
Research Article
Turing Universality of Weighted Spiking Neural
P Systems with Anti-spikes

Qianqian Ren,1 Xiyu Liu ,1 and Minghe Sun 2

1Academy of Management Science, Business School, Shandong Normal University, Jinan, China
2College of Business, �e University of Texas at San Antonio, San Antonio, TX, USA

Correspondence should be addressed to Xiyu Liu; xyliu@sdnu.edu.cn

Received 17 April 2020; Revised 19 July 2020; Accepted 28 August 2020; Published 17 September 2020

Academic Editor: Daniele Bibbo

Copyright © 2020 Qianqian Ren et al.+is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Weighted spiking neural P systems with anti-spikes (AWSN P systems) are proposed by adding anti-spikes to spiking neural P
systems with weighted synapses. Anti-spikes behave like spikes of inhibition of communication between neurons. Both spikes and
anti-spikes are used in the rule expressions. An illustrative example is given to show the working process of the proposed AWSN P
systems. +e Turing universality of the proposed P systems as number generating and accepting devices is proved. Finally, a
universal AWSN P system having 34 neurons is proved to work as a function computing device by using standard rules, and one
having 30 neurons is proved to work as a number generator.

1. Introduction

Membrane computing, introduced by Păun [1], is a
branch of nature-inspired computing. It provides a rich
computational framework for biomolecular computing.
Models of membrane computing are inspired by the
structures and functions of living cells. +e obtained
models are distributed and parallel computing devices,
usually called P systems [2]. +ere are three main classes
of P systems: cell-like P systems, tissue-like P systems [3],
and neural-like P systems [4]. Neural-like P systems,
inspired by the ways of information storage and pro-
cessing in human brain nervous systems, are systems that
combine neurons and membrane computing, among
which the most widely known are spiking neural P systems
(SN P systems) [5]. A SN P system consists of a group of
neurons located at the nodes of a directed graph, and
neurons send spikes to adjacent neurons through syn-
apses, i.e., links in the graph. +ere is only one type of
objects, i.e., spikes, in the neurons.

With different biological features and mathematical
motivations, many variants of SN P systems have
emerged. Some of them made changes on synapses be-
tween neurons, such as SN P systems with rules on

synapses [6], SN P systems with multiple channels [7], and
SN P systems with thresholds [8], while others made
changes on the communication rules, such as SN P sys-
tems with communication on request [9], SN P systems
with polarizations [10], and SN P systems with inhibitory
rules [11]. Various new variants of SN P systems are
provided in [12, 13]. Recently, some new variants of
neural-like P systems have been proposed, which are
inspired by SN P systems, such as those reported in [14].
In addition, many publications appeared in the literature
on the computational power of SN P systems as function
computing devices and the number generating/accepting
devices. Pǎun [18] proved small universality of SN P
systems. Pan [19] proved the small universality of SN P
systems with communication on request by using 14
neurons, and more details are available in [20, 21].

Since the SNP system was proposed, many scholars have
explored its applications. At present, there are many ap-
plications of SN P systems, such as skeletonizing image
processing [22, 23], optimization problems [24], fault di-
agnosis [25–27], and working models [28].

Inspired by the spikes of inhibition of communication
between neurons, a new type of SN P systems is proposed by
adding anti-spikes to SN P systems, which is called spiking

Hindawi
Computational Intelligence and Neuroscience
Volume 2020, Article ID 8892240, 10 pages
https://doi.org/10.1155/2020/8892240

mailto:xyliu@sdnu.edu.cn
https://orcid.org/0000-0003-4976-9227
https://orcid.org/0000-0001-8503-9761
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8892240

neural P systems with anti-spikes (ASN P systems) [29]. In
ASN P systems, each neuron contains multiple copies of
symbolic object a or a and processes information by spiking
rules and forgetting rules. +e annihilating rule aa⟶ λ
exists in each neuron and is the first to apply, meaning a and
a cannot coexist in any neuron. Many researchers have
proposed different ASN P systems, such as ASN P systems
with multiple channels [30], ASN P systems with rules on
synapses [31], and asynchronous ASN P systems [32]. +e
computational power of ASN P systems as number gener-
ating and accepting devices, as well as function computing
devices, also can be proved [33].

In [34], SN P systems with weighted synapses were
proposed. +e weights represent the numbers of synapses
between connected neurons. Based on the above, a new
variant of SN P systems, called the weighted spiking
neural P systems with anti-spikes (AWSN P systems),is
proposed in this work. In these systems, neurons receive
spikes or anti-spikes from their connected neurons and
the numbers of spikes or anti-spikes they receive are
determined by the weights of the synapses. Only one type
of objects, i.e., spikes or antispikes, exists in each neuron
with standard rules in SN P systems. +ese systems use
spiking rules with the form of (E/ac)⟶ ap; d (called
standard rules if p � 1 and extended rules otherwise),
where E is a regular expression over spikes a and c, andp

and d are all positive integers. +e meaning of the spiking
rules is that c spikes are consumed and p spikes are
generated after d time periods. SN P systems also have
forgetting rules of the form as⟶ λ, where s is a positive
integer. +e meaning of the forgetting rules is that s spikes
are dissolved or removed from a neuron.

+e rest of this article is organized as follows. In Section
2, the basic knowledge of a register machine is given. +e
definition of AWSN P systems is given, and an example is
presented to show their working process in Section 3. By
simulating register machines, the computational power of
AWSN P systems is proved as natural number generating
devices and accepting devices in Section 4. In Section 5, the
universality of these systems as function computing devices
and number generating devices is obtained by using 34
neurons and 30 neurons, respectively. Remarks and future
research directions are given in Section 6.

2. Prerequisites

+e universality of systems is proved by simulating a register
machine M. A register machine is structured as M � (m, H,

l0, lh, I), where m is the number of registers, H is the set of
instruction labels, l0 and lh are the starting and ending labels,
and I is the set of instructions shown below:

(1) li: (ADD(r), lj, lk) (add 1 to register r and then
go to instruction labels lj or lk with nondeterministic
choice)

(2) li: (SUB(r), lj, lk) (if register r is not empty, then
subtract 1 from it and go to lj; otherwise, go to lk)

(3) lh: HALT (the ending instruction)

A register machine has two modes: a generating mode
and an accepting mode. A register machine M generates a
set of numbers indefinitely, denoted by Ngen(M) , and
works in the following way in the generating mode. When
all the registers start empty, M starts the computational
process from the instruction label l0. When M reaches lh,
the computation ends with the results stored in register 1.
If the computation does not stop, the numbers will not be
generated. A set of numbers can also be accepted by a
register machine, denoted as Nacc(M), in the accepting
mode. Only the input neuron is nonempty at the be-
ginning. It then works in a way similar to that in the
generating mode. As register machines are universal in the
accepting mode, the add instructions can be written as
li: (ADD(r), lj). Register machines can compute any set of
Turing computable numbers represented by NRE (see,
e.g., [6]).

Generally, a universal register machine is used to
compute Turing computable functions for the purpose of
analyzing the computing power of system. A universal
register machine Mu is proposed by Minsky [35]. If
φx(y) � Mu(g(x), y) satisfies that x and y are natural
numbers and g is a recursive function, then Mu is uni-
versal, denoted by Mu � (8, H, l0, lh, I), including 8 reg-
isters and 23 instructions. Compared with register
machine Mu

′ as shown in Figure 1, register machine Mu

does not have instructions l22 and l23, and the final result is
placed in register 0. Since the result is stored in register 0,
it cannot contain any SUB instruction. Hence, register 8 is
added and used to store the result without any SUB in-
struction. In general, in order to analyze the universality
of the system, i.e., to verify that the system is equivalent to
a Turing machine, a universal register machine Mu

′as
shown in Figure 1 is simulated by a system, denoted by
Mu
′ � (9, H, l0, lh, I), consisting of 9 registers and 25

instructions.

3. Weighted Spiking Neural P
Systems with Anti-spikes

3.1. Definition. +e proposed AWSN P system is described
as follows:

􏽙 � O, σ1, σ2, . . . , σm, syn, in, out(􏼁, (1)

where

(1) O � a, a{ } is the set of alphabets, where the symbol a

is a spike, and a is an anti-spike.
(2) σ1, σ2, . . . , σm are neurons, in the form of

σi � (ni, Ri) for 1≤ i≤m, where ni ≥ 0 is the initial
number of spikes stored in σi, and Ri is the set of
rules used in σi in the following form:

(a) Spiking rules, (E/bc)⟶ b′
p
; d, where E is a

regular expression over a or a, b, b′ ∈ a, a{ },
c≥p≥ 1, and d≥ 0 are the time unit

(b) Forgetting rules, bs⟶ λ, where b ∈ a, a{ }

ands≥ 1

2 Computational Intelligence and Neuroscience

(3) syn ∈ 1, . . . , h{ } × 1, . . . , h{ } × W represents the
synapses, where W � 1, . . . , n{ } is the set of weights.
For any(i, j, n) ∈ syn, 1≤ i, j≤ h, i≠ j, and n ∈W.

(4) in and out are the input neuron and output neuron.

In the AWSN P system, each neuron has one or more
spiking rules and some of them also have forgetting rules,
and either spikes or anti-spikes exist in each neuron. If there
are k spikes or anti-spikes in neuron σ i, bk ∈ L(E) and k≥ c,
the spiking rule (E/bc)⟶ b′

p
; d can be stimulated. If k � c,

then the spiking rule is called pure, and the rule can be
written asbc⟶ b′; d. +e spiking rule can be interpreted as
follows. If c spikes or anti-spikes are removed from neuron
σi and the neuron fires, p spikes will be generated after d

time periods (as usual in membrane computing, all neurons
in a systemΠ work in parallel with an assumed global clock)
and p × n spikes will be sent to neuron σj(i≠ j), where
n ∈W. If the spiking rule of neuron σi is used in time d for all
d≥ 1, the neuron will be closed before time t + d and will not
receive any spikes or anti-spikes, and then the neuron will
open at time t + d. If t � 0, spikes will be emitted imme-
diately, which means the neuron receives spikes or anti-
spikes from the upper neuron without delay.

If the forgetting rules bs⟶ λ in the neurons are used,
then the s spikes or anti-spikes are removed from the
neurons. Spiking rules and forgetting rules must be applied if
the conditions are met, but the choice of rules is nonde-
terministic if the conditions of multiple rules are met in a
neuron. However, the annihilating rule aa⟶ λ must be
applied first in each neuron.

+rough these rules, transitions between configurations
can occur. Any sequence of transitions starting from the
initial configuration is called a computation. A computation
will stop when it reaches a configuration where all neurons
are open and no rules can be used. To compute the function
f: NK⟶ N, k natural numbers n1, n2 · · · , nk are intro-
duced into the system by reading a binary sequence z � 10n1 ,

10n21, . . . , 10nk1 from the environment. +at is to say, the
input neuron of Π receives a spike in a step if it corresponds
to 1 in z, but it receives nothing if it corresponds to 0. +e
input neuron received exactly k + 1 spikes and will not
receive any more spikes after receiving the last spike. +e
result of the computation is encoded in the distance between
two spikes, which means that the computation halts with
exactly two spikes as outputs immediately after outputting
the second spike. Hence, it generates a spike string of the
form 0b10r− 11, for b≥ 0 and r � f(n1, . . . , nk). +e com-
putation outputs no spike for a nonspecified number of steps
from the beginning of the computation until outputting the
first spike.

Let Ngen(􏽑) and Nacc(􏽑) be the sets of numbers
generated and accepted by Π, respectively. Let NαASNPn

m,
with α ∈ gen, acc􏼈 􏼉, denote the family of sets of numbers
generated or accepted by an AWSN P system with m

neurons and a maximum of n rules in a neuron.

3.2. An Illustrative Example. An example as graphically
shown in Figure 2 is given to explain the working process

of the AWSN P system. +e results of each step are shown
in Table 1. A positive number in the table represents the
number of spikes in the neuron, and a negative number
represents the number of anti-spikes. For example, 2
means there are two spikes, and − 2 means there are two
anti-spikes.

+e system has four neurons as shown in Figure 2.
Assume that each of neurons σ1 and σ2 has two spikes, and
neurons σ3 and σ4 are empty with no spikes. Suppose that
the rule (a2/a)⟶ a in neuron σ1 can be used at time t,
generating one anti-spike and sending three anti-spikes to
neurons σ2 and σ3 because the weight of synapses between
these neurons is 3. Two anti-spikes together with two spikes
disappear immediately because the annihilating rule is ap-
plied first, and there is one anti-spike left in neuron σ2. +e
rule in σ2 generates two spikes to be sent to neuron σ4 and
one spike to be sent to neuron σ1. So the rule in σ1 can be
applied again. Neuron σ3 receives six anti-spikes from σ1 by
using the rule of neuron σ1 twice, so that the rule in σ3 fires.
Neuron σ4 gets three spikes (two from neuron σ2) and sends
one spike to the environment.

3

3 2

a2

a2/a → ā

a3 → a

a2

ā → a

ā6 → a

1 2

3 4

Figure 2: An example of the AWSN P system.

Table 1: +e results of the example.

Step σ1 σ2 σ3 σ4
t 2 2 0 0
t+ 1 1 − 1 − 3 0
t+ 2 2 0 − 3 2
t+ 3 1 − 3 − 6 2
t+ 4 1 − 3 0 3 (fires)

l0: (SUB (1), l1, l2), l1: (ADD (7), l0),
l3: (SUB (5), l2, l4),
l5: (ADD (5), l6),
l7: (ADD (1), l4),
l9: (ADD (6), l10),
l11: (SUB (5), l12, l13),
l13: (SUB (2), l18, l19),
l15: (SUB (3), l18, l20),
l17: (ADD (2), l21),
l19: (SUB (0), l0, l18),
l21: (ADD (3), l18),
l23: (ADD (8), l22),

l2: (ADD (6), l3),
l4: (SUB (6), l5, l3),
l6: (SUB (7), l7, l8),
l8: (SUB (6), l9, l0),
l10: (SUB (4), l0, l11),
l12: (SUB (5), l14, l15),
l14: (SUB (5), l16, l17),
l16: (ADD (4), l11),
l18: (SUB (4), l0, l22),
l20: (ADD (0), l0),
l22: (SUB (0), l23, lh′),
lh′: HALT

Figure 1: +e universal register machine Mu
′.

Computational Intelligence and Neuroscience 3

4. Computational Models

4.1. Generating Mode

Theorem 1. NgenASNP2
∗ � NRE.

Proof. A register machine M � (m, H, l0, lh, I) is consid-
ered. M is simulated by an AWSN P system, including three
modules, i.e., modules ADD, SUB, and OUTPUT.

In the simulation process, a register r of M corresponds
to neuronσr , and the number n contained in register r is the
number of spikes contained in neuron σr. An instruction l in
H corresponds to neuron σl. Furthermore, the modules
require some other neurons in addition to σr and σl. +e
simulation of the ADD and SUB instructions begins at
neuron σli

. Modules ADD and SUB are simulated by sending
spikes to σlj

and σlk
as rules in neuron σr fire. Neuron σr

sends a spike to either σlj
or σlk

, but the choice is nonde-
terministic. When a spike arrives at neuron σlh

, the com-
putation in M stops, and the module OUTPUT begins to
send the result stored in register 1 to the environment. At the
beginning of the simulation, neuron σl0

has one spike but
other neurons do not have any spikes.

(a) Module ADD (Shown in Figure 3) Assume that an
ADD instruction li: (ADD(r), lj, lk) has to be sim-
ulated at time t, one spike is in neuron σli

, and the
rule a⟶ a can be used. Neuron σli

sends one spike
a to neurons σr, σb1

, and σb2
, respectively. +e rules

a⟶ a and a⟶ a in neuron σb1
are chosen in a

nondeterministic way for use at time t + 1. In this
way, there are two cases to consider depending on
the choice of the rules in σb1

. If a⟶ a is chosen,
neuron σb2

sends a spike to neuron σlk
. +us, σlk

will
generate one spike by using its rule. If a⟶ a is
chosen, neuron σb1

sends an anti-spike to neurons σli
and σb2

, respectively. +us σlj
will fire and generate

one spike by using its rule. +e rule in neuron σb2
cannot be used because of the annihilating rule, so
that σlk

is empty. After one spike is added to σr, the
register r adds 1 and the instruction lj or lk is ac-
tivated. +erefore, the ADD instruction can be
simulated correctly by the module ADD.

(b) Module SUB (Shown in Figure 4) Suppose that
neuron σli

has one spike. After the rule a⟶ a is
enabled at time t, each of the neurons σlj

and σlk
re-

ceives two anti-spikes a, and σr receives one anti-spike.
+e rest of the computation can be divided into two
cases according to the number of spikes contained in σr.

(1) Neuronσr has at least one spike. Neuron σr receives
one anti-spike from neuron σlj

, but anti-spike will
disappear immediately by annihilating one spike in
σr. +erefore, the rule a⟶ a in neuron σr is not
used at time t + 1. At the same time, neuron σc1

opens
to get one anti-spike from σli

, and then the rule in σc1
fires and generates one spike but sends three spikes to
neurons σlj

and two spikes to σlk
. +e two spikes are

annihilated with two anti-spikes from σli
and one

spike is left in neuron σlj
. Simultaneously, the same

happens in neuron σlk
, i.e., the two spikes are an-

nihilated immediately and there is no spike left in σlk
.

(2) Neuronσr has no spike. Neuron σr gets one anti-spike
from σli

and its rule can be applied at time t + 1.
Simultaneously, neuron σc1

gets one anti-spike from
σli
. Hence, one spike from σr is annihilated in the

next time. +e rule in σr cannot be used because σr

does not have any anti-spikes. At the same time,
neuron σlj

receives five spikes, among which two
spikes are used to annihilate the two anti-spikes
received from neuron σli

; thus the rule a2⟶ λ in σlj
can be applied. Neuron σlk

receives one spike that
annihilates one anti-spikea received from neuron σli

,
and then the rule a⟶ a in σlk

is enabled to generate
one spike a.

+erefore, the SUB instruction can be simulated cor-
rectly by module SUB.

(c) Module OUTPUT (Shown in Figure 5) Assume that
σlh

of system 􏽑 accumulated one spike at time t, and
neuron σ1 has n spikes for the number n being stored
in register 1 of M. When the rule in σlh′

is fired at time
t, neuron σlh′

sends one spike to σ1. At this moment,
σ1 has an odd number of spikes and its rule fires. At
time t + 1, σ1 sends one spike to σout and σb1

, re-
spectively. +us, neuron σout has one spike, which is
an odd number. At time t + 2, neuron σout fires,

a → a

a → a
a → ā a2 → ā

li

lj lk

b1 b2

r

ā → a ā → a

Figure 3: Module ADD: stimulating the ADD instruction
li: (ADD(r), lj, lk).

3 2 2
3

2 2

a → ā

ā → a ā → a, 1

a2 → λ
a3 → λ

a2 → λ
a3 → λ

li

lk lj

c1r

Figure 4: Module SUB: simulating the SUB instruction
li: (SUB(r), lj, lk).

4 Computational Intelligence and Neuroscience

sending one spike to the environment. At the same
time, the rules in σ1 and σb1

are used, and both send
one a to σout. After n − 1 steps, until neuron σ1 has no
spike, the number of spikes in σout is even. At the
same time, the use of the rule in σ1 is stopped, and
neuron σb1

has one spike. Neuron σout will receive
one spike at time t + n + 2, and then the number of
spikes is odd. Neuron σout fires a second time.
+erefore, the number computed by the AWSN P
system is the difference between the first two steps
when the neuron σout fires; that is,
(t + n + 2) − (t + 2) � n. +e module OUTPUT can
be simulated correctly.

4.2. Accepting Mode

Theorem 2. NaccASNP2
∗ � NRE.

Proof. +e proof of this theorem is similar to that of +e-
orem 1. A register machine M � (m, H, l0, lh, I), consisting
of three modules, ADD, SUB, and INPUT, is considered.
Module SUB is shown in Figure 4.

(1) Module ADD (Shown in Figure 6) Assume that an
ADD instruction li: (ADD(r), lj) has to be simu-
lated at time t. Suppose that one spike is in neuron
σli
; then the rule a⟶ a can be used. +us, neuron

σli
sends one spike to neurons σr and σlj

. In this
way, the number of spikes in σr increases by 1 and
the instruction lj is activated. Hence, the ADD
instruction can be simulated correctly by this
module.

(2) Module INPUT (Shown in Figure 7) Module INPUT
shown in Figure 7 works as follows. +e function of
module INPUT is to read the spike train 10n− 11 and
compute the number n in the time between receiving
two spikes. When neuron σin receives the first spike
at timet and then neurons σd1

,σd2
, and σd3

receive one
spike each, the rule in σd2

and σd3
can be applied at

timet + 1. At timet + 2, neuron σ1 gets one spike,
and, at the same time, neuron σd3

gets one spike from
σd2

and neuron σd2
receives one a from σd3

.
+erefore, in the next n − 1time periods, the rules in
neurons σd2

and σd3
can continued to be used.

During this period, σ1 gets n − 1 spikes. When
neuron σin receives the second spike at step t + n,
each of neurons σd2

and σd3
receives one spike at step

t + n + 1 and they both have two spikes. In this way,
neurons σd2

and σd3
cannot fire to send any spikes to

neuron σ1. In the whole process, neuron σ1 receives
(n − 1) + 1 � n spikes, i.e., the number nis stored in
register 1.

From the descriptions above about the three modules, it
is clear that the register machine M can correctly simulate
the system. +e proof is complete.

5. A Small Universal AWSN P System

5.1. �e Universality as Function Computing Devices

Theorem 3. �ere is a universal AWSN P system having 34
neurons which can be used to perform function computing.

Proof. A general framework of a system 􏽑u
′ used to

simulate a universal register machine Mu
′ is shown in

Figure 8, which is a universal AWSN P system. Π′ consists
of 8 modules: ADD, SUB, ADD-ADD, SUB-ADD-1, SUB-
ADD-2, SUB-SUB, INPUT, and OUTPUT. +e modules
SUB, OUTPUT, and ADD are the same as those in
Figures 4–6, respectively. +e module INPUT is shown in
Figure 9.

Module INPUTworks as follows: when neuron σin gets
a spike from the environment, the rule a⟶ a fires and
one spike is sent to neurons σc1

, σc3
, and σc4

, and two spikes
are sent to neuron σc2

. +en, the rule in neuron σc1
sends

one spike to both σc2
and σ1. At the same time, neuron σc2

fires and then sends one spike to σc1
and two spikes to σc3

.

a → a

a → a1 a → a

out a (aa)+/a → a

d1

lh′

Figure 5: Module OUTPUT.

a → ali

lj

r

Figure 6: Module ADD: simulating the ADD instruction
li: (ADD(r), lj).

a2 → a a → a

a → a a → a

1

d1

d2 d3

In

l0

Figure 7: Module INPUT.

Computational Intelligence and Neuroscience 5

Up to this point, three spikes were sent to neuron σc3
.

+erefore, before neuron σin receives more spikes from
the environment, neurons σc1

and σc2
have received one

spike from each other in each time period and neuron σ1
has received g(x) spikes.

When σin receives the second spike, each of the neurons
σc1

, σc3
, and σc4

can get one spike and σc2
gets two spikes.

Neuron σc2
has four spikes at this moment, and its rule can be

used to send two spikes to neuron σc3
. Neuron σc3

then has six
spikes, so that the rule in σc3

is used to produce one spike and
send it to σc2

. In this way, neurons σc2
and σc3

receive one spike
from each other in each step before σin receives the third spike
from the environment. Neuron σ2 has y spikes at the end.
When neuron σin receives the third spike, each of the neurons
σc1

, σc3
, and σc4

gets one spike, while σc2
receives two spikes. As

a result, neuron σc3
has an odd number of spikes and the rule

cannot be applied. At present, neuron σc4
has three spikes, and

the rule a3⟶ a in neuron σc4
fires, which generates one

spike and sends it to σl0
. In this way, it can simulate the

instruction l0 in the next step.
As with the proof of +eorems 1 and 2, the system uses

the following numbers of neurons:

9 neurons for 9 registers

25 neurons for 25 labels
5 neurons for the module INPUT
1 neuron in each SUB instructions and 14 in total
2 neurons for the module OUTPUT

+erefore, totally 55 neurons are used.
+e numbers of neurons can be decreased by ex-

ploring some relationships between some instructions of
register machine Mu

′ . +e following modules are given to
reduce the number of neurons in the computation
process.

+e SUB-ADD instructions can be divided into two
cases, depending on the number of spikes placed in
register r1 (the register involved in the SUB instruction).
Modules SUB-ADD-1 and SUB-ADD-2 shown in Fig-
ures 10 and 11 can simulate the SUB and ADD instruc-
tions sequentially. +e working process of module SUB-
ADD-1 is similar to that of module SUB. When the rule in
neuron σli

is used and σr1
contains at least one spike,

neuron σr1
cannot fire. Neuron σc1

fires by receiving one a

and then sends one spike to σr2
. At the end of the com-

putation, neuron σlg
has one spike, neuron σr2

has one
spike, and neuron σlk

is empty. When σr1
is empty,

neurons σr2
and σlg

are also empty and neuron σlk
contains

one spike. +us, each pair of SUB-ADD-1 instructions
li: (SUB(r1), lj, lk) and lj: (ADD(r2), lg) can share a
common neuron when r1 ≠ r2, and there are totally 6 pairs
in Mu
′:

Register machine simulator

1φ(x)0

aφ(x)

10g(x)–110y–11

Module OUTPUT

Module INPUT

Out

In

l01 2

0 8

ag(x) ay a

Figure 8: General framework of the universal AWSN P system.

a → a (aa)+/a → a (aa)+/a2 → a

a → a a3 → a

10g(x)–110y–11

1 2

2
2

c4

c3

c2

c1

l0

In

Figure 9: Module INPUT.

3
2 2

3

2 2

a2 → λ
a3 → λ

a2 → λ
a3 → λ

a → ā

ā → a, 1ā → a

li

r1
r2c1

lk lg

Figure 10: Module SUB-ADD-1: the sequence of the ADD and
SUB instructions lj: (ADD(r2), lg) and li: (SUB(r1), lj, lk).

6 Computational Intelligence and Neuroscience

l0: SUB(1), l1,l2􏼐 􏼑,

l1: ADD(7), l0(􏼁,

l4: SUB(6), l5,l3􏼐 􏼑,

l5: ADD(5), l6(􏼁,

l6: SUB(7), l7,l8􏼐 􏼑,

l7: ADD(6), l4(􏼁,

l8: SUB(6), l9,l0􏼐 􏼑,

l9: ADD(6), l10(􏼁,

l14: SUB(5), l16,l17􏼐 􏼑,

l16: ADD(4), l11(􏼁,

l22: SUB(0), l23,lh′􏼐 􏼑,

l23: ADD(0), l0(􏼁.

(2)

By using this module, 6 neurons can be saved. In the
same way, the module shown in Figure 10 can simulate the
two instructions l15 and l20. Neuron σl20

can be saved.

+emodule ADD-ADD shown in Figure 12 can simulate
instructions l17 and l21. In this way, one neuron can be saved.

+e SUB instructions share a common neuron when the
labels of their registers are different, as shown in Figure 13.
Assume that the simulation of the SUB instruction
li: (SUB(r1), lj, lk) starts at time t. When neuron σli

gets a
spike, the rule a⟶ a fires and sends one anti-spike to σr1
and two anti-spikes to σlj

and σlk
, respectively, at time t + 1.

Neuron σc1
receives an anti-spike at time t + 2. Neurons σr1

,
σlj
, σlk

, and σc1
work in the same way as those in module SUB

shown in Figure 4. Neuron σc1
will send three spikes to σlk′

and two spikes to σlj′
, where forgetting rules will be applied.

+us, the instruction li: (SUB(r1), lj, lk) is correctly simu-
lated by this module. +e process when starting with in-
struction li′ is similar to that described above.

Two SUB modules dealing with the same register, as
shown in Figure 14, can also be proved to work correctly in a
similar way. Assume that the instruction li: (SUB(r1), lj, lk)

is simulated and one spike is contained in neuron σli′
. +e

process is divided into two cases according to the number of
spikes in neuron σr. When σr has at least one spike, the
working process of the system is similar to that of module
SUB.When σr is empty, the rule in neuron σc1

cannot be used.
Neurons σlj

, σlk′
, and σlj′

are all empty but neuron σlk
contains

one spike. All SUB instructions can be simulated correctly by
the module. +erefore, all SUB modules can share a common
neuron.

From the above description about the numbers of
neurons saved, the system uses the following:

9 neurons for 9 registers
17 neurons for 17 labels
5 neurons for the module INPUT
1 neuron for all the 14 SUB instructions
2 neurons for the module OUTPUT

A total of 21 neurons can be saved and the number of
neurons in this system can be decreased from 55 to 34. +e
proof is complete. □

5.2. �e Small Universality as Number Generator. A small
universal AWSN P system as a number generator is con-
sidered. +e process of simulating universal number gen-
erators is similar to that of simulating general function
computing devices, but the difference between them lies in
the module INPUT. +e system starts with the spike train

2
3

2

2
3 2

2

2

2

3 3

2

ā → a

a → āa → ā ā → a, 1

a2 → λ
a3 → λ

a2 → λ
a3 → λ

a2 → λ
a3 → λ

a2 → λ
a3 → λ

li

lk lj l′j l′k

l′i

c1

r

Figure 14: Module SUB-SUB with r1 � r2.

a → a
l17 l18

32

Figure 12: Module ADD-ADD: the sequence of ADD and ADD
instructions l17: (ADD(2), l21) and l21: (ADD(3), l18).

3 3
2 2

3 3
2 2

2 2 2 2

a2 → λ
a3 → λ

a2 → λ
a3 → λ

a2 → λ
a3 → λ

a2 → λ
a3 → λ

lk lj

r1 ā → a ā → aā → a, 1 r2

li a → ā a → ā

c1

l′k l′j

l′i

Figure 13: Module SUB-SUB with r1 ≠ r2.

3

30

2 2
3

2 2

a → ā

a2 → λ
a3 → λ

a2 → λ
a3 → λ

ā → a ā → a, 1

l0 l18

l15

c1

Figure 11: Module SUB-ADD-2: the sequence of the ADD and
SUB instructions l20: (ADD(0), l0) and l15: (SUB(3), l18, l20).

Computational Intelligence and Neuroscience 7

10g(x)− 11 from environment and ends with neuron σ1
receivingg(x) spikes. +is system is then loaded with an
arbitrary number k, and neuron σ2 receives k spikes. +e
number k is also the output at the same time as the output
spike train 10g(x)− 11, with g(x) in register 1 and k in register
2. Since the output module is not required, that is to say,
register 8 is not required, the register machine Mu is sim-
ulated. If the computation in Mu halts, the computation can
also halt.

Furthermore, module INPUTand module OUTPUTcan
be combined. +e module INPUT-OUTPUT is shown in
Figure 15, and an example is used to prove its feasibility. +e
label lh′ can also be saved because of module INPUT-
OUTPUT. +e string 101 is used in module INPUT-
OUTPUT, where g(x) � 2 and k � 4. +e computation
follows the above working processes of the modules. +e
results of each step are shown in Table 2.

Assume that σin has one spike at timet, and neuron σf4
has two spikes. At timet + 1, σf1

and σf2
receive one spike,

respectively. From the structure shown in Figure 15, neurons
σf1

and σf2
receive one spike from each other at each step

until σf1
and σf2

stop firing. +en σin receives the second
spike. Each of neurons σ1 and σf3

receives one spike, σf5
receives six spikes, and σout receives two spikes, so that
neurons σf5

and σout can fire. At timet + 3, both σf1
and σf2

have two spikes, but they cannot fire again. σf5
receives six

spikes from σf2
, but σf5

also receives two anti-spikes from
σf3

, plus four spikes existing in σf5
, so that neuron σf5

has
eight spikes. In addition, neuron σout receives two spikes
again, so that there are three spikes contained. Neuron σf4
only has one spike because the received anti-spike annihi-
lates one spike. At timet + 4, the neuron σf4

is empty after
receiving an anti-spike. σf5

receives two anti-spikes, so that
there are four spikes contained in neuron σf5

, the number of

spikes is even, and its rule can fire. At the next step, σf4
receives one anti-spike and fires. Neuron σf5

consumes two
spikes and still can fire. At timet + 6, neurons σf5

and σout
receive one spike from σf4

, respectively. So, there are 4 spikes
in σout, meeting the required conditions for firing. Neuron
σl0

also gets one spike.
+e string is read through neuron σin, and g(x) spikes are

stored in register 1 when the calculation stops. At the same time
, the output number (t+6 − t − 2=4) is the same as the number
stored in register 2. Neuron σl0

activates and starts simulating
the register machine by simulating modules ADD and SUB.
+erefore, through this process, the module INPUT-OUTPUT
can be simulated correctly.

+erefore, this system contains the following:

8 neurons for the 8 registers
14 neurons for the 14 labels (lh is saved; 8 neurons are
saved by modules SUB-ADD and ADD-ADD)
1 neuron for 13 SUB instructions
7 neurons in the module INPUT-OUTPUT

+ere is a universal AWSN P system having 30 neurons
that can be used to perform number generating.

6. Conclusions

In this work, a variant of the SN P systems, called the AWSN
P systems,is proposed. Because of the use of anti-spikes, the
proposed systems are more biologically significant thanSN P
systems, with inhibitory spikes in the communication be-
tween neurons. An example is used to illustrate the working
process of this system. +e computational universality is
then proved in the case of generating mode and accepting
mode, respectively. Finally, the Turing universality of AWSN
P systems is proved. +e function computing device can be
realized by using 34 neurons. Compared with the small
universal SN P system using anti-spikes introduced by Song
[17], the AWSN P system uses 13 fewer neurons. Compared
with the SN P systems with weighted synapses introduced by
Pan [34], the AWSN P system uses 4 fewer neurons. +e
small universality of the ASN P system as number generator
is investigated with 30 neurons. Compared with Pan’s work
[34], the proposed system uses 6 fewer neurons.

+e computational universality is proved for AWSN P
systems with standard rules. +ere are three types of spiking
rules, a⟶ a, a⟶ a, and a⟶ a, used that are time
dependent, and there is one type of forgetting rules,
ac⟶ λ. +ere are several future research directions. One
direction is to investigate whether the computational power
will remain the same if only one or two types of spiking rules
are used or if the forgetting rules are not used and to in-
vestigate whether AWSN P systems can perform better or
the same if the spiking rules are not time-dependent. +ese
open problems certainly need further studies. Another fu-
ture research direction is the application of the proposed
systems.+ere have been studies, such as using SN P systems
with learning function for letter recognitions [36]. If the
learning function was introduced in AWSN P systems, it
may perform better in letter recognitions. Because the use of

Table 2: +e computation process of the module INPUT-
OUTPUT.

Step σin σf1
σf2

σf3
σf4

σf5
σ1 σ2 σout σl0

t 1 0 0 0 2 0 0 0 0 0
t + 1 0 1 1 0 2 0 0 0 0 0
t + 2 1 1 1 1 2 6 1 0 2 (fire) 0
t + 3 0 2 2 1 1 8 2 1 3 0
t + 4 0 2 2 0 0 4 2 2 3 0
t + 5 0 2 2 0 − 1 2 2 3 3 0
t + 6 0 2 2 0 0 1 2 4 4 (fire) 1

2

6 2

2

a → a a → a

a → a

(aa)+/a → a

(aa)+/a2 → aIn

Out

a2

ā → aa → ā

1

f1

f3 f4

f5

f2

l0

Figure 15: Module INPUT-OUTPUT.

8 Computational Intelligence and Neuroscience

anti-spikes improves the ability of AWSN P systems to
represent and process information, it may solve more
practical problems, which still require further research.

Data Availability

No datasets were used in this article.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is research was funded by the National Natural Science
Foundation of China (nos. 61876101, 61802234, and 61806114),
the Social Science Fund Project of Shandong (16BGLJ06 and
11CGLJ22), China Postdoctoral Science Foundation Funded
Project (2017M612339 and 2018M642695), Natural Science
Foundation of Shandong Province (ZR2019QF007), China
Postdoctoral Special Funding Project (2019T120607), and
Youth Fund for Humanities and Social Sciences, Ministry of
Education (19YJCZH244).

References

[1] G. Păun, “Computing with membranes,” Journal of Computer
& System Sciences, vol. 61, pp. 108–143, 2000.

[2] G. Păun, G. Rozenberg, and A. Salomaa, �e Oxford Hand-
book of Membrane Computing, Oxford University Press,
Oxford, UK, 2010.

[3] C. Martin-Vide, J. Pazos, G. Păun, and A. Rodŕıguez-Patón,
“Tissue P systems,” �eoretical Computer Science, vol. 296,
pp. 295–326, 2003.

[4] G. Păun, Membrane Computing: An Introduction, Springer-
Verlag, Berlin, Germany, 2012.

[5] M. Ionescu, G. Păun, and “T. Yokomori, “Spiking neural P
systems,” Fundamenta Informaticae, vol. 71, pp. 279–308,
2006.

[6] T. Song, L. Pan, and G. Păun, “Spiking neural P systems with
rules on synapses,” �eoretical Computer Science, vol. 529,
pp. 888–895, 2014.

[7] H. Peng, J. Yang, J. Wang et al., “Spiking neural P systems with
multiple channels,” Neural Networks, vol. 95, pp. 66–71, 2017.

[8] X. Zeng, X. Zhang, T. Song, and L. Pan, “Spiking neural P
systems with thresholds,” Neural Computation, vol. 26, no. 7,
pp. 1340–1361, 2014.

[9] L. Pan, G. Păun, G. Zhang, and F. Neri, “Spiking neural P
systems with communication on request,” International
Journal of Neural Systems, vol. 27, pp. 1–17, 2017.

[10] T. Wu, A. Paun, Z. Zhang, and L. Pan, “Spiking neural P
systems with polarizations,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 8, pp. 3349–3360,
2018.

[11] H. Peng, B. Li, J. Wang et al., “Spiking neural P systems with
inhibitory rules,” Knowledge-Based Systems, vol. 188, pp. 1–10,
2020.

[12] A. Alhazov, R. Freund, S. Ivanov, M. Oswald, and S. Verlan,
“Extended spiking neural P systems with white hole rules and
their red-green variants,” Natural Computing, vol. 17, no. 2,
pp. 297–310, 2017.

[13] T. Wu, Z. Zhang, G. Păun, and L. Pan, “Cell-like spiking
neural P systems,” �eoretical Computer Science, vol. 623,
pp. 180–189, 2016.

[14] H. Peng, T. Bao, X. Luo et al., “Dendrite P systems,” Neural
Networks, vol. 127, pp. 110–120, 2020.

[15] H. Peng, J. Wang, M. J. Pérez-Jiménez, and A. Riscos-Núñez,
“Dynamic threshold neural P systems,” Knowledge-Based
Systems, vol. 163, pp. 875–884, 2019.

[16] H. Peng and J. Wang, “Coupled neural P systems,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 30, no. 6, pp. 1672–1682, 2019.

[17] T. Song, Y. Jiang, X. Shi, and X. Zeng, “Small universal spiking
neural P systems with anti-spikes,” Journal of Computational
and �eoretical Nanoscience, vol. 10, no. 4, pp. 999–1006,
2013.

[18] A. Pǎun and G. Pǎun, “Small universal spiking neural P
systems,” BioSystems, vol. 90, pp. 48–60, 2007.

[19] T. Pan, X. Shi, Z. Zhang, and F. Xu, “A small universal spiking
neural P system with communication on request,” Neuro-
computing, vol. 275, pp. 1622–1628, 2017.

[20] X. Zhang, X. Zeng, and L. Pan, “Smaller universal spiking
neural P systems,” Fundamenta Informaticae, vol. 87,
pp. 117–136, 2008.

[21] T. Wu, F. Bȋlbȋe, A. Păun, L. Pan, and F. Neri, “Simplified and
yet turing universal spiking neural P systems with commu-
nication on request,” International Journal of Neural Systems,
vol. 28, pp. 1–19, 2018.

[22] D. Dı́az-Pernil, F. Peña-Cantillana, and M. A. Gutiérrez-
Naranjo, “A parallel algorithm for skeletonizing images by
using spiking neural P systems,” Neurocomputing, vol. 115,
pp. 81–91, 2013.

[23] T. Song, S. Pang, S. Hao, A. Rodŕıguez-Patón, and P. Zheng,
“A parallel image skeletonizing method using spiking neural P
systems with weights,” Neural Processing Letters, vol. 115,
2018.

[24] G. Zhang, H. Rong, F. Neri, and M. J. Pérez-Jiménez, “An
optimization spiking neural P system for approximately
solving combinatorial optimization problems,” International
Journal of Neural Systems, vol. 24, 2014.

[25] Y. Yahya, A. Qian, and A. Yahya, “Power transformer fault
diagnosis using fuzzy reasoning spiking neural P systems,”
Journal of Intelligent Learning Systems and Applications, vol. 8,
no. 4, pp. 77–91, 2016.

[26] T. Wang, J. Zhao, G. Zhang, Z. He, and J. Wang, “Fault
diagnosis of electric power systems based on fuzzy reasoning
spiking neural P systems,” IEEE Transactions on Power Sys-
tems, vol. 30, pp. 1182–1194, 2014.

[27] T. Wang, X. Wei, J. Wang et al., “A weighted corrective fuzzy
reasoning spiking neural P system for fault diagnosis in power
systems with variable topologies,” Engineering Applications of
Artificial Intelligence, vol. 92, 2020.

[28] T. Song, X. Zeng, P. Zheng, M. Jiang, and A. Rodŕıguez-Patòn,
“A parallel workflow pattern modeling using spiking neural P
systems with colored spikes,” IEEE Transactions on Nano-
bioscience, vol. 17, no. 4, pp. 474–484, 2018.

[29] L. Pan and G. Păun, “Spiking neural P systems with anti-
spikes,” International Journal of Computers Communications
& Control, vol. 4, no. 3, pp. 273–282, 2009.

[30] X. Song, J. Wang, H. Peng et al., “Spiking neural P systems
with multiple channels and anti-spikes,” Biosystems, vol. 169-
170, no. 170, pp. 13–19, 2018.

[31] T. Wu, Y. Wang, S. Jiang, Y. Su, and X. Shi, “Spiking neural P
systems with rules on synapses and anti-spikes,” �eoretical
Computer Science, vol. 724, pp. 13–27, 2018.

Computational Intelligence and Neuroscience 9

[32] T. Song, X. Liu, and X. Zeng, “Asynchronous spiking neural P
systems with anti-spikes,” Kluwer Academic Publishers,
vol. 42, pp. 633–647, 2015.

[33] V. P. Metta and A. Kelemenová, “Universality of spiking
neural P systems with anti-spikes,” in Proceedings of the In-
ternational conference on theory & application of models and
computation, pp. 352–365, New York, NY. USA, 2014.

[34] L. Pan, X. Zeng, X. Zhang, and Y. Jiang, “Spiking neural P
systems with weighted synapses,” Neural Processing Letters,
vol. 35, no. 1, pp. 13–27, 2012.

[35] M. Minsky, Computation: Finite and Infinite Machines,
Prentice-Hall, New Jersey, NJ, USA, 1967.

[36] T. Song, L. Pan, T. Wu, P. Zheng, M. L. D. Wong, and
A. Rodriguez-Paton, “Spiking neural P systems with learning
functions,” IEEE Transactions on NanoBioscience, vol. 18,
no. 2, pp. 176–190, 2019.

10 Computational Intelligence and Neuroscience

