liljedahl, C., Crocombe, A., Wahab, M., Ashcroft, I., 2006. Damage modelling of
adhesively bonded joints. Int. J. Fract. 141 (1), 147–161.

Marzi, S., Biel, A., Stigh, U., 2011. On experimental methods to investigate
the effect of layer thickness on the fracture behavior of adhesively bonded
joints. Int. J. Adhes. Adhes. 31 (8), 840–850. http://dx.doi.org/10.1016/
j.ijadhadh.2011.08.004, URL https://www.sciencedirect.com/science/article/pii/
S0143749611001229.

Mi, Y., Crisfield, M., Davies, G., Hellweg, H., 1998. Progressive delamination using
interface elements. J. Compos. Mater. 32 (14), 1246–1272. http://dx.doi.org/10.
1177/002199839803201401.

van Mier, J.G.M., van Vliet, M.R.A., 2002. Uniaxial tension test for the determination
of fracture parameters of concrete: state of the art. Eng. Fract. Mech. 69 (2),
235–247. http://dx.doi.org/10.1016/S0013-7944(01)00087-X, URL http://www.
sciencedirect.com/science/article/pii/S001379440100087X.

Millwater, H., Wagner, D., Baines, A., Montoya, A., 2016. A virtual crack exten-
sion method to compute energy release rates using a complex variable finite
element method. Eng. Fract. Mech. 162, 95–111. http://dx.doi.org/10.1016/j.
engfracmech.2016.04.002, URL http://www.sciencedirect.com/science/article/pii/
S0013794416301540.

Montoya, A., Fielder, R., Gomez-Farias, A., Millwater, H., 2015. Finite-element sensitiv-
ity for plasticity using complex variable methods. J. Eng. Mech. 141 (2), 04014118.
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000837.

Montoya, A., Ramirez-Tamayo, D., Millwater, H., Kirby, M., 2018. A complex-
variable virtual crack extension finite element method for elastic-plastic fracture
mechanics. Eng. Fract. Mech. 202, 242–258. http://dx.doi.org/10.1016/j.
engfracmech.2018.09.023, URL http://www.sciencedirect.com/science/article/
pii/S0013794418306775.

Pan, B., Li, K., 2011. A fast digital image correlation method for deformation
measurement. Opt. Lasers Eng. 49 (7), 841–847. http://dx.doi.org/10.1016/
j.optlaseng.2011.02.023, URL https://www.sciencedirect.com/science/article/pii/
S0143816611000728.

Park, K., 2009. Potential-Based Fracture Mechanics using Cohesive Zone and
Virtual Internal Bond Modeling. University of Illinois at Urbana-Champaign,
URL https://www.semanticscholar.org/paper/Potential-based-fracture-mechanics-
using-cohesive-Park/2265b61f1080589b6b46d2f84714182d017eaa27.

Park, K., Choi, H., Paulino, G.H., 2016. Assessment of cohesive traction-separation
relationships in abaqus: A comparative study. Mech. Res. Commun. 78, 71–78. http:
//dx.doi.org/10.1016/j.mechrescom.2016.09.004, Recent Advances in Multiscale,
Multifunctional and Functionally Graded Materials, URL http://www.sciencedirect.
com/science/article/pii/S0093641316301628.

Park, K., Paulino, G.H., 2012. Computational implementation of the PPR potential-based
cohesive model in Abaqus: educational perspective. Eng. Fract. Mech. 93, 239–262.
http://dx.doi.org/10.1016/j.engfracmech.2012.02.007.

Park, K., Paulino, G.H., 2013. Cohesive zone models: a critical review of
traction-separation relationships across fracture surfaces. Appl. Mech.
Rev. 64 (6), http://dx.doi.org/10.1115/1.4023110, 060802, arXiv:https:
//asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/64/6/
060802/6073587/amr_64_6_060802.pdf.
14
Park, K., Paulino, G.H., Roesler, J.R., 2009. A unified potential-based cohesive model of
mixed-mode fracture. J. Mech. Phys. Solids 57 (6), 891–908. http://dx.doi.org/10.
1016/j.jmps.2008.10.003, URL http://www.sciencedirect.com/science/article/pii/
S0022509608001713.

Prasad, S., Carlsson, L.A., 1994. Debonding and crack kinking in foam core sandwich
beams-II. experimental investigation. Eng. Fract. Mech. 47 (6), 825–841. http:
//dx.doi.org/10.1016/0013-7944(94)90062-0.

Quan, D., Murphy, N., Cardiff, P., Ivankovic, A., 2018. The intrinsic fracture property
of a rubber-modified epoxy adhesive: Geometrical transferability. Eng. Fract. Mech.
203, 240–249. http://dx.doi.org/10.1016/j.engfracmech.2018.04.035, 8th ESIS TC4
International Conference- Fracture of Polymers, Composites and Adhesives, URL
https://www.sciencedirect.com/science/article/pii/S0013794417313309.

Ramalho, L., Campilho, R., Belinha, J., Da Silva, L., 2020. Static strength prediction of
adhesive joints: A review. Int. J. Adhes. Adhes. 96, 102451. http://dx.doi.org/10.
1016/j.ijadhadh.2019.102451.

Ramberg, W., Osgood, W.R., 1943. Description of Stress-Strain Curves by Three Pa-
rameters. Tech. Rep. NACA-TN-902, National Advisory Committee for Aeronautics,
URL https://ntrs.nasa.gov/citations/19930081614.

Ramirez-Tamayo, D., Balcer, M., Montoya, A., Millwater, H., 2020. Mixed-mode
stress intensity factors computation in functionally graded materials using a
hypercomplex-variable finite element formulation. Int. J. Fract. 226 (2), 219–232.
http://dx.doi.org/10.1007/s10704-020-00489-5.

Ramirez Tamayo, D., Montoya, A., Millwater, H., 2018. Complex-variable finite-element
method for mixed mode fracture and interface cracks. AIAA J. 56 (11), 4632–4637.
http://dx.doi.org/10.2514/1.J057231.

Ramirez-Tamayo, D., Montoya, A., Millwater, H., 2018. A virtual crack extension
method for thermoelastic fracture using a complex-variable finite element method.
Eng. Fract. Mech. 192, 328–342. http://dx.doi.org/10.1016/j.engfracmech.2017.12.
013, URL http://www.sciencedirect.com/science/article/pii/S0013794417309049.

Ramirez-Tamayo, D., Soulami, A., Gupta, V., Restrepo, D., Montoya, A., Millwater, H.,
2021. A complex-variable cohesive finite element subroutine to enable efficient
determination of interfacial cohesive material parameters. Eng. Fract. Mech. 247,
107638. http://dx.doi.org/10.1016/j.engfracmech.2021.107638.

Reeder, J.R., Crews, Jr., J.H., 1990. Mixed-mode bending method for delamination
testing. AIAA J. 28 (7), 1270–1276. http://dx.doi.org/10.2514/3.25204.

Shah, S.P., Swartz, S.E., Ouyang, C., 1995. Fracture Mechanics of Concrete:
Applications of Fracture Mechanics To Concrete, Rock and Other Quasi-
Brittle Materials. John Wiley & Sons, URL https://www.wiley.com/en-
us/Fracture+Mechanics+of+Concrete%3A+Applications+of+Fracture+Mechanics+
to+Concrete%2C+Rock+and+Other+Quasi+Brittle+Materials-p-9780471303114.

Shen, B., Paulino, G., 2011. Direct extraction of cohesive fracture properties from
digital image correlation: a hybrid inverse technique. Exp. Mech. 51 (2), 143–163.
http://dx.doi.org/10.1007/s11340-010-9342-6.

Squire, W., Trapp, G., 1998. Using complex variables to estimate derivatives
of real functions. SIAM Rev. 40 (1), 110–112. http://dx.doi.org/10.1137/
S003614459631241X.

Valoroso, N., Sessa, S., Lepore, M., Cricrì, G., 2013. Identification of mode-I cohesive
parameters for bonded interfaces based on DCB test. Eng. Fract. Mech. 104,
56–79. http://dx.doi.org/10.1016/j.engfracmech.2013.02.008, URL http://www.
sciencedirect.com/science/article/pii/S0013794413000507.

Vedantam, K., Bajaj, D., Brar, N., Hill, S., 2006. Johnson-cook strength models
for mild and DP 590 steels. In: AIP Conference Proceedings, Vol. 845, no. 1.
American Institute of Physics, Washington, pp. 775–778. http://dx.doi.org/10.
1063/1.2263437.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al., 2020. SciPy 1.0:
fundamental algorithms for scientific computing in python. Nature Methods 17 (3),
261–272. http://dx.doi.org/10.1016/j.optlaseng.2011.02.023, URL https://www.
nature.com/articles/s41592-019-0686-2.

Volkersen, O., 1938. Die nietkraftverteilung in zugbeanspruchten nietverbindungen mit
konstanten laschenquerschnitten. Luftfahrtfor Schung 15, 41–47.

Wang, W.-X., Nakata, M., Takao, Y., Matsubara, T., 2009. Experimental investigation
on test methods for mode II interlaminar fracture testing of carbon fiber reinforced
composites. Composites A 40 (9), 1447–1455.

Wang, T., Ramirez-Tamayo, D., Jiang, X., Kitsopoulos, P., Kuang, W., Gupta, V.,
Barker, E., Upadhyay, P., 2020. Effect of interfacial characteristics on mag-
nesium to steel joint obtained using FAST. Mater. Des. 192, 108697. http:
//dx.doi.org/10.1016/j.matdes.2020.108697, URL http://www.sciencedirect.com/
science/article/pii/S0264127520302318.

Whitney, J., Browning, C., Hoogsteden, W., 1982. A double cantilever beam test for
characterizing mode I delamination of composite materials. J. Reinf. Plast. Compos.
1 (4), 297–313. http://dx.doi.org/10.1177/073168448200100402.

Wittmann, F., Rokugo, K., Brühwiler, E., Mihashi, H., Simonin, P., 1988. Fracture
energy and strain softening of concrete as determined by means of compact tension
specimens. Mater. Struct. 21 (1), 21–32, URL https://link.springer.com/article/10.
1007/BF02472525.

Xu, C., Siegmund, T., Ramani, K., 2003. Rate-dependent crack growth in adhesives: I.
Modeling approach. Int. J. Adhes. Adhes. 23 (1), 9–13. http://dx.doi.org/10.1016/
S0143-7496(02)00062-3.

http://dx.doi.org/10.1016/j.engfracmech.2019.106581
http://www.sciencedirect.com/science/article/pii/S0013794419306666
http://www.sciencedirect.com/science/article/pii/S0013794419306666
http://www.sciencedirect.com/science/article/pii/S0013794419306666
http://dx.doi.org/10.1016/0021-8928(59)90157-1
http://dx.doi.org/10.1016/j.ijadhadh.2008.06.005
https://www.sciencedirect.com/science/article/pii/S0143749608000730
https://www.sciencedirect.com/science/article/pii/S0143749608000730
https://www.sciencedirect.com/science/article/pii/S0143749608000730
http://dx.doi.org/10.1016/0022-5096(60)90013-2
https://www.elsevier.com/books/adhesives-technology-handbook/ebnesajjad/978-0-323-35595-7
https://www.elsevier.com/books/adhesives-technology-handbook/ebnesajjad/978-0-323-35595-7
https://www.elsevier.com/books/adhesives-technology-handbook/ebnesajjad/978-0-323-35595-7
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb11
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb11
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb11
http://dx.doi.org/10.1115/1.4009336
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/11/1/A17/6657406/a17_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/11/1/A17/6657406/a17_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/11/1/A17/6657406/a17_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/11/1/A17/6657406/a17_1.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/11/1/A17/6657406/a17_1.pdf
http://dx.doi.org/10.1016/j.ijpvp.2015.05.006
http://dx.doi.org/10.1016/j.ijpvp.2015.05.006
http://dx.doi.org/10.1016/j.ijpvp.2015.05.006
http://www.sciencedirect.com/science/article/pii/S0308016115000587
http://www.sciencedirect.com/science/article/pii/S0308016115000587
http://www.sciencedirect.com/science/article/pii/S0308016115000587
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb14
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb14
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb14
http://dx.doi.org/10.1145/2168773.2168774
http://doi.acm.org/10.1145/2168773.2168774
http://doi.acm.org/10.1145/2168773.2168774
http://doi.acm.org/10.1145/2168773.2168774
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb16
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb16
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb16
http://dx.doi.org/10.1016/j.ijadhadh.2011.08.004
http://dx.doi.org/10.1016/j.ijadhadh.2011.08.004
http://dx.doi.org/10.1016/j.ijadhadh.2011.08.004
https://www.sciencedirect.com/science/article/pii/S0143749611001229
https://www.sciencedirect.com/science/article/pii/S0143749611001229
https://www.sciencedirect.com/science/article/pii/S0143749611001229
http://dx.doi.org/10.1177/002199839803201401
http://dx.doi.org/10.1177/002199839803201401
http://dx.doi.org/10.1177/002199839803201401
http://dx.doi.org/10.1016/S0013-7944(01)00087-X
http://www.sciencedirect.com/science/article/pii/S001379440100087X
http://www.sciencedirect.com/science/article/pii/S001379440100087X
http://www.sciencedirect.com/science/article/pii/S001379440100087X
http://dx.doi.org/10.1016/j.engfracmech.2016.04.002
http://dx.doi.org/10.1016/j.engfracmech.2016.04.002
http://dx.doi.org/10.1016/j.engfracmech.2016.04.002
http://www.sciencedirect.com/science/article/pii/S0013794416301540
http://www.sciencedirect.com/science/article/pii/S0013794416301540
http://www.sciencedirect.com/science/article/pii/S0013794416301540
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000837
http://dx.doi.org/10.1016/j.engfracmech.2018.09.023
http://dx.doi.org/10.1016/j.engfracmech.2018.09.023
http://dx.doi.org/10.1016/j.engfracmech.2018.09.023
http://www.sciencedirect.com/science/article/pii/S0013794418306775
http://www.sciencedirect.com/science/article/pii/S0013794418306775
http://www.sciencedirect.com/science/article/pii/S0013794418306775
http://dx.doi.org/10.1016/j.optlaseng.2011.02.023
http://dx.doi.org/10.1016/j.optlaseng.2011.02.023
http://dx.doi.org/10.1016/j.optlaseng.2011.02.023
https://www.sciencedirect.com/science/article/pii/S0143816611000728
https://www.sciencedirect.com/science/article/pii/S0143816611000728
https://www.sciencedirect.com/science/article/pii/S0143816611000728
https://www.semanticscholar.org/paper/Potential-based-fracture-mechanics-using-cohesive-Park/2265b61f1080589b6b46d2f84714182d017eaa27
https://www.semanticscholar.org/paper/Potential-based-fracture-mechanics-using-cohesive-Park/2265b61f1080589b6b46d2f84714182d017eaa27
https://www.semanticscholar.org/paper/Potential-based-fracture-mechanics-using-cohesive-Park/2265b61f1080589b6b46d2f84714182d017eaa27
http://dx.doi.org/10.1016/j.mechrescom.2016.09.004
http://dx.doi.org/10.1016/j.mechrescom.2016.09.004
http://dx.doi.org/10.1016/j.mechrescom.2016.09.004
http://www.sciencedirect.com/science/article/pii/S0093641316301628
http://www.sciencedirect.com/science/article/pii/S0093641316301628
http://www.sciencedirect.com/science/article/pii/S0093641316301628
http://dx.doi.org/10.1016/j.engfracmech.2012.02.007
http://dx.doi.org/10.1115/1.4023110
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/64/6/060802/6073587/amr_64_6_060802.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/64/6/060802/6073587/amr_64_6_060802.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/64/6/060802/6073587/amr_64_6_060802.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/64/6/060802/6073587/amr_64_6_060802.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/64/6/060802/6073587/amr_64_6_060802.pdf
http://dx.doi.org/10.1016/j.jmps.2008.10.003
http://dx.doi.org/10.1016/j.jmps.2008.10.003
http://dx.doi.org/10.1016/j.jmps.2008.10.003
http://www.sciencedirect.com/science/article/pii/S0022509608001713
http://www.sciencedirect.com/science/article/pii/S0022509608001713
http://www.sciencedirect.com/science/article/pii/S0022509608001713
http://dx.doi.org/10.1016/0013-7944(94)90062-0
http://dx.doi.org/10.1016/0013-7944(94)90062-0
http://dx.doi.org/10.1016/0013-7944(94)90062-0
http://dx.doi.org/10.1016/j.engfracmech.2018.04.035
https://www.sciencedirect.com/science/article/pii/S0013794417313309
http://dx.doi.org/10.1016/j.ijadhadh.2019.102451
http://dx.doi.org/10.1016/j.ijadhadh.2019.102451
http://dx.doi.org/10.1016/j.ijadhadh.2019.102451
https://ntrs.nasa.gov/citations/19930081614
http://dx.doi.org/10.1007/s10704-020-00489-5
http://dx.doi.org/10.2514/1.J057231
http://dx.doi.org/10.1016/j.engfracmech.2017.12.013
http://dx.doi.org/10.1016/j.engfracmech.2017.12.013
http://dx.doi.org/10.1016/j.engfracmech.2017.12.013
http://www.sciencedirect.com/science/article/pii/S0013794417309049
http://dx.doi.org/10.1016/j.engfracmech.2021.107638
http://dx.doi.org/10.2514/3.25204
https://www.wiley.com/en-us/Fracture+Mechanics+of+Concrete%3A+Applications+of+Fracture+Mechanics+to+Concrete%2C+Rock+and+Other+Quasi+Brittle+Materials-p-9780471303114
https://www.wiley.com/en-us/Fracture+Mechanics+of+Concrete%3A+Applications+of+Fracture+Mechanics+to+Concrete%2C+Rock+and+Other+Quasi+Brittle+Materials-p-9780471303114
https://www.wiley.com/en-us/Fracture+Mechanics+of+Concrete%3A+Applications+of+Fracture+Mechanics+to+Concrete%2C+Rock+and+Other+Quasi+Brittle+Materials-p-9780471303114
https://www.wiley.com/en-us/Fracture+Mechanics+of+Concrete%3A+Applications+of+Fracture+Mechanics+to+Concrete%2C+Rock+and+Other+Quasi+Brittle+Materials-p-9780471303114
https://www.wiley.com/en-us/Fracture+Mechanics+of+Concrete%3A+Applications+of+Fracture+Mechanics+to+Concrete%2C+Rock+and+Other+Quasi+Brittle+Materials-p-9780471303114
http://dx.doi.org/10.1007/s11340-010-9342-6
http://dx.doi.org/10.1137/S003614459631241X
http://dx.doi.org/10.1137/S003614459631241X
http://dx.doi.org/10.1137/S003614459631241X
http://dx.doi.org/10.1016/j.engfracmech.2013.02.008
http://www.sciencedirect.com/science/article/pii/S0013794413000507
http://www.sciencedirect.com/science/article/pii/S0013794413000507
http://www.sciencedirect.com/science/article/pii/S0013794413000507
http://dx.doi.org/10.1063/1.2263437
http://dx.doi.org/10.1063/1.2263437
http://dx.doi.org/10.1063/1.2263437
http://dx.doi.org/10.1016/j.optlaseng.2011.02.023
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb44
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb44
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb44
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb45
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb45
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb45
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb45
http://refhub.elsevier.com/S0020-7683(22)00093-2/sb45
http://dx.doi.org/10.1016/j.matdes.2020.108697
http://dx.doi.org/10.1016/j.matdes.2020.108697
http://dx.doi.org/10.1016/j.matdes.2020.108697
http://www.sciencedirect.com/science/article/pii/S0264127520302318
http://www.sciencedirect.com/science/article/pii/S0264127520302318
http://www.sciencedirect.com/science/article/pii/S0264127520302318
http://dx.doi.org/10.1177/073168448200100402
https://link.springer.com/article/10.1007/BF02472525
https://link.springer.com/article/10.1007/BF02472525
https://link.springer.com/article/10.1007/BF02472525
http://dx.doi.org/10.1016/S0143-7496(02)00062-3
http://dx.doi.org/10.1016/S0143-7496(02)00062-3
http://dx.doi.org/10.1016/S0143-7496(02)00062-3

	A complex-variable finite element method-based inverse methodology to extract constitutive parameters using experimental data 
	Introduction
	Background and methodology
	Digital image correlation (DIC) 
	Overview of the DIC method
	Experimental setup and resulting DIC data (tensile test and DCB)
	Region of interest and comparison of DIC and FE fields 

	Cohesive zone modeling 
	Complex-variable finite element method (ZFEM)
	ZFEM Abaqus implementation 
	Ramberg–Osgood material model 

	Optimization framework 

	Numerical results
	Elastic–plastic behavior from a tensile test 
	Adhesively bonded double cantilever beam 
	Influence of residual weights on optimized parameters 

	Discussion
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix
	References


