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ABSTRACT

Most of the past studies regarding machining optimization were based on machining science and economic
considerations without the environmental dimension. Machining with higher cutting speed is usually desirable
considering productivity, but requires high power load peak. In Taiwan, electricity price goes up sharply if the
instantaneous power demand is over the contract capacity. Production scheduling problems have been widely
studied for decades. However, majority of these studies consider jobs are known and processing times are certain.
Besides, traditional sequencing and scheduling models deals with the economic objectives. There is still a severe
lack of environmental considerations for production scheduling problems. In this study, we deal with a production
scheduling problem for a manufacturing system with a bounded power demand peak. It is necessary to
simultaneously determine proper cutting conditions for jobs and assign them to machines for processing without
exceeding the electricity load limit at any point of time. A two-stage heuristic approach is proposed to solve the
parallel machine scheduling problem with the goal of minimizing makespan. An illustrated instance with 3
machines and 20 jobs, each job in details with four possible cutting parameter settings for selection, is studied and
employed to investigate the performance of the proposed heuristic.

1. INTRODUCTION

Climate change has become one of the greatest challenges facing nations, governments, organizations, enterprises,
and peoples. It certainly will influence the way people work and live in future decades. The causes of the global
environmental problems were commonly recognized from the depletion of natural resources and the pollution resulting
from the life of technical products [1]. This led to increasing political pressure and stringer regulations being applied to
both the manufacturers and the product end users. In 2000, energy related carbon dioxide equivalent (CO2e) emissions
represented about 65 % of the global greenhouse gas emissions, while about 24 % and 14 % of CO2e emissions were
attributed to power generation and industrial activity respectively [2]. One of the recent survey conducted by U.S.
Energy Information Administration in 2013 pointed that the industrial sector consumes about one-half of the world
total delivered energy. It again indicated energy management should be a priority in industrial sectors. Manufacturing
is the key for industrial sector. Furthermore, a large and growing number of manufacturers are realizing substantial
financial and environmental benefits from sustainable business practices. Therefore, sustainable manufacturing, which
was defined as making products through economically-sound processes that minimize negative environmental impacts
considering conservation of energy and natural resources, has become an important issue and even drawn increasing
attention of people from both industry and academia.

Reduction of energy usage that can directly cut down carbon emission has being increasingly recognized as one of
the important trends in sustainable manufacturing. This same trend has applied in machining technologies [1, 3, 4]. A
significant amount of research has been undertaken on the environmental issues of a machine tool system, while most of
these studies focus the analysis of chipping processes, dealing with the influences of material removal and cutting
fluids, in parallel to the electricity consumption impact [5]. However, a machining task is performed by a machine tool
that relies on electricity as its main power source. Santos et al. [5] pointed that machine tools have been identified as
one of the main energy-using products to be analysed in an Eco-design perspective, targeting the reduction of their
environmental impact. From micro perspective, the major power demand of a modern machine tool system come from
spindle rotation and servo-driven axis movement [4]. Optimum cutting parameters then becomes imperative when
minimizing the energy consumed by the machine during machining. In literature, optimization of machining conditions
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has been studied for decades, but most of the studies were based on machining science and economic considerations
without the environmental dimension. Mativenga and Rajemi [6] concluded that minimum energy criterion can be used
to significantly reduce the cost, energy and carbon footprint of machined products.

From macro-level perspective, when a set of jobs are to be processed by a manufacturing system consists of several
modern CNC machine tools, traditional sequencing and scheduling models deals with the economic issues like costs,
makespan, job tardiness, throughput, etc.. There is still a severe lack of energy saving considerations for production
scheduling problems. In this paper we consider a problem of scheduling a set of jobs on parallel machines while a set of
machining conditions for each job are provided for selection. The system objective is to minimize makespan under a
limited power demand during machining. The remainder of this paper is organized as follows. Section 2 provides a
review for parallel machine scheduling problems with flexible resources. In Section 3 we introduce the considered
problem in details. In Section 4 a two-stage heuristic for solving the illustrated problem is proposed. In Section 5 we
report the computation result of each stage of the proposed heuristic. Section 6 concludes with a summary and
suggestions for further research.

2. LITERATURE REVIEW

Parallel machine scheduling problems have been widely studied for decades. Most studies for classical parallel
machine scheduling problems assumed that processing times are fixed for jobs. However, processing times in reality
may be controllable based on the amount of resources allocated. The resources could be flexible for use like manpower,
financial support, fuel, energy, etc. [7]. Early research about controllable processing times in single machine and two
machine scheduling problems was surveyed by Nowicki and Zdralka [8]. Shabtay and Steiner [7] provided a more
comprehensive survey of results for scheduling problems with controllable processing time. They reviewed the past
studies from the perspectives of both single and multi- machine problems. The other great survey was presented by Edis
et al. [9]. They classified the related studies in a framework with five categories: machine environment, additional
resources, objective functions, complexity results, and solution methods.

Daniels and Mazzola, [10] pointed resource flexibility in a flow shop environment can have a significant impact on
the quality of a schedule when job processing times depend on the amount and mix of resources dedicated to an
operation. Daniels et al. [11] further demonstrated that the improvements in operational performance can be achieved
through the deployment of a flexible resource for an environment of parallel manufacturing cells. They provided
mathematical formulations for both two versions (static and dynamic) of the parallel-machine flexible-resource
scheduling problems (PMFRS). In static PMFRS problems, resource allocation decisions remain unchanged
throughout the scheduling horizon, while for the dynamic version of PMFRS problems, resource can be reassigned to
machines any time when a job is completed. If the assignment of jobs to machines is not specified, the problem is
named an unspecified PMFRS (UPMFRS) problem, where an additional job-machine assignment sub-problem must be
solved. Daniels et al. [12] proposed and compared two heuristics for testing over 800 static UPMFRS. They concluded
that the tabu search- based heuristic outperformed the other one on cost and quality effective of optimal solution
searching. Edis and Oguz [13] extended the formulation of dynamic PMRFS problems of Daniels et al. [11] and
presented mathematical models of the static and dynamic UPMFRS problems. The static PMFRS problem can be
solved in polynomial time, while the dynamic PMFRS, static and dynamic UPMFRS problem are all NP-hard [11, 12].

3. PROBLEM STATEMENT

The UPMFRS problem considered in this study may be stated as follows: There exist 20 independent
single-operation jobs available for processing at time t =0. For each job, the manufacturer engineers and cutting tool
providers suggest four options of cutting conditions for selection. The detailed job descriptions for all the 20 jobs are
presented in Appendix 1. All the options and their corresponding machining time and power demand are listed in Table
1. Each job can be processed on any one of 3 identical CNC turning machines. Each machine can process at most one
job at a time, and job preemption is not allowed in this case. The objective is to minimize makespan for all these 20
jobs.

The only constraint is that at any time the electrical power demand peak cannot exceed 25 KW for job production
with the 3-machine cell. The upper bound of the power demand can be viewed as the additional flexible resource except
the machines. It is continuous and renewable. When the cutting condition for a turning operation is determined, the
material removal rate (MRR) defined as the volume of material removed per unit time can be calculated. Given the
specific cutting energy of the workpiece material, the power demand with the cutting parameter setting can be obtained
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by multiplying the specific cutting energy and MRR. In the resulting problem, three decisions must be jointly made to
solve the scheduling problem: determining machining conditions for jobs, specifying jobs-machines assignment, and
determining start machining times for jobs.

Table 1. Machining Times and Power Demands for Machining Conditions Suggested.

Cutting Condition 1 Cutting Condition 2 Cutting Condition 3 Cutting Condition 4
Job Machining Power Machining Power Machining Power Machining Power
time(min) | Demand(KW) | time(min) | Demand(KW) | time(min) | Demand(KW)| time(min) | Demand(KW)
1 3.27273 13.823 4.31655 10.4804 5.14286 8.79646 7.2 6.28319
2 6.94377 10.7076 8.60606 8.63938 9.7931 7.59218 11.0506 6.72824
3 5.02994 13.9906 6.5625 10.7233 8.15534 8.62891 10.9091 6.45074
4 4.11111 12.2499 4.85246 10.3784 5.63809 8.93226 6.72727 7.48608
5 11.5 13.406 12.9577 11.8978 16.7273 9.21664 23.5897 6.53543
6 6.27692 13.5853 8.16 10.4502 9.6 8.88266 13.1613 6.47912
7 18.2941 13.0855 22.8257 10.4876 27.3407 8.75573 37.1343 6.44652
8 0.985185 13.9418 1.37824 9.96577 1.81199 7.58018 2.34155 5.86587
9 5.65517 11.423 6.92958 9.32219 8.2 7.87791 9.84 6.56492
10 0.72956 11.7993 0.849817 10.1296 1.16583 7.38384 1.40606 6.12228
11 1.13996 14.7833 1.46946 11.4684 1.77577 9.49016 2.08053 8.10005
12 9.43284 14.2473 12.3922 10.8449 16.1019 8.34634 21.9826 6.11356
13 17.1236 11.5957 21.4648 9.2505 26.2759 7.55675 30.48 6.51444
14 3.93043 12.5572 4.56566 10.8101 5.54601 8.89926 6.79699 7.26136
15 7.21905 12.6768 9.94098 9.20577 12.3755 7.3948 15.16 6.03657
16 1.3964 12.8872 1.83976 9.78152 2.06667 8.70759 2.7193 6.61777
17 0.824 10.6524 0.922732 9.51255 1.10013 7.97861 1.29356 6.78555
18 2.225 12.9533 2.94215 9.79594 3.99103 7.22147 4.57584 6.29855
19 10.8833 14.0035 16.1235 9.45239 19.2059 7.93534 22.9123 6.65168
20 1.58844 13.0877 1.89517 10.9695 2.5211 8.24602 3.15862 6.58169

4. A PROPOSED TWO-STAGE HEURISTIC FOR THE PROBLEM

1. Selecting Cutting Speed with the shortest machining time for each job.

v

2. Allocating jobs to machines.

v

3. Recording the shortest Makespan so far.

y

Slowest Cutting Speeds

Y

4. Selecting Different Cutting Speed.

for all jobs?

v Yes

Initial Solution for GA.

Figure 1. Flow Chart for Stage One of the Proposed Heuristic.
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Although three decisions mentioned in previous section must be determined jointly to solve this dynamic UPMFRS
problem, it may be advantageous to partition the entire problem into three sub-problems and solve sub-problems one or
two at a time. In this section, we explain the two-stage heuristic in which an initial solution is obtained at the first stage
and then it is improved by using a genetic algorithm-based (GA) method at the second stage.

4.1. STAGE ONE OF THE HEURISTIC

At the first stage, we develop an approach with four steps running iteratively. A flow chart for the first stage of the
proposed heuristic is shown in Figure 1.

Step 1 - Selecting cutting speed with the shortest machining time for each job. Since the objective is to minimize the
system makespan. Intuitively, performing the operations with their highest cutting speeds given should be preferable.
At this point, the constraint of power demand peak is not considered.

Step 2 - Scheduling jobs to machines. A longest machining time (LMT) priority rule is employed to assign the jobs
to the three identical turning machines by sequencing jobs to the first available machine one by one in decreasing order
of job machining time. With cutting speed determined and the machine specified for a job, setting the start time for
processing the job must take the upper bound of power demand into consideration. For example, if two of the three
machines are operating and the system power remaining is not enough for the third machine to process the job. The start
time of the job then will be scheduled right after enough power is released from the other two machines. With such logic
to schedule the jobs, a production schedule for the 20 jobs will be constructed.

Step 3 - Comparing the makespan of the new production schedule with the previous best schedule. If the new
schedule is better, then replacing the previous best schedule with the current one obtained.

Step 4 - Selecting different cutting speed. At the beginning, we favor the highest cutting speed in order to make
shorter makespan. However, machining high cutting speed requires more power which may cause some idle time since
simultaneously performing the jobs requiring high power demands may result in the power demand peak exceed the
upper bound. For two parameter settings in increasing order of job machining time, a ratio defined as the gap of power
demands divided by the difference of machining times can be used to select the job and try the slower cutting speed.

Decisions Made at Stage One
v

Create Initial Solutions

v

Evaluate the population
A v

Selection

A4

Create New population

v

Stop Criterion
— Final Schedule

satisfied

Crossover

v

Mutation

Figure 2. Flow Chart for Stage Two of the Proposed Heuristic.
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After stage one, the sequence of assigning jobs to machines and which machine a job is assigned to are presented in
Table 2.

Table 2. Job-Machine Assignments Determined at Stage One.

Assigning || 5 3 )y s g | 7 g | ool |12 314l1s]16|17]18]19]20
Sequence

Job # 7 13 ] 5 [ 1211915 2 6 9 3 1 14 | 4 |18 |20 |16 | 8 | 11 | 10 | 17
Machine 1 2 3 2 1 3 2 3 1 1 2 3 3 2 1 1 2 3 2 1

4.2. STAGE Two OF THE HEURISTIC

Some portion of the solution obtained at the first stage is used as the initial solution for the GA at this stage. We have
the two decisions inherited from stage one: the machining conditions and sequence of assigning jobs to machines. We
leave the decision (assignment of jobs to machines) to be made at the second stage. A GA is then employed to
determine which machine a job is assigned to. Genetic algorithms (GAs), usually viewed as search procedures based on
the mechanics of artificial selection and genetic recombination operators, have been successfully applied to solving a
wide range of difficult problems. The GA in this study consists of the following elements: initial solutions, evaluation,
selection, crossover, and mutation. Figure 2 shows the logic of the proposed GA.

Chromosomes and Initial Population - A solution (schedule) can be represented by a chromosome in a set of strings
of machine number (the 3rd row of Table 2). The population size is set to 15. With the job sequence unchanged, we
generate 14 solutions by randomly assigning jobs to one of the three machines and add the best one found at the first
stage.

Evaluation - For each generation, all the solutions generated are measured by their makespans. The chromosomes
representing the solutions are further ranked in ascending order according to their makespans.

Selection - The best 5 solutions are selected out of 15 to be potential parents for next generation.

Crossover - From the top 5 solutions of the generation, two of them are randomly selected to be the parents being
mated for breeding their offspring through crossover operator. The crossover mechanism is shown in Figure 3. A single
crossover point is randomly picked. The strings on left side of the crossover point in parent 1(P1) are copied to the
matching positions of the offspring 1(O1), and the rest of the positions in P1 are copied to the matching positions of
offspring 2(02). Each time two selected parents are mated to generate two children. We randomly select one of the two
children for survival. The procedure is repeated until 15 offspring are all generated.

Mutation —For each offspring chromosome, two genes are randomly selected. The probability of swapping the two
selected genes is set to 20%. Figure 4 shows how the mutation mechanism operates.

v
Job # 7[i3][s[12]ww[1s[2]6[9[3[1[14]4a18]20[16]8 [11]10]17]
e R R e e
Machine(P2) [RoBENiE R R e e e Rz e R e e e
A

Job # 7] s[1w2fw[1s][2]e6]o[3|1J1a]laf18]20]16]8][nnf10]17

" Machine0D) |1 |2 3] 2l1[3l2]3]1[3 [ NERERE i T I I
Machine(02) [ERIEDEEERECEE SRR 2 | 3 | 3| 21123 ]2]1

Job # 7 13 5 12 | 19 | 15 2 6 9 3 1 14 4 18 | 20 | 16 8 11 10 | 17
Machine(O1) 1 2 3 1 3 2 3 1 3 1 2 1 2 3 1 2 1 2
4 Swap 4

Figure 4. An Example for Mutation Operator of the Proposed GA.
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Machane 1
Machine 2
Machine 3
25KW
Makespan=66.169
Figure 5. The Production Schedule and the Profile of Power Demand obtained at Stage One.
5. RESULTS AND ANALYSIS

In this section, performance of the proposed heuristic is evaluated through stage by stage. At the first stage, the
complete schedule found is shown in Figure 5. The makespan is 66.169 minutes. The bottom graph presents profile of
the power demand during machining. It can be observed that the power demand is reached about 80% of 25 KW for the
prior period of the makespan, and it drop to 60%~70% of 25 KW in later period.

At the second stage, the proposed GA improves the schedule obtained at stage one. Figure 6 shows the complete
production schedule and profile of the power demand. The makespan is 55.001 minutes. The GA makes about 17%
improvement in makespan. It should be noted that 11.168 minutes of saving is all the idle time since the same
machining conditions has been determined and applied for both cases. For the profile of power demand, the power
demand is balanced perfectly and it reaches about 95~98% of 25 KW.

6. CONCLUSIONS

The current needs to sustainable production in manufacturing industry require proper selection of machining
conditions with economic and environmental considerations. Higher cutting speeds are usually desirable considering
the performance measure of productivity, but may cause high power load peak. In Taiwan, electricity price goes up
sharply if the instantaneous power demand is over the contract capacity, which is predetermined and reported to
Taiwan Power Company. In this study, we deal with a scheduling problem for a manufacturing system with a bounded
power demand peak. The problem turns out to the dynamic parallel-machine flexible-resource scheduling problem with
unspecified job-machine assignment (UPMFRS). A two-stage heuristic is proposed for solving this UPMFRS. The
machining parameters for the jobs are determined at the first stage, and the jobs are optimally scheduled at the second
stage of the proposed heuristic. Future research effort needs to evaluate the proposed heuristic by testing more
large-sized problems.
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Figure 6. The Production Schedule and the Profile of Power Demand found at Stage Two.
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APPENDIX 1: DETAILED DESCRIPTIONS FOR JOBS

. Specific Original Final Depth of Cutti'ng Conditions
Job Material Energy3 Diameter(mm) Length(mm) Diameter(mm)| cut(mm) Feed(mm/rev) Spindle (RPM)
(Nm/mm’) 1] 234
| 1| 80 450 50 15 550 | 417 [ 350|250
| 2 | Carbon Steel 1.6 250 710 240 5 409 | 330 | 2571200
3 400 210 380 10 200 | 150 | 143|110
| 4 ] 211 148 197 7 1441 105 | 88 | 79
5 253 230 512 11.5 80 | 71 [ 551 39
[ | AlloySteels 4 336 204 3252 5.4 100| 85 | 77 | 50
7 259 622 246.1 6.45 300 [ 270 | 255225
8 76.3 3325 57.5 9.4 ]35 1190 180 850
| 9 | Cast Irons 1.1 359 123 308.2 25.4 77 1 60 | 50 | 40
| 10| 176.5 58 147.3 14.6 025 318 | 273 1199|165
11 213.4 157.6 196 8.7 ' 553 | 429 [355]303
[ 12 ] 142.2 632 121.8 10.2 3551 273 |1245(192
[ 13 ] Stainless Steel )38 269.3 381 242.9 13.2 89 | 71 | 58 | 50
| 14 ] 156.8 226 137.8 9.5 230 | 204 | 163|133
15 337.5 151.6 313.1 12.2 155 142 100 | 73
| 16| 99.3 155 58.7 20.3 4441 394 1300|228
17 |[Magnesium alloys 1.1 108 206 94.3 6.85 180 893 | 749 | 664
13 ] 65 445 30.4 17.3 800 | 749 [ 691 | 599
19 Bronze 2.2 273.8 326.5 244.2 14.8 150 123 [ 90 | 77
20 Aluminum 0.7 346.9 68.7 299.3 23.8 173 | 145 [ 109|127
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