Hindawi

Discrete Dynamics in Nature and Society
Volume 2017, Article ID 2013673, 15 pages
https://doi.org/10.1155/2017/2013673

Research Article

Hindawi

GPU-Based Parallel Particle Swarm Optimization Methods for

Graph Drawing

Jianhua Qu,' Xiyu Liu,’ Minghe Sun,” and Feng Qi’

! College of Management Science and Engineering, Shandong Normal University, Jinan, Shandong, China
2College of Business, The University of Texas at San Antonio, San Antonio, TX, USA

Correspondence should be addressed to Jianhua Qu; qujh1978@163.com

Received 17 March 2017; Accepted 15 June 2017; Published 30 July 2017

Academic Editor: Filippo Cacace

Copyright © 2017 Jianhua Qu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Particle Swarm Optimization (PSO) is a population-based stochastic search technique for solving optimization problems, which
has been proven to be effective in a wide range of applications. However, the computational efficiency on large-scale problems is still
unsatisfactory. A graph drawing is a pictorial representation of the vertices and edges of a graph. Two PSO heuristic procedures,
one serial and the other parallel, are developed for undirected graph drawing. Each particle corresponds to a different layout of the
graph. The particle fitness is defined based on the concept of the energy in the force-directed method. The serial PSO procedure is
executed on a CPU and the parallel PSO procedure is executed on a GPU. Two PSO procedures have different data structures and
strategies. The performance of the proposed methods is evaluated through several different graphs. The experimental results show
that the two PSO procedures are both as effective as the force-directed method, and the parallel procedure is more advantageous

than the serial procedure for larger graphs.

1. Introduction

Graphs are often used to depict objects and to represent the
relationship between objects. In a social network, for exam-
ple, vertices represent individual users and edges represent
their relationships if users are acquainted. Graph drawing is a
conventional tool for the visualization of graphs. The effect
of graph visualization depends on whether the drawing is
aesthetic. Although there are no strict criteria for aesthetics
of a drawing, it is generally agreed that a drawing with the
following characteristics is aesthetic [Battista et al., 2012; [1]]:

(1) Minimal edge crossings are in the graph.

(2) Vertices are evenly distributed in the drawing canvas.
(3) Connected vertices are close to each other.

(4) Symmetry may exist in the graph.

With the development of graph theory and computer

science, it is possible to visualize a graph automatically. Many
automatic methods for graph drawing emerged, especially

for planar graphs. For nonplanar graphs, efficient or effective
drawing methods are needed. Tutte [2] proposed an algo-
rithm to draw planar graphs by fixing vertices on a face and
placing the rest of the vertices at the barycentre of their
neighbors. Sugiyama et al. [3] proposed a method for the
hierarchical drawing of directed graphs. Eades [4] proposed
a force-directed heuristic method for graph drawing. In
recent years, many other methods have been proposed [5, 6].
Among these methods, the force-directed method is popular,
which uses a heuristic cost or energy function to map the
layout of a graph to a real number. The layout with the
minimum cost or energy is aesthetic. Due to simplicity and
flexibility of implementation, some variants of the force-
directed method were proposed. Kamada and Kawai [7]
proposed the spring embedding algorithm in which the ideal
length of a spring is proportional to the distance between the
vertices. Fruchterman and Reingold [8] improved the force-
directed method by introducing the attractive forces and
the repulsive forces. This improved force-directed method
is called the F-R method in the following. All the variants

https://doi.org/10.1155/2017/2013673

differ in the definition of the energy or in the optimization
method used to find the minimum of the energy. The force-
directed method is especially suitable for drawing graphs with
straight-line edges.

In this study, the force-directed method is also used to
draw undirected graphs with straight-line edges. In the force-
directed method, the layout of a graph is obtained by finding
the minimum of the cost function. Therefore, the layout
problem can be converted to an optimization problem. In
this study, a Particle Swarm Optimization (PSO) procedure
is proposed to solve the graph drawing problem.

PSO is a stochastic global optimization approach devel-
oped by Eberhart and Kennedy [9]. As a population-based
metaheuristic, PSO has the advantages of robustness, effec-
tiveness, and simplicity compared to other swarm intelligent
approaches such as genetic algorithms and ant colony opti-
mization [10-12]. In a PSO procedure, a swarm of particles
is kept and each particle in the swarm adjusts its position
by keeping track of its own and the global best positions.
The quality of each particle is measured by a fitness function.
At the end, the search is expected to converge to the global
best solution of the whole search space. In recent years,
PSO has been widely applied to many complex and difficult
optimization problems in practice, and many improved PSO
procedures have been proposed [13-16].

Although PSO has the above advantages, it still needs a
long computation time to converge for large-scale problems
needing a large number of particles to search for the optimal
solution. The main reason is that the serial computation
of the fitness values of the particles in a swarm takes
too much computation time. If the computations of the
fitness values of the particles are independent of each other,
the computation can be decomposed for parallel operation
to improve efficiency. In recent years, many parallel PSO
procedures have been proposed. Graphic Processing Units
(GPUs) have high speed, parallelism, and programmable
functions. Therefore, GPUs have great potential in the field
of general computing. Some of the parallel PSO procedures
reported in the literature are implemented on GPUs [17-20]
with high-performance parallel computing capabilities using
NVIDIAs Compute Unified Device Architecture (CUDA)
[21] as a handy programming environment.

Schutte et al. [2003] designed the first synchronous
parallel PSO procedure and successfully applied it to the
biomechanical system identification problem. Venter et al.
[2006] and Koh et al. [22] implemented asynchronous parallel
PSO procedures to improve computational efficiency. Some
methods proposed in the literature focus on the communica-
tion strategies or the neighborhood topologies [23-25]. These
methods are all more efficient than serial PSO procedures
and are implemented on distributed systems. The first GPU
implementation of PSO was proposed by Li et al. [26].
With the convenient programming environment in NVIDIA
CUDA, more methods are implemented on GPU and in
CUDA [21]. The implementation of parallel PSO procedures
on GPU has higher demands on information sharing than on
CPU. Prasain et al. [27] designed serial and parallel proce-
dures for the option pricing algorithm using basic principles
of PSO and evaluated the performance of these procedures

Discrete Dynamics in Nature and Society

on a cluster of multicore machines. Solomon et al. [28]
implemented a collaborative multiswarm PSO procedure on
GPU using many swarms rather than just one. They applied
this PSO procedure to a real-world application, the task
matching problem, in a heterogeneous distributed computing
environment. Roberge and Tarbouchi [29] developed parallel
implementation of PSO on CUDA-GPU and applied this
parallel PSO procedure to the problem of 3D pose estimation
of abomb in free fall. Souza et al. [30] proposed a cooperative
evolutionary multiswarm optimization procedure based on
CUDA to solve engineering problems. The procedure used
the concept of master/slave swarm with the mechanism of
data sharing for the acceleration of convergence. Therefore,
parallel PSO procedures and their variants based on GPU and
CUDA have been used in many domains.

In this study, two PSO procedures, a serial PSO procedure
for graph drawing (S-PGD) and a parallel PSO procedure
for graph drawing at vertex level (V-PGD), are proposed
for undirected graph drawing. These two PSO procedures
have similar modules but different implementation. PSO is
used to optimize the graph drawing problem. The graph is
initialized as a swarm of random particles. Each particle
stores the position information of all vertices in the graph
and corresponds to one layout of the graph. All particles
automatically update their positions and velocities in the
searching process for the optimal layout until the procedure
terminates. Each particle has a fitness value representing the
energy of the corresponding layout. The definition of the
fitness function is given on the basis of the force-directed
method. The performances of the two procedures are ana-
lyzed for their effectiveness, running time, and convergence
through experiments on different graphs.

The remainder of this paper is organized as follows. In
Section 2, introductions to the force-directed method for
graph drawing and to PSO are given. Section 3 describes
the S-PGD procedure in detail including the structure of the
particles, the definition of the fitness function, and a pseu-
docode of the procedure. In Section 4, the implementation
of V-PGD is explained and its time complexity is analyzed.
The performances of the two procedures are examined in
Section 5 through several experiments on different graphs.
Conclusions and future research directions are given in
Section 6.

2. Related Works

The force-directed graph drawing method is briefly discussed
first. Relevant concepts in PSO are then reviewed.

2.1. Force-Directed Graph Drawing. Due to its simple imple-
mentation and good flexibility, the force-directed method is
often used for drawing undirected graphs with straight-line
edges. The methods in Eades [4], Fruchterman and Reingold
[8], Hu [31] and Kamada, and Kawai [7] are some known
examples based on the force-directed method.

The spring-embedder method proposed by Eades [4] is
the earliest method for drawing general graphs. This method
likens a graph to a system with electrically charged rings (the
vertices) and connecting springs (the edges). Any two vertices

Discrete Dynamics in Nature and Society

are pushed by a repulsive force and adjacent vertices con-
nected by an edge are pulled together by an attractive force.
The method seeks equilibrium of these conflicting forces as
constraints and is very successful with small graphs. Let d
represent the Euclidean distance between the two vertices j
and k. The attractive and repulsive forces between vertices
j and k, represented by f,(d ;) and f,(d), respectively, are
defined by [4]

. (djk) = Klogd,

K ¢))
fr (djk) = d_z’
jk

where K is the radius of the circle. The center of the circle is a
vertex and no other points are in the circle. In the F-R method
[8], the attractive force is defined as follows:

a3,
j
faldi) = 50> @
and the repulsive force is defined as follows
CK’
feldp) == (3)
jk

where K and C are constants. The final layout has a locally
minimal energy with respect to the vertex positions. It
can be seen from (2) and (3) that the attractive force is
proportional and the repulsive force is inversely proportional
to the squared Euclidean distance.

2.2. Particle Swarm Optimization. PSO is a simple but power-
ful heuristic optimization technique introduced by Eberhart
and Kennedy [9]. It is a global optimization method using a
swarm of particles with random positions searching for the
best position by updating their velocities and positions. Each
particle in the swarm searches the optimum of a function,
termed the fitness function, by keeping track of the best
position it has found and the best position found by the whole
swarm of particles. The best position found by a particle is
called the local best position of the particle, and the best
position found by the whole swarm is called the global best
position. The domain of the fitness function is called the
search space. Guided by the local best position and the global
best position found so far, particles move over the search
space in the searching process for an optimum.

Let Pos; and Vel; be the position vector and the velocity

vector, respectively, of particle i at time t. Let Pos;.p best

represent the local best position found by particle i and let
Pos?*! represent the global best position found by all the
particles in the whole swarm up to the current time ¢. The
position vector and velocity vector of particle i at time ¢ + 1
can be computed using (4) and (5), respectively, as follows:
Veli™! = wVel; + R, (Posf.D best _ Posf)
(4)
+ R, (Posgbm - Posf)

Pos;™' = Pos; + Vel/*', (5)

where w is the inertia weight; R, and R, are two random
numbers; and ¢, and ¢, are the cognitive and social scaling
parameters.

3. S-PGD: A Serial PSO Procedure for Graph
Drawing on CPU

S-PGD is discussed in detail in this section. After the
structure and the fitness function are described, a pseudocode
is presented.

3.1. Structure of the Particles. The key of designing a good
PSO procedure is to determine the structure of the particles.
A good structure makes the problem simple and intuitive. In
this work, designing a PSO heuristic for the graph drawing
problem is a difficult task. The following method is adopted
for the structure of a particle.

Let G(V, E) be an undirected graph, where V is a set of
vertices or nodes and E is the set of edges or links. A layout
of a graph is a mapping of the vertices to the Euclidean space:
V — R%. That is to say, a vertex is mapped to a position in the
Euclidean space in the graph drawing procedure. Different
distributions of the vertices correspond to different layouts.
The following model is used to represent the structure of the
particle swarm:

S=((PLPy.... P,

1

,PL), Pos?™, [m,n,t), (6)

Pl = (Posf,Velﬁ,Posfb“t,fipbm), i=1,2,...m, 7)
Pos; = ((Pivs Pizr--» Pigp- -+ Plu)) (8)
Vel; = ((vfl,vfz,...,vﬁj,...,vfn)). 9

In (6), S is the structure of the particle swarm; Pit is the

structure of particle i; Pos?”*" and £, as defined above,
represent the global best position and the global best fitness
value found by the whole swarm up to the current time t;
m is the number of the particles in the swarm; and 7 is the
dimension of the search space, that is, the number of vertices
in V. In (7), as defined above, Posf is the position vector and

Vel! is the velocity vector of particle i; Pos”**" represents the

local best position and f7 best represents the local best fitness
value found by particle i up to the current time ¢. In (8) and
9), pf.j is the position and vfj is the velocity of vertex j in

particle i at the current time ¢. For vertex j, both p; jand vﬁj are
two dimensional vectors. Furthermore, let N = mn represent
the total number of vertices in the whole particle swarm.

A particle with such a structure corresponds to one layout
of the graph. The energy of the layout is converted to the
fitness value of the particle. Whether a layout is aesthetic can
be evaluated by the fitness value f(Pos;). The objective of a
graph drawing algorithm is to find an aesthetic layout with the
best fitness value. It is evident that the particle with the best
fitness value corresponds to an optimal layout of the graph.
Each particle in the swarm updates its velocity and position
using (4) and (5), respectively, in the searching process.

3.2. Fitness Function. The selection of a fitness function is
very important for the success of the PSO procedure. An
efficient fitness function is helpful for the particles in the
swarm to find good solutions quickly. In the PSO procedure,
a particle corresponds to one layout of graph drawing. The
objective of graph drawing is to find an aesthetic visual
representation of the vertices and the links between the
vertices. Different types of graphs need different types of
representations. However, no uniform criteria can be used
to evaluate the performance of different representations.
Inspired by the spring-electrical model, the ideas in the F-R
method [8] and the method in Hu [31] are used to define the
fitness function.

The force-directed method is an iterative procedure that
repeatedly calculates the attractive and repulsive forces of
each vertex and then moves the vertices along the direction
of the forces for a displacement until the layout reaches a
stable state. The attractive and the repulsive forces between
two vertices j and k are defined in (2) and (3), respectively.

The energy contribution by the attractive and repulsive
forces of the link between two vertices j and k in a layout at
any given time is defined as follows:

Foe (@) = fu(dip) + £, (d)- (10)

The fitness function of particle i at time ¢ representing a layout
based on the energy contributions of the links is defined as
follows:

f(Pos:) = Z fue (djk) fori=1,...,m. (1)

jkeE

The fitness function maps the position vector Pos; of
particle 7 into a real number representing the energy of the
layout f(Pos;). The energy will be low if adjacent vertices in
the original graph are close to each other in the layout and
will be high otherwise. A particle with the minimum value of
the fitness function is a global optimal particle. An aesthetic
layout of a graph is obtained by searching for a minimum
value of the fitness function. Therefore, the graph drawing
problem reduces to the problem of finding a minimum value
for the fitness function.

3.3. Pseudocode. S-PGD has four basic modules: initial-
ization, fitness value computation, local and global best
position and best fitness value update, and position and
velocity update of the particles. In S-PGD, the fitness value
computation, the most time-consuming module, is based on
the definition in (11). It computes the fitness value by adding
together the energy contributions of the links. Pseudocode 1
is a detailed description of S-PGD. In the pseudocode, Itr is
the number of iterations.

4. V-PGD: The Parallel PSO
Procedure on GPU

In this section, V-PGD, the proposed parallel PSO procedure
at vertex level on CUDA-GPU, is described. Although having
the same operations in the modules of initialization, local

Discrete Dynamics in Nature and Society

and global best position and best fitness value update, and
position and velocity update for the particles as in S-PGD,
V-PGD adopts parallel strategies in the module of fitness
computation to reduce computation time. There are three
reasons for doing this.

The first reason is that the GPU has more cores in
comparison to the CPU. A CPU commonly has 4 to 8 fast
and flexible cores, whereas a GPU has hundreds of relatively
simple cores. Tasks that can be efficiently divided across many
threads will see enormous benefits when running on a GPU.

The second reason is that the performances of two parallel
methods should be compared in the same environment. It is
difficult to run the parallel procedure on multicore CPU due
to the large number of particles and vertices.

The last reason is that CUDA is a handy tool to develop
parallel scientific codes for massively parallel computation.
It is actually sufficient to install a compatible GPU and the
compiler SDK [21] to develop parallel codes using a high-level
computer language. The computer language C is used in this
study.

In order to take full advantage of parallelization offered
by CUDA-GPU, the following two specific programming
guidelines are followed [21]:

(1) Minimize data transfers between CPU and GPU.

(2) Minimize the use of global memory. Shared memory
is more preferred.

CUDA C extends C by allowing the programmer to
define C functions, called kernels, that, when called, are
executed multiple times in parallel by multiple different
CUDA threads, as opposed to only once like regular C
functions [21]. The kernel function does the following:

(1) Loads data from the global memory
(2) Processes data

(3) Sends results back to the global memory

4.1. V-PGD: The Vertex-Level Parallel PSO Procedure for
Graph Drawing. The energy contribution of vertex j in the
layout of particle i at time ¢ is the sum of the energy
contributions of all the links connected to vertex j, which is
given as follows:

folpy) = 2 fee(ds) for j=Liom ()

{jkicE

The fitness function of particle i representing a layout
at time ¢ in (11) can be written as (13) based on the energy
contribution of vertices (12):

f(Posf) = %va (pfj) fori=1,...,m. (13)
j

In V-PGD, a kernel function is defined to compute the
energy contribution of each vertex using (12) in parallel.
When it is called, the kernel function executes N times in
parallel by N different CUDA threads and once for each
vertex in V in the layout of a particle. The computation of the

Discrete Dynamics in Nature and Society

% Initialization

fort =1to Itr

fori=1tom
[f(Pos) = 0;
forj=1ton
fork=1ton
{ if (jk) € E
compute d ;3

}

% Update Pos"" and Vel;"'
Update Vel;"' using (4);
Update Pos!™" using (5);
}
}

Output the final best layout Pos?*",

Set the values for the parameters w, ¢;, ¢, and Itr;
Randomly initialize the position vector Pos? for each particle i, fori = 1,2,...m;
Randomly initialize the velocity vector Vel? for each particle i, fori = 1,2,...m;

{ % Computation of fitness for each particle

compute fa(d]-k) using (2);
compute f,(d ;) using (3);
compute f,.(d ;) using (10);
f(Pos;) = f(Pos) + f,.(dj)s

% Update Pos™" and Pos?""
If f(Pos;) < f7 bt then fr best _ f (Pos!), Pos’ best Pos;;
If f(Pos!) < 9", then f9**' = f(Pos!), Pos?**" = Pos!;

PseUDOCODE 1: Pseudocode of S-PGD.

| Py | Py | e | B | | By | < Global memory
| B, | B, | | B; | | B, | <—— m thread blocks
| T; | T; | | T;; | | Tin | < 1 thread block
Pos;:| Pit Pix s Pij Pin
<—— Shared memory
Vel;: | Vi Viz e Vij Vin

Pij | ¢<—— 1thread
<—— Local register

FIGURE 1: Data structure and parallel pattern of V-PGD.

energy contribution in (12) in V-PGD is quite different from
that in S-PGD, where the fitness defined in (11) is computed
in serial by one thread. Such parallel implementation greatly
reduces the running time and improves the performance of
the procedure. Figure 1 gives a detailed description of the
data structure and the parallel pattern in V-PGD. In Figure 1,
B; represents thread block i in CUDA, and Tj; represents
thread j in thread block i. One thread executes the kernel

function to compute the energy contribution of one vertex
(12) in a layout of a particle and # threads in one thread block
execute the kernel function » times in parallel to compute the
contributions of all n vertices in one layout at the same time.

As shown in Figure 1, the position vectors of all particles
are transferred to the global memory once at the start of each
iteration. Each thread reads the position vector of one particle
from the global memory to the shared memory of its block

Discrete Dynamics in Nature and Society

Initialization
fort=1toltr=1

}
Output the final layout P7*,

{ Compute the fitness using the kernel function of V-PGD;
P g
Update Pos!” best and Pos?**;
Update Pos! ™ and Vel!*;

PSEUDOCODE 2: Pseudocode of V-PGD.

(pij) =05

fork=1ton

{ if(j,k) € E then
compute d ;

}
syncthreads();

Transfer position vectors of all particles from CPU to GPU

compute f,(d ;) using (2);
compute f,(d &) using (3);
compute f,.(d ;) using (10);
Fl) = f(p) + fueldy)s

compute f (Pos;) in the parallel reduction

PSEUDOCODE 3: Pseudocode of the kernel function of V-PGD.

and only computes the energy contribution of one vertex
which has the same index as the thread does. The pseudocode
of V-PGD is shown in Pseudocode 2.

A pseudocode of the kernel function is shown in
Pseudocode 3. It is for a typical vertex j in particle i. The
kernel function is executed at each vertex in parallel in the
n vertices of a layout of a particle within each of the m thread
blocks implementing the particle swarm. Hence, it runs on N
threads in parallel at the same time.

V-PGD is implemented using one CUDA kernel for one
swarm, one particle in the swarm corresponds to a thread
block, and one vertex of the layout in a particle corresponds to
one thread. The number of thread blocks and the number of
particles in a swarm are the same. Each thread only computes
the contribution to the fitness of one vertex. The number
of threads in each thread block is equal to the number of
vertices in the graph. After each thread in the same block has
computed the contribution to the fitness of one vertex, the
sum of the contributions to the fitness of all vertices in the
corresponding layout of the particle is computed by means of
parallel reduction [Karniadakis et al., 2003]. Reduction is a
parallel approach to compute the sum and can take further
advantage of the power of parallel computation.

4.2. Time Complexity. In fact, fitness computation is often the
most computation-intensive module in a PSO procedure. The
time complexity of fitness computation is usually considered
to be a significant measure when evaluating the performance
of a procedure. In S-PGD, all modules are implemented

serially on a single CPU. In each iteration, the time complex-
ity of fitness computation is O(mn*). 1t is evident that the
running time becomes longer and longer when the number
of particles and the number of vertices increase.

In V-PGD, one thread block with # threads calculates the
fitness value of a particle. There are m thread blocks. In each
iteration, all N threads call the same kernel function simul-
taneously. The pseudocode of the kernel function of V-PGD
shows that the time complexity of the kernel function is O(n).
Because all threads call the kernel function simultaneously,
the time complexity of V-PGD is also O(n). Therefore, the
time complexity of V-PGD is reduced to O(n).

4.3. Updating Strategy of the Best Positions. The serial and
parallel PSO procedures have another difference in their
updating strategies of the best positions in addition to their
implementation of the fitness computation. The flowcharts
in Figure 2 show this difference. S-PGD uses a synchronous

strategy to update the best positions Pos? bt fori=1,...,m,

and Pos?*'. Each Posfbm, fori = 1,...,m, or Pos?"*" is
updated immediately after the fitness of a particle is computed

in each iteration. V-PGD uses an asynchronous strategy to

update the best positions Posf best fori = 1,...,m, and

Pos?%°*t. Each Posf bm, fori=1,...,m,or Pos?®" is updated
at the end of each iteration after the fitness of all particlesin a
swarm has been computed. The asynchronous strategy skips
some computation steps and, therefore, makes the swarm find
the optimal solution more quickly.

Discrete Dynamics in Nature and Society

. i

L 1

Compute f (Postl) Compute f (Posﬁ) Compute f(Posfn)
N2
Compute f(Pos!) io1
i=i+1 I
¢
Update Pos best and Pos??et Update Pos best and Pos??**t
i=i+1
No
No i>m
Yes Yes

(a)

(b)

FIGURE 2: The updating strategies: (a) the synchronous updating strategy of S-PGD and (b) the asynchronous updating strategy of V-PDG.

5. Experiments and Performance Analysis

Computational results on some graphs are reported in this
section. Some of the graphs are from the literature and others
are randomly generated. Since the fitness function is based on
the force-directed method, the performance of the two PSO
procedures is compared with that of the F-R method [8] on
the layouts of graph drawing. The performance of V-PGD is
also compared with that of S-PGD. These two procedures are
compared on some graphs with different numbers of vertices
and edges. The parameters in the PSO procedures are set to
w = 072 and ¢, = ¢, = 2.02. The computer used for the
experiments in this study has an Intel Core 2 Quad 2.83 GHz
CPU, 4.00 GRAM, and NVIDIA GeForce GTX 560 Ti GPU
using the Windows 8 operating system. For the attractive and
repulsive forces defined in (2) and (3), values of the constants
K and C similar to those in the F-R method [8], that is,
K = 0.1 and C = 0.2, are used. Tmp in the F-R method is
the temperature parameter [8].

5.1. Effectiveness. Although S-PGD and V-PGD can find
similar solutions, the time complexity of V-PGD is much
lower and, therefore, is used for the comparison with the F-
R method. In V-PGD, m = 20 and Itr = 300 are used. In
the F-R method, Tmp = 5 and Itr = 300 are used. The layouts
obtained by the F-R method and by V-PGD on 10 graphs from
Fruchterman and Reingold [8] are listed in Figure 3. Most
of the drawings by V-PGD look aesthetic and symmetric.
Specifically, the layout of g2 obtained by V-PGD has fewer
crossing edges than that obtained by the F-R method.
Results on three real graphs from social networks
obtained with the F-R method and with V-PGD are compared
in Figure 4. The first, g_K, is Zachary’s karate club (data
and network are available at UCI Network Data Repository,
http://networkdata.ics.uci.edu/data.php?id=105) [32] which
has 34 vertices and 78 edges. The second, g_D, is the dolphin
social network (data and network are available at UCI
Network Data Repository, http://networkdata.ics.uci.edu/
data.php?id=6) [33] which has 62 vertices and 105 edges.
The last, g_F, is the American college football network (data

and network are available at UCI Network Data Repository,
https://networkdata.ics.uci.edu/data.php?id=5) [32] which
has 115 vertices and 613 edges. The parameters in V-PGD are
set to m = 50 and Itr = 2000 for g_K, m = 60 and Itr = 4000
for g_D, and m = 80 and Itr = 6000 for g_F. The parameters in
the F-R method are set to Tmp = 20 and Itr = 2000 for g_K,
Tmp = 30 and Itr = 3000 for g_D, and Tmp = 50 and Itr =
5000 for g_F. The layouts obtained by these two methods look
aesthetic and are distributed evenly.

The graphs g3, g6, g7, g8, and t2 are also drawn by V-PGD
with varying values of m to see its effects. The evolutionary
drawings with varying values of m by V-PGD are shown in
Figure 5. When m = 1, all of the five graphs are poorly drawn.
The layouts become better and better with the increase in
the value of m. When m increases to 10, g3, g7, and g8 have
aesthetic layouts. When m increases to 20, all of them have
aesthetic layouts.

Unlike in the F-R method, no restrictions are imposed on
the size of the drawing canvas in either S-PGD or V-PGD,
although the size of the drawing canvas determines the size
of the layout of a graph. Most of the layouts obtained by V-
PGD in Figures 3-5 lie in the unit square [0, 1] x [0, 1] except
for g8 with m = 1 and t2 with m = 1 in Figure 5, whereas
the drawing canvas of the F-R method has different sizes for
different graphs.

In V-PGD, two factors determine the size of the drawing
canvas. One factor is the initial layout, and the other is
evolution of the vertices in the PSO optimization process.
When the PSO procedure is initialized, the positions of the
vertices are randomly generated in the unit square. In the PSO
optimization procedure, the positions of the vertices are not
limited to stay within the unit square and eventually some of
the vertices may move out of the unit square. As a result, the
layouts of most of the graphs obtained by V-PGD are in the
unit square with a few exceptions.

The drawing canvas in the F-R method is defined from
experience before the drawing starts. In the searching pro-
cess, a strategy is used to adjust the positions of those vertices
outside of the drawing canvas. Hence, the final layout is
within the predefined drawing canvas. The results show that,

http://networkdata.ics.uci.edu/data.php?id=105
http://networkdata.ics.uci.edu/data.php?id=6
http://networkdata.ics.uci.edu/data.php?id=6
https://networkdata.ics.uci.edu/data.php?id=5

Discrete Dynamics in Nature and Society

GRAPH gl g2 23 g4
0.89 0.95 0.93 0.84
0.88 0o 8'3? 0.82
0.87 . :
0.8
0.86 0.9
V-PGD 0.85 0.85 0.89 0.78
) 0.84 08 0.88 0.76
0.83 : 0.87 074
0.82 0.75 0.86
0.81 0.85 0.72
0.8 0.7 0.84 0.7
0.85 0.87 0.89 0.91 0.93 095 04 05 06 0.7 0.73 0.75 0.77 0.79 0.81 0.3 0.34 0.38 0.42 0.46
0.8 4 15 4
0.6 3 . 3
0.4 2 2
0.2 1 0.5 1
F-R 0 0 0
-0.2 -1 0 -1
-0.4 -2 05 -2
~0.6 -3 -3
-0.8 -4 -1 4
08 —04 0 04 08 4 -2 0 2 4 -1 =05 0 05 1 15 3-2-10 1 2 3 4
GRAPH g5 g6 g7 g8
1.06 0.9 0.9 0.7
1.04 0.85 0.85 0.65
1.02
0.8 0.8 0.6
V-PGD 1
0.98 0.75 0.75 0.55
0.96 0.7 0.7 0.5
0.94 0.65 0.65 0.45
074 078 0.82 0.86 0.55 0.6 0.65 0.7 0.75 0.8 0.65 0.7 0.75 0.8 0.85 0.9 0.55 0.6 0.65 0.7 0.75 0.8
1.5 5 5 5
1 4 4 4
3 3 3
0.5 2 2 2
0 1 1 1
F-R 0 0 0
-0.5 -1 -1 -1
-1 —g -2 -2
- -3 -3
-15 4 4 ~
) -5 -5 -5
2 -1 0 1 2 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5
GRAPH tl t2
0.9 0.9
0.85 0.85
0.8 0.8
0.75 0.75
V-PGD 0.7 0.7
0.65 0.65
0.6 0.6
0.55 0.55
0.5 0.5
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
15 10
8
10 6
4
3 2
F-R 0 0
-2
_5 _4
~10 -6
-8
-15 -10
-15 -10 -5 0 5 10 15 ~10-8 6 -4-20 2 4 6 8 10

FIGURE 3: Drawings by V-PGD and by the F-R method on 10 graphs.

Discrete Dynamics in Nature and Society 9
GRAPH g K g D g F
0.7 0.7 0.7
0.65) 0.65 0.65
0.6 0.6 0.6
0.55 0.55 0.55
V-PGD 05 0.5 0.5
0.45 0.45 0.45
0.4 04 0.4
0.35 0.35 0.35

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.4

20 40
151" 30

10 20

5 10

F-R 0 0
-5 -10

-10 -20

15 \ 2\, -30

-20 i —40

30
20
10

0
-10
=20
=30

-20 =15 -10 -5 0 5 10 15

—40 =30 =20 -10 0

10 20 30 40 -40 =30 =20 -10 0 10 20 30 40

FIGURE 4: Drawings by V-PGD and by the F-R method on 3 real graphs.

TaBLE 1: Running time (s) of the three methods on 10 graphs.

PSO

F-R
S-PGD V-PGD

gl 0.049 0.148 0.014
g2 0.119 0.150 0.016
g3 0.061 0.149 0.015
g4 0.097 0.151 0.016
g5 0.077 0.149 0.015
g6 0.173 0.153 0.016
g7 0.173 0.152 0.016
g8 0.172 0.153 0.016
tl 0.663 0.160 0.023
2 0.549 0.158 0.026

without this restriction, either S-PGD or V-PGD obtained
very good results for these graphs.

5.2. Running Time. The running times of S-PGD, V-PGD,
and the F-R method on the 10 small graphs in Figure 3 are
shown in Table 1. The parameters of these three methods are
the same as those used when the layouts in Figure 3 were
drawn. From the results in Table 1, the F-R method takes the
shortest running time among the three methods. The running
time of V-PGD is indeed an order of magnitude higher than
that of the F-R method. Although both V-PGD and the
F-R method produce quality graph drawings, some graphs
produced by V-PGD are more aesthetic. Such results at least
show that the proposed methods are feasible. Of course,
many improvements need to be made. Between the two PSO
procedures, the running time of S-PGD is shorter from gl to

g5; the running time of V-PGD is shorter from g6 to t2. The
running time of V-PGD is between 0.14 s and 0.16 s. These
results show that the performance of S-PGD is better than
that of V-PGD on small graphs with n < 6. In fact, the data
transfers between the CPU and the GPU can produce large
overhead, especially for small-scale graphs. This is inevitable
in the current computing environment of the hardware and
the software. One way to improve performance is to reduce
the number of the data transfers in the program.

Three groups of graphs with similar structures but differ-
ent numbers of vertices and edges are used in the following to
analyze the relationships among the number of vertices, the
number of particles, and the running time. Group 1 consists
of seven randomly generated graphs withn = 6 ton = 18.
Group 2 consists of 10 randomly generated graphs with n = 10
to n = 100. Group 3 consists of 6 randomly generated graphs
with n = 1000 to n = 6000.

The layouts of the graphs in Group 1 are shown in Figure 6.
The running times in seconds of S-PGD and V-PGD on the
seven graphs in Group 1 are shown in Figure 7 with m = 30
and Itr = 1500. At n = 6, S-PGD is faster. As n increases,
V-PGD becomes faster.

The running times of S-PGD and V-PGD on gl4 with
n = 12 are shown in Figure 8 with Itr = 600 and varying
m. Figure 8 shows that V-PGD is faster. The running time of
S-PGD increases linearly but that of V-PGD stays almost the
same as 1 increases. Such results show that the performance
of V-PGD is better than that of S-PGD for large-scale graphs.

The layouts of the 10 randomly generated graphs in Group
2 are displayed in Figure 9. The running times of S-PGD and
V-PGD on the 10 randomly generated graphs in Group 2 with
m = 50 and Itr = 6000 are compared in Figure 10. It is

10 Discrete Dynamics in Nature and Society
m=1 m=>5 m =10 m =20
0.8 0.86 0.64 0.93
0.7 0.85 0.63 0.92
’ 0.84 0.62 0.91
0.6 0.83 0.61 0.9
, 0.5 0.82 0.6 0.89
8 04 0.81 0.59 0.88
0.3 0.8 0.58 0.87
’ 0.79 0.57 0.86
02 0.78 0.56 0.85
0.1 0.77 0.55 0.84
-0.15 —0.05 0.05 0.5 025 0.83 0.85 0.87 0.89 091 093 0.5 0.52 054 056 0.58 0.73 075 0.77 0.79 0.81
0.9 0.9 0.34 0.9
0.8 0.85 0.32
0.7 0.8 0.3 0.85
g.g 0.75 0.28
I 0.7 0.26 0.8
03 0.65 0.24 0.75
02 0.6 0.22
0.1 0.55 0.2 0.7
0 0.5 0.18
-0.1 0.45 0.16 0.65
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 035 045 055 0.65 035 045 055 065 055 0.6 0.65 0.7 075 0.8
1 0.95 1 0.9
0.9 0.9 0.95 085
0.8 0.85 0.9 '
0.7 0.8
0.6 : 0.85 0.8
g7 05 0.75
: 07 0.8 0.75
0.4 : 0.75
0.3 0.65 ’ 0.7
0.2 0.6 0.7
0.1 0.55 0.65 0.65
0.4 0.5 0.6 0.7 0.8 0.9 1 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.65 0.7 0.75 0.8 0.85 09 065 0.7 0.75 0.8 0.85 0.9
1.1 0.7 0.74 0.7
1 0.72
0.65 -
0.9 0.7 0.65
o8 0.6 0.55 0.66 .
05 0.5 0.64 055
0.4 0.45 0.62
0.3 0.6 0.5
0.2 04 0.58
0.1 0.35 0.45
0 01020304050607 048 052 0.56 0.6 0.64 -0.05 0 005 0.1 0.5 02 055 0.6 0.65 0.7 075 0.8
0.8 0.95 0.9
0.7 0.9 0.85
0.85
0.6 0.8
0.8 0.75
0.5 0.75
t2 0.7
0.4 0.7
0.65 0.65
0.3 :
0.6 0.6
0.2 0.55 0.55
0 0.1 0.5 0.5
0 02040608 1 121.4 02 04 06 08 1 1.2 0.65 0.75 0.85 095 0.45 0.55 0.65 0.75 0.85

FIGURE 5: Evolutionary drawings with varying number of particles by V-PGD.

evident that S-PGD takes much more running time than V-
PGD does, with an exception of graph rgl, when the same
number of particles is used running the same number of
iterations. When the numbers of vertices and edges increase,
the advantage of V-PGD becomes more and more evident.
The running times of S-PGD and V-PGD on graph rg6
with Itr = 6000 and varying m are shown in Figure 11. As m

increases, V-PGD becomes faster than S-PGD. The running
time of S-PGD increases linearly and that of V-PGD only
increases slightly. Such results show that the performance of
V-PGD is better than that of S-PGD for large-scale graphs.
Figures 10 and 11 show that the running time of S-PGD
increases quickly as the numbers of particles and vertices
increase, but that of V-PGD increases only slightly. Such

Discrete Dynamics in Nature and Society

1

gl3 (n = 10)

gl4 (n =12)
0.7 0.7

0.65 0.65
0.6 0.6
0.55 0.55

0.5 0.5

0.45 0.45
0.55 0.6 0.65 0.7 0.75 0.8

gl7 (n =18)

035 04 045 0.5 0.55

0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

065 075 085 0.95

FIGURE 6: Layouts of seven graphs (gl1-gl7) in Group 1 with different numbers of vertices.

11 (n = 6) 12 (n = 8)
1.06 & 1.02 &
1.04 1
1.02 0.98
1 0.96
0.98 0.94
0.96 0.92
0.94 0.9
0.92 0.88
0.9 0.86
0.88 0.84
084 0.88 092 096 0.74 0.78 0.82 086 0.9
gl5 (n = 14) gl6 (n = 16)
0.75 1
0.7 0.95
0.65 0.9
0.6 0.85
0.55 0.8
0.5 0.75
0.45 0.7
0.4 0.65
0.35 0.45 0.55 0.65 0.65 0.75 0.85 0.95
4
35 F
3 L
g 25}
o
=l
g 2t
=
5
&
15}
1L
0.5 L L L L L
6 8 10 12 14 16 18
Number of vertices
—A— S-PGD
—©— V-PGD

FIGURE 7: Running times of gll-gl7 in Group 1 (m = 30 and Itr =
1500).

results can verify the time complexity of the two procedures.
For each iteration, the time complexity of S-PGD is O(mn*)
which is proportional to the number of particles, but that
of V-PGD is O(n) which is not related to the number of
particles due to parallel computation. Therefore, the varying
number of particles has no influence on the running time
in the parallel PSO procedure. V-PGD might fail to work
for very large graphs with more than 1024 vertices under the
structure proposed in this study. Hence, it is a good approach
for graphs with no more than 1024 vertices.

1.4

Running time (s)

5 10 15 20 25 30 35 40 45 50
Number of particles

—4— S-PGD
—©- V-PGD

FIGURE 8: Running times of gl4 (n = 30 and Itr = 600).

5.3. Convergence Analysis. Convergence analysis is an impor-
tant aspect in evaluating the performance of PSO procedures.
Figures 12-14 show the changes in the fitness values in the
searching process of the PSO procedures when the iterations
increase on graphs g7, gl4, and g K. These results show
that the two PSO procedures can converge after a number
of iterations. Different graphs need different number of
iterations depending on many factors, such as the size of the
graph, the number of particles, and the parameters used in
the procedures. The number of iterations is only one of these
factors affecting convergence.

12 Discrete Dynamics in Nature and Society
rgl (n = 10) rg2 (n = 20) rg3 (n = 30) rg4 (n = 40) rg5 (n = 50)
0.5 0.9 0.95 07
0.48 ‘4 0.9 0.6
0.46 085 \ /l 0.85 055
0.44 : /WV‘Q' 08 05
02 08 ‘ é‘ié’(’ (oo 0.45
04 07 ‘(‘m‘\yé“ : 0.4
0.38 ’ NETHT TN 4 0.7 035
D
‘ \#/‘ y 0.65 03
0.36 07 Wy
034 .' 0.6 025
0.32 0.65 0.55 0.2
018 022 026 03 0.7 0.8 0.9 1 035 045 055 0.65
rg7 (n = 70) rgl0 (n = 100)
0.7 0.95 0.7 0.7 0.75 - —
0.65 0.9 0.65 0.65 0.7 SN AT
0.85 0.6 0.6 0.65
0.6
0.8 055 055 0.6
0.55 0.5
0.75 0.5 0.45 0.55
05 0.7 045 '0 4 0.5
045 0.65 04 035 0.45
04 06 035 ; 03 04
035 055 : 025 0.35
0.35 045 055 0.65 05 06 07 08 09 035 045 055 065 075 035 045 055 065 075 035 045 055 065 075
FIGURE 9: Drawings of 10 random graphs in Group 2.
800 T T T T T T T T 600 T T T T T T T T
700
500
600
—_ —~ 400
\3 500 2z
[
£ E
& 400 & 300
g £
= =
=) =
S 300t =
& & 200
200
100
100
10 20 30 40 50 60 70 80 90 100 010 20 30 40 SIO 6I0 70 80 90 100
Number of vertices Number of particles
-4~ S-PGD —A— S-PGD
—— V-PGD —o— V-PGD

FIGURE 10: Running time of rgl-rgl0 (m = 50 and Itr = 6000).

The relationships between the fitness values and the
number of particles using V-PGD for graphs g7, gl4, and g_K
are shown in Figures 15-17. In Figures 15-17, | p| is the number
of the particles. That is to say, |p| = m. As shown in these
figures, the number of particles does not noticeably influence
convergence. Hence, using a large number of particles is
not always necessary. It can be seen from the evolutionary
drawings of graphs g3 and g7 in Figure 5 that there are no
obvious improvements in the drawings when the number of
particles increased from 10 to 20. Therefore, simply increasing
the number of particles may not be able to improve the
effectiveness of the procedures for some graphs. However,
exceptions may still exist, especially in some real graphs.

FIGURE 11: Running time of rg6 (n= 60 and Itr = 6000).

6. Conclusions and Future Work

Two PSO procedures, S-PGD and V-PGD, are developed for
the graph drawing problem. As a population-based meta-
heuristic, PSO has the advantages of robustness, effectiveness,
and simplicity and is suited to optimizing graph drawing.
The graph drawing problem is transformed to a problem of
positioning the vertices by using the force-directed method.
One particle corresponds to one layout of the graph in the two
procedures. The two procedures are both effective although
with different implementation and time complexities. Exper-
iments on different graphs are conducted to compare the
performances of the two procedures and of the F-R method

Discrete Dynamics in Nature and Society

14 T T T T T T T T T

121

123
3
g
)
0 1 1 1 i 1 L
0 20 40 60 80 100 120 140 160 180 200
Iterations
— S-PGD
—— V-PGD
FIGURE 12: Convergence of g7 (m = 20).
4.5 T T T T T
4 .
3.5 1
3 .
» 2.5 7
3
£
2 J
1.5 1
1 I .
0.5 k
0
0 100 200 300 400 500 600
Iterations
— S-PGD
—— V-PGD

FIGURE 13: Convergence of gl4 (m = 40).

in terms of effectiveness, running time, and convergence. The
following conclusions can be drawn:

(i) Compared to the F-R method, the two PSO proce-
dures are effective and can obtain better results on
some graphs.

(ii) The two PSO procedures converge to the best solution
with the evolution of particles.

Fitness

Fitness

80 T T

13

0 1 I
0 500 1000 1500
Iterations
— S-PGD
—— V-PGD
FIGURE 14: Convergence of g_K (m = 50).
2 T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200
Iterations
— |P| =15
— |P|=20
— Pl =25

FIGURE 15: Fitness of g7 (V-PGD).

(iii) S-PGD uses less running time on small graphs but V-
PGD uses less running time on large graphs.

(iv) The running time of S-PGD increases linearly but that
of V-PGD does not change much as the number of
particles increases. The larger the number of particles
is, the relatively faster V-PGD runs as compared to S-

PGD.

14

Fitness
N
w

0 1 T T T T
0 100 200 300 400 500 600
Iterations
— |P| =40
—— |P| =50
—— |P| =60
FIGURE 16: Fitness of gl4 (V-PGD).
160
140 |
120
100 1
£ 80}
2
60
40
20
0 1 1 1 1 1
0 200 400 600 800 1000 1200
Iterations
— |P| =40
—— |P| =50
— |P| =60

FIGURE 17: Fitness of g_K (V-PGD).

(v) The running times of the two PSO procedures both
increase linearly as the number of vertices increases.
However, the running time of S-PGD increases much
faster than that of V-PGD.

Discrete Dynamics in Nature and Society

(vi) As the number of particles increases, the effective-
ness of the procedures improves. However, the final
solution does not improve further after the number
of particles reaches a certain value.

Future works in this area are outlined as follows:

(i) Improving the performance of V-PGD and apply it
to large graphs by exploiting the parallel partition
methods of the graphs

(ii) Comparing the performance of V-PGD with other
parallel architectures such as multicore CPU, MPI,
and OpenMP

(iii) Implementing the parallel PSO procedure for other
application domains

(iv) Developing parallel procedures for graph drawing
using other metaheuristics, such as genetic algo-
rithms and ant colony optimization

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this manuscript.

Acknowledgments

This research project is partly supported by the National
Natural Science Foundation of China (Grants nos. 61472231
and 61502283).

References

[1] E. Kruja, J. Marks, A. Blair, and R. Waters, “A short note on the
history of graph drawing,” in Proceedings of the 9th Intl. Symp.
Graph Drawing (GD '01), vol. 2265, pp. 272-286, Springer-
Verlag, London, UK.

[2] W. T. Tutte, “How to draw a graph,” Proceedings of the London
Mathematical Society. Third Series, vol. 13, pp. 743-767, 1963.

[3] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual
understanding of hierarchical system structures,” Institute of
Electrical and Electronic Engineers. Transactions on Systems,
Man, and Cybernetics, vol. 11, no. 2, pp. 109-125, 1981.

[4] P.Eades, “A heuristic for graph drawing,” Congressus Numeran-
tium, vol. 42, pp. 149-160, 1984.

[5] M. Chimani and C. Gutwenger, “Algorithms for the hypergraph
and the minor crossing number problems,” Journal of Graph
Algorithms and Applications, vol. 19, no. 1, pp. 191-222, 2015.

[6] M. A. Bekos, M. Kaufmann, S. G. Kobourov, and A. Symvonis,
“Smooth orthogonal layouts,” Journal of Graph Algorithms and
Applications, vol. 17, no. 5, pp. 575-595, 2013.

[7] T. Kamada and S. Kawai, “An algorithm for drawing general
undirected graphs,” Information Processing Letters, vol. 31, no.
1, pp. 7-15, 1989.

[8] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by
force-directed placement,” Software—Practice and Experience,
vol. 21, no. 11, pp. 1129-1164, 1991.

[9] R. C. Eberhart and J. Kennedy, “New optimizer using particle
swarm theory,” in Proceedings of the Proc. 6th Intl. Symp. on
Micro Machine and Human Science, pp. 39-43, Nagoya, Japan,
1995.

Discrete Dynamics in Nature and Society

(10]

(11]

(12]

(17]

(18]

(23]

[25]

(26]

R. C. Eberhart, J. Kennedy, and Y. Shi, Swarm Intelligence,
Morgan Kaufmann Publishers, 2001.

J. Park and K.-Y. Kim, “Instance variant nearest neighbor
using particle swarm optimization for function approximation,”
Applied Soft Computing Journal, vol. 40, pp. 331-341, 2016.

E Valdez, P. Melin, and O. Castillo, “Modular Neural Networks
architecture optimization with a new nature inspired method
using a fuzzy combination of Particle Swarm Optimization and
Genetic Algorithms,” Information Sciences, vol. 270, pp. 143-153,
2014.

M. R. Bonyadi, Z. Michalewicz, and X. Li, “An analysis of
the velocity updating rule of the particle swarm optimization
algorithm,” Journal of Heuristics, vol. 20, no. 4, pp. 417-452, 2014.
D. Chen, J. Chen, H. Jiang, E Zou, and T. Liu, “An improved
PSO algorithm based on particle exploration for function opti-
mization and the modeling of chaotic systems,” Soft Computing,
vol. 19, no. 11, pp. 3071-3081, 2014.

C. W. Cleghorn and A. P. Engelbrecht, “Particle swarm variants:
standardized convergence analysis,” Swarm Intelligence, vol. 9,
no. 2-3, pp. 177-203, 2015.

N. B. Yahia, N. Bellamine, and H. B. Ghésala, “Combined use
of community detection and particle swarm optimization to
support decision making,” Journal of Computing, vol. 4, no. 5,
pp. 157-163, 2012.

L. Mussi, F. Daolio, and S. Cagnoni, “Evaluation of parallel
particle swarm optimization algorithms within the CUDA™
architecture,” Information Sciences, vol. 181, no. 20, pp. 4642
4657, 2011.

L. De P. Veronese and R. A. Krohling, “Swarm’s flight: Acceler-
ating the particles using C-CUDA,” in Proceedings of the 2009
IEEE Congress on Evolutionary Computation, CEC 2009, pp.
3264-3270, nor, May 2009.

W. Wang, Y. Hong, and T. Kou, “Performance gains in parallel
particle swarm optimization via NVIDIA GPU,” in Proceedings
of the Workshop on Computational Mathematics and Mechanics,
20009.

Y. Zhou and Y. Tan, “GPU-based parallel particle swarm opti-
mization,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC °09), pp. 1493-1500, May 2009.

NVIDIA, CUDA programming guide v. 8.0, NVIDIA Cor-
poration, https://docs.nvidia.com/cuda/cuda-c-programming-
guide/, 2016.

B.-I. Koh, A. D. George, R. T. Haftka, and B. J. Fregly, “Parallel
asynchronous particle swarm optimization,” International Jour-
nal for Numerical Methods in Engineering, vol. 67, no. 4, pp. 578
595, 2006.

J. E Chang, S. C. Chu, J. E Roddick, and J. S. Pan, “A parallel
particle swarm optimization algorithm with communication
strategies,” Journal of Information Science and Engineering, vol.
21, no. 4, pp. 809-818, 2005.

M. Waintraub, R. Schirru, and C. M. N. A. Pereira, “Multi-
processor modeling of parallel Particle Swarm Optimization
applied to nuclear engineering problems,” Progress in Nuclear
Energy, vol. 51, no. 6, pp. 680-688, 2009.

Y. Zhang, D. Gallipoli, and C. Augarde, “Parallel Hybrid
Particle Swarm Optimization and Applications in Geotechnical
Engineering,” in Proceedings of the 4th Intl. Symp. Advances in
Computation and Intelligence (ISICA09), vol. 5821, pp. 466-475,
Springer Berlin Heidelberg, Berlin, Germany.

J.-M. Li, X.-J. Wang, R.-S. He, and Z.-X. Chi, “An efficient fine-
grained parallel genetic algorithm based on GPU-accelerated,”

(27]

(30]

(31]

15

in Proceedings of the 2007 IFIP International Conference on
Network and Parallel Computing Workshops, NPC 2007, pp.
855-862, chn, September 2007.

H. Prasain, G. K. Jha, P. Thulasiraman, and R. Thulasiram,
A Parallel Particle Swarm Optimization Algorithm for Option
Pricing. Doctoral dissertation, The University of Manitoba Win-
nipeg, Manitoba, Canada, 2010.

S. Solomon, P. Thulasiraman, and R. K. Thulasiram, “Collab-
orative multi-swarm PSO for task matching using graphics
processing units,” in Proceedings of the 13th Annual Genetic and
Evolutionary Computation Conference (GECCO ’11), pp. 1563—
1570, July 2011.

V. Roberge and M. Tarbouchi, “Parallel particle swarm opti-
mization on graphical processing unit for pose estimation,”
WSEAS Transactions on Computers, vol. 11, no. 6, pp. 170-179,
2012.

D. L. Souza, O. N. Teixeira, D. C. Monteiro, and R. C. L.
de Oliveira, “A new cooperative evolutionary multi-swarm
optimizer algorithm based on CUDA architecture applied to
engineering optimization,” in Proceedings of the Combinations
of Intelligent Methods and Applications, pp. 95-115, Springer,
Berlin, Germany, 2013.

Y. Hu, “Efficient, high-quality force-directed graph drawing,”
The Mathematica Journal, vol. 10, no. 1, pp. 37-71, 2011.

M. Girvan and M. E. Newman, “Community structure in social
and biological networks,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 99, no. 12, pp.
7821-7826, 2002.

D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten,
and S. M. Dawson, “The bottlenose dolphin community of
doubtful sound features a large proportion of long-lasting
associations: can geographic isolation explain this unique trait?”
Behavioral Ecology and Sociobiology, vol. 54, no. 4, pp. 396405,
2003.

Advances in
Op ranons Research

Advances in

DeC|5|on SC|ences

Journal of

Ap ||ed Mathemancs

Algebra

Journal of
bability and Statistics

The Scientific
Wo‘rld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of

Mathematics

Journal of

clﬂhMbhemahcs

in Engmeermg

Mathematical Problems

Journal of

tion Spaces

Abstract and
Applied Analysis

International Journal of

Stochastic Analysis

International Journal of
D|fferent|a| Equations

Discrete Dynamics in
ure and Society

Optimization

