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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent
responsible for coronavirus disease 2019 (COVID-19), has affected the lives of billions and killed
millions of infected people. This virus has been demonstrated to have different outcomes among
individuals, with some of them presenting a mild infection, while others present severe symptoms or
even death. The identification of the molecular states related to the severity of a COVID-19 infection
has become of the utmost importance to understanding the differences in critical immune response. In
this study, we computationally processed a set of publicly available single-cell RNA-Seq (scRNA-Seq)
data of 12 Bronchoalveolar Lavage Fluid (BALF) samples diagnosed as having a mild, severe, or no
infection, and generated a high-quality dataset that consists of 63,734 cells, each with 23,916 genes. We
extended the cell-type and sub-type composition identification and our analysis showed significant
differences in cell-type composition in mild and severe groups compared to the normal. Importantly,
inflammatory responses were dramatically elevated in the severe group, which was evidenced by
the significant increase in macrophages, from 10.56% in the normal group to 20.97% in the mild
group and 34.15% in the severe group. As an indicator of immune defense, populations of T cells
accounted for 24.76% in the mild group and decreased to 7.35% in the severe group. To verify these
findings, we developed several artificial neural networks (ANNs) and graph convolutional neural
network (GCNN) models. We showed that the GCNN models reach a prediction accuracy of the
infection of 91.16% using data from subtypes of macrophages. Overall, our study indicates significant
differences in the gene expression profiles of inflammatory response and immune cells of severely
infected patients.

Keywords: deep learning; single-cell RNA-Seq; SARS-CoV-2; cell type identification; infection severity

1. Introduction

The current global pandemic situation of COVID-19 due to the SARS-CoV-2 virus
has affected the lives of billions. As a highly transmissible and pathogenic coronavirus
that emerged in late 2019 and has caused a pandemic of acute respiratory disease [1], the
SARS-CoV-2 virus is related to the original SARS-CoV, which was highly lethal but faded
out after intense public health mitigation measures [2]. One of the mysteries of COVID-19
is why some people suffer severe symptoms, even life-threatening complications, while
others suffer no symptoms or just mild ones.
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Several studies have related the severity of a COVID-19 infection to immune sys-
tem features resulting in groups more vulnerable to this viral infection [3,4]. Further,
recent studies have illustrated the special roles of macrophages and monocytes in the
inflammatory response to COVID-19 [5,6]. It has also been shown that in severe cases of
COVID-19, the virus promotes a cytokine storm with an uncontrolled massive release of
pro-inflammatory cytokines, leading to acute respiratory distress syndrome (ARDS) and
acute heart failure, and these conditions are highly life-threatening and fraught with the
acquisition of secondary bacterial infections [7]. The quantitative profiles of the immune
cell subsets and molecular factors associated with protective or pathological immunity
against severe COVID-19 can potentially help in gaining a molecular understanding of
this pandemic disease and in the development of vaccines and therapeutics [8–11]. How-
ever, the characterization of cell types related to COVID-19 infection severity has not been
well defined.

The characterization of subtypes of macrophages in patients with different levels
of COVID-19 severity can be accomplished using single-cell technologies. In particular,
scRNA-Seq has become mature enough to provide answers to complex research questions
found in the study of dysregulation of the immune systems observed in COVID-19 patients.
Several studies on COVID-19 infection using scRNA-Seq technology have been reported
recently [8–11], paving a foundation to explore different cell types involved in the COVID-
19 infection severity.

The use of single-cell profiling led to a significant increase in the amount of data col-
lected, which results in computational challenges in processing massive and complicated
datasets. To address these challenges, deep learning (DL) is positioned as a competitive
alternative for single-cell analyses besides the traditional machine learning approaches [12].
In this work, we applied two major computational analyses. First, we implemented a
customized single-cell analysis pipeline that included normalization, batch correction,
integration, dimensionality reduction, and cell-type prediction to determine the cellular
profiles in healthy controls and patients with different severity of COVID-19 symptoms.
We then developed deep learning models to predict COVID-19 severity using gene expres-
sion profiles of cells in a specific cell type, macrophages. The results of this work show
significantly different cell compositions in mild (7316 cells) and severe (37,197 cells) groups
compared to normal (19,221 cells). Importantly, inflammatory responses were dramatically
elevated in the group with severe symptoms, as well as decreased populations of T cells.

2. Materials and Methods

scRNA-Seq datasets with thirteen patients were downloaded from NCBI GEO under
the accession number GSE145926 [8]. A total of 12 BALF samples that included six patients
with severe symptoms (S), three patients with mild symptoms (M), and three healthy
control patients (N) were analyzed. In the original dataset, healthy control, patients with
mild symptoms, and those with severe symptoms were denoted as HC, O, and S/C,
respectively. We excluded from our study one healthy control sample whose genomic data
were originally collected in a different study and lacked as detailed patient information as
the other 12.

Data were pre-filtered to remove doublets or potential dead cells under the following
criteria. (1) The number of genes detected in a cell is between 200 and 6000. (2) The
Unique Molecular Identifier (UMI) counts in a cell should be greater than 1000. (3) The
mitochondrial (MT) percentage is smaller than 10%. A total of 23,916 genes and 63,734 cells
were obtained after the filtering process.

2.1. Normalization and Batch Effect Correction

Cell-to-cell normalization of each patient by negative binomial regression was per-
formed using scTransform from the Seurat v3 package in R [13–15]. The 12 samples
(patients) were clinically pre-classified into three groups, N, M, and S. Batch effect correc-
tion was then performed for samples in each group to eliminate the technical noise, remove
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variations between cells, and align samples in the same group while avoiding removing
biologically relevant data. The “anchor” method from Seurat v3 was used for the batch
effect correction [13].

2.2. Dimension Reduction and Clustering

Principal Component Analysis (PCA) was performed for dimensionality reduction
over the first 30 components using Seurat. A total of 2000 highly variable features (genes)
were selected. Clusters were identified using the Leiden algorithm with a resolution of 1.21
from Seurat v3 [16].

2.3. Cell Type Identification

Cell types were assigned to each of the clusters obtained from 2.2 using the automated
method from Ding et al. [17]. We calculated the affinity of a cell to a candidate cell type
using the marker genes from the CellMatch and CellMarker databases of marker genes [18]
as follows:

st
c = log

(
∑Mt

c xy,c

Kc
104 + 1

)
, (1)

where st
c represents the score of a cell c belonging to a candidate cell type t. Mt represents

marker genes for each candidate cell type t. The variable xy,c represents the UMI count
of the marker gene y in a cell c. The variable Kc denotes the total UMI count in cell c.

By calculating ∑
Mt
c xy,c

Kc
, the contribution of marker genes’ expressions to the overall gene

expression in a cell c for a cell type t is evaluated. Scale factors, 104 and 1, are introduced to
facilitate the logarithm calculation.

For a cluster of cells, the scores for each cell belonging to a cell type t can be obtained
using Equation (1). For a given cluster and a given cell type t, a cell in that cluster is a true
positive if the score st

c is above a given threshold and a false negative otherwise. On the
other hand, a cell not in that cluster is a false positive if it has a score above the threshold
and a true negative otherwise. A receiver operating characteristic curve was plotted to
show the true positive rate against the false positive rate at different thresholds. The Aera
Under Curve (AUC) is 1.0 for perfectly assigning a cell type to a cluster, and around 0.5 for
randomly assigning a cell type to a cluster. Specifically, for each cluster, the cell type with
the highest AUC was assigned to that cluster if the highest AUC score for a cell type is 5%
larger than the second highest AUC score. If AUC scores for different cell types are similar,
a cell type with a larger number of gene markers enriched and a higher percentage of cells
expressing the marker genes will be considered.

2.4. Deep Learning Models to Predict COVID-19 Infection Severity with Gene Expressions

Two different DL models, Artificial Neural Network and Graph Convolutional Neural
Network, have been deployed to predict COVID-19 infection severity using gene expres-
sions in assigned cell types.

We adopted the ANN model since it is the easiest fully connected model to implement.
GCNN models were also established by integrating biological gene–gene interactions into
the models, hoping for a better performance of the models. In this study, a GCNN model
includes an input graph represented by an adjacency matrix, graph convolutional layers
(coarsening and pooling), and a hidden layer connected to an output layer with three nodes
representing the N, M, and S groups.

The database-driven network graph is taken from the GeneMania database (https:
//GeneMania.org/ accessed on 1 September 2021) for the GCNN models [19]. GeneMania
has a large number of interactions and incorporates both gene-to-gene and protein-to-
protein interactions. Since the input gene expression profiles for all models are consistent,
the GeneMania graph does not change and is established once for all models. A p-value
threshold was also established for the GeneMania graph to keep only interactions with the
confidence of (p < 3 × 10−5) from the filtered genes obtained after dimensionality reduction

https://GeneMania.org/
https://GeneMania.org/
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in Section 2.2. This threshold was chosen to obtain a sufficient number of connections
while minimizing the number of singleton nodes. We have applied both ANN and GCNN
models in other studies and the graph convolution algorithms and codes for GCNN
are available at Github (https://github.com/Karladanielap/GeneSignaturesCOVID19
accessed on 1 September 2021). The convolution algorithm of the GCNN layer can be
found in our previous research [20,21].

We trained two sets of models. The first set of models includes both ANN and GCNN
models using gene expressions from a cell as input, while the output includes COVID-19
infection severity levels. We did not integrate cell-type information in this set of models.
The second set of models only uses gene expression profiles from M1, M2, and macrophages
identified in our study to predict the COVID-19 infection severity as the output. We termed
this a macrophage-specific (M-specific) ANN model or a macrophage-specific GCNN
model, as shown in Figure 1.
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Figure 1. Structure of the developed GCNN model. The model includes a graph convolution layer
and a fully connected output layer for classification. Inputs to the GCNN models are expression levels
of 2000 genes in each cell and an input graph. The input graph includes 2000 genes as nodes, and
edges among nodes representing gene-to-gene interactions from the GeneMania database. The input
graph is then pooled into a single GCNN layer which will be fed into the hidden and output layers.

2.5. Differential Gene Expression and Gene Ontology Analysis

Differential gene expression analysis was performed in R through a widely adopted
package, Model-based Analysis of Single-cell Transcriptomics (MAST) [22]. We further
filtered the genes considered differentially expressed with a threshold of p-value < 0.05
and fold change (FC) > 2 (up-regulated) or FC < 0.5 (down-regulated) to keep only the
significantly differentially expressed genes (DEG) [23]. We analyzed the obtained genes
with Database for Annotation, Visualization, and Integrated Discovery (DAVID) [24],
a program that integrates functional and genomic annotations with intuitive graphical
summaries, to obtain the gene ontology (GO) terms of the significantly differentially
expressed genes.

3. Results
3.1. Integration of scRNA-Seq Data of COVID-19 Patients Classified by Severity Produces a
High-Quality Normalized Dataset

To understand the cell type and molecular differences for COVID-19 patients with
different degrees of severity, we implemented a custom pipeline to re-process public scRNA-
Seq datasets. After pre-processing, we obtained 63,734 cells with 23,916 genes for analysis.
The distribution of the number of genes detected, the UMI, and the percentage of MT in
cells are illustrated in Figure S1. The violin plots showed that most cells harbor a 2% MT

https://github.com/Karladanielap/GeneSignaturesCOVID19
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content, less than 10,000 UMIs, and less than 2000 genes, suggesting high-quality cells
supported by a good number of UMI reads. Demographics of each patient in the study,
together with the number of cells detected for each patient, were also included (Table 1).
We observed high variations in the number of cells for each sample, reflecting variations in
the quality of the samples that were corrected during the normalization and integration
steps of our customized scRNA-Seq pipeline.

Table 1. Demographics of patients and number of cells after filtering. The average age of 12 patients
is 45.91 with a standard deviation of 16.1.

Sample Number of Cells Gender Age Chronic Disease

Normal1 8466 Female 38 -
Normal2 8189 Male 24 -
Normal3 2566 Male 22 -

Mild1 3542 Male 36 -
Mild2 3411 Female 37 -
Mild3 363 Male 35 -

Severe1 17,340 Male 62 -
Severe2 1292 Male 66 Hypertension
Severe3 1718 Male 63 Sleep apnea
Severe4 2071 Female 65 Diabetes
Severe5 2904 Female 57 -
Severe6 11,872 Male 46 -

3.2. Differences in the Number of Clusters across Conditions Suggest a Correlation to COVID-19
Infection Severity

To evaluate if there were differences in the number of clusters across conditions, we
processed samples from each condition using PCA. The top 2000 highly variable genes were
selected from the original 23,916 genes and the resulting data were processed. To further
verify how the changes in clusters relate to COVID-19 infection severity, we performed
batch effect correction and integration for all samples (12 patients).

We observed that, in each group, cells were distributed uniformly, suggesting the
good performance of normalization and batch effect correction for the three groups (see
Figure 2A). We found a total of 31 clusters assigned to 20 cell types (Figure 2B,C). In
Figure 2D, a larger and darker dot represented the percentage of cells in a cluster expressed
in the selected marker gene (expression level > 0). We noted that cell types should be
determined by multiple markers and a full list of the gene markers used is shown in
Table S1. The gene marker NAPSA represents type II pneumocytes with a darker and larger
dot compared with NAPSA expressions in other cell types in Figure 2D; correspondingly,
the AUC score for type II pneumocytes is very high (AUC = 0.95), suggesting a higher
confidence to assign type II pneumocytes to cluster 29. A cell type might be assigned to
multiple clusters; for example, M1 macrophages were assigned to clusters 0, 15, 18, and 27
with different AUC scores (Figure 2E). As a marker gene for macrophages, CXCL10 was
also highly expressed in other cell types; however, CXCL10 should not affect other cell type
assignments if it was not one of the marker genes for the cell type under consideration.

The number of cells and percentage of cells in each cluster for 12 patients were shown
in Table 2. A total of 20 clusters of cells were found across all 12 patients. We also found
differences in the percentage of cells from each condition (normal, mild, and severe) that
composed the cluster, suggesting that these differences might be related to COVID-19
infection severity.
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Table 2. The percentage of cells in each cluster for each patient. N, M, and S represent severity groups, respectively, while the number after the group represents
the patient ID in the corresponding group; for example, N1 represents patient 1 in the normal group. Note: the summation of percentage in each column is 1,
representing the cell composition of a sample (see also Figure S2).

Cluster # Cell Type N1 N2 N3 M1 M2 M3 S1 S2 S3 S4 S5 S6

Cluster 0 M1 macrophage 0.93 0.53 3.62 2.82 3.34 2.48 18.82 15.46 10.06 23.11 12.75 8.4
Cluster 1 Fibroblast 0.85 0.31 1.68 4.43 3.96 2.75 14.12 17.17 6.81 10.48 12.94 10.78
Cluster 2 Monocyte 21.95 15.59 20.81 9.01 11.96 1.65 1.26 3.38 1.47 1.34 1.06 0.55
Cluster 3 Basal cell 20.67 22.65 8.85 7.99 6.65 2.48 0.27 1.26 0.54 0.7 0.34 0.72
Cluster 4 Fibroblast and M1 2.45 1.48 3.27 3.42 5.66 2.75 9.36 14.21 3.48 3.84 4.49 3.89
Cluster 5 M2 macrophage 4.93 5.59 4.68 5.79 5.13 3.86 4.5 8.8 4.72 7.57 4.73 1.41
Cluster 6 Secretory cell 13.13 10.58 9.9 5.31 7.15 3.86 2.06 1.53 1.55 2.79 0.43 2.41
Cluster 7 Macrophage 2.98 2.87 3.51 6.15 5.04 6.89 4.77 9.11 5.11 5.3 4.54 3.1
Cluster 8 CD8+ T and EP 12.6 16.83 7.83 2.17 1.64 2.2 0.21 0.14 0.7 0.41 0.53 0.62
Cluster 9 Monocyte 0.87 0.59 1.68 0.65 0.73 1.1 11.16 2.8 6.35 1.98 2.17 1.03

Cluster 10 T cell 0.83 0.05 4.44 8.78 9.85 11.57 5.18 2.02 0.62 2.85 19.17 2.48
Cluster 11 Dendritic cell 2.02 1.67 2.22 4.29 3.11 2.48 3.44 3.93 3.79 3.55 4.25 4.2
Cluster 12 Plasma cell 0.01 0 0 0.08 0.21 0.28 5.31 5.03 22.52 3.67 2.12 0.96
Cluster 13 T cell 0.64 0.04 7.17 12.14 11.81 16.53 0.96 1.77 2.32 2.56 5.6 4.68

Cluster 14 Anterior Foregut
Endoderm cell 2.16 1.58 4.09 6.04 3.84 1.65 2.01 1.68 2.32 0.52 3.38 2.31

Cluster 15 M1 macrophage 0.08 0.01 2.96 5.14 5.39 9.09 3.04 2.11 0.54 1.4 4.73 1.62
Cluster 16 Secretory cell 1.1 0.21 0.58 1.44 1.93 1.93 4.09 1.43 0.15 0.17 4.14 2.17
Cluster 17 mDC 4.24 6.75 2.14 2.29 1.67 1.1 0.18 0.66 0.23 0.23 0 0.1
Cluster 18 M1 macrophage 1.3 0.39 0.62 1.19 1.17 3.86 3.35 1.22 0.54 1.4 0.72 6.61

Cluster 19 Epithelial
progenitor cell 0.04 0.11 0.09 0.99 0.94 8.54 0.92 1.36 3.87 16.88 6.42 4.06

Cluster 20 Basal cell 1.67 6.97 0.27 0.42 0.47 0.55 0.14 0.19 0.08 0.06 0.1 6.23

Cluster 21 Epithelial
progenitor cell 0.21 0.39 2.38 1.55 2.05 3.03 0.87 1.95 9.67 4.95 1.93 2.58

Cluster 22 B cell 2.59 0.48 3.59 2.48 1.58 3.5 0.4 0.89 0.08 0.81 0.58 0.24
Cluster 23 CD4+ T cell 0.38 0.02 1.75 3.16 3.14 3.03 0.97 0.73 1.39 1.8 1.83 0.96
Cluster 24 B cell 1.29 4.25 0.47 0.48 0.38 0.28 0.17 0.11 0.08 0.06 0.92 3.93
Cluster 25 Type I

pneumocytes 0 0 0.04 0.14 0.03 0.28 0.88 0.19 0.23 0.64 0 15.63

Cluster 26 Epithelial
progenitor cell 0 0 0 0.03 0 0 0.39 0.08 10.53 0.47 0.63 4.72

Cluster 27 M1 macrophage 0 0 0 0.17 0.03 0 0.94 0.22 0.08 0.17 0 1.89
Cluster 28 B cell 0.04 0.07 0.23 0.9 0.64 0.83 0.18 0.31 0 0.06 0.05 0
Cluster 29 Type II

pneumocytes 0.06 0 0.31 0.54 0.47 1.38 0.05 0.23 0.15 0.23 0.43 0.14
Cluster 30 Ciliated cell 0 0 0 0 0 0 0 0 0 0 0 1.55
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Figure 2. Alignment and clustering of gene expression from 12 patients after normalization and batch
effect correction. (A) Cells from all 12 patients in N, M, and S groups were visualized using UMAP;
(B) A total of 31 clusters were identified for potential cell-type assignments; (C) Cell types assigned to
each cluster were visualized using UMAP. Cell type names and their corresponding cluster numbers
(in parenthesis) were provided in legend; (D) Dot-plot of cell types assigned with selected gene
markers. Each gene marker listed at the bottom is a selected marker for a specific cell type listed
on top of the subfigure. (E) The AUC scores for cell type assignment to each cluster illustrated the
confidence of cell type identification.

3.3. Clustering with Respect to COVID-19 Severity Levels Suggests Disease-Related
Cell Activation

To further test if clusters of cells are related to severity levels, we calculated the
percentage of clusters in each patient shown in Table 2. We applied a hierarchical clustering
algorithm based on the percentage of cells in a cluster for a patient and the attribute of
a patient’s group (N, M, S) (Figure 3). The profiles of cell clusters successfully classified
the N, M, and S groups, suggesting cellular activation profiles of patients representing the
severity of COVID-19 infection.

3.4. Cell Type Assignment

Liao et al.’s paper presented an excellent preliminary study to identify 11 cell types
(Ciliated, Secretory, Macrophages, Neutrophil, mDC, pDC, Mast cell, T cell, NK, B cell,
and Plasma cell) and others with a total of 12 gene markers listed (TPPP3, KRT18, CD68,
FCGR3B, CD1C, CLEC9A, LILRA4, TPSB2, CD3D, KLRD1, MS4A1, IGHG4), as shown
in Extended Data Figure 1 [8]. Having noticed that two major cell types, alveoli, and
fibroblasts, were not reported, and that one cluster in Liao et al.’s study was not assigned to
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any cell type (denoted as others), it motivated us to perform cell-type identification, aiming
for a more complete catalog of cell types and subtypes.
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that belong to a specific patient.

Our study has assigned all 63,734 cells to one of the 20 cell types (see Table 3). Specifi-
cally, we identified more subtypes of cells; for example, Liao et al.’s results only showed
macrophage clusters, while we have identified three subtypes, including macrophages, M1
macrophages, and M2 macrophages (87.1% overlapping with Liao’s macrophage cell type).
Identification of subtypes of macrophages is important since M1 macrophages and M2
macrophages have different regulatory roles in inflammatory responses. Moreover, 98.8%
of the epithelial subtypes, including secretory, ciliated, basal, or epithelial progenitor (EP)
cells, that we identified were identified only as epithelial cells. About 68% of the cells we
identified as subtypes of T cells (T cell and CD4+ T cell) were previously identified only as
T cells.
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Table 3. Percentage of a cell type assigned to cells in N, M, and S groups.

Cellular Function Cell Type Normal (%)
Mild Severe
(%) (%)

Lung structure

Type II pneumocytes 0.068 0.55 0.15
Type I pneumocytes 0.0052 0.1 1.73

Secretory cell 12.26 7.79 4.57
Basal cell 23.68 7.55 1.28

Anterior foregut endoderm cell 2.17 4.8 1.95
Epithelial progenitor cell 0.76 3.2 5.34

Fibroblast 0.73 4.13 14.35
Ciliated cell 0 0 0.12

Inflammatory
Macrophage 3 5.67 6.05

M2 macrophage 5.18 5.39 5.79
M1 macrophage 2.38 9.91 22.31

Immune

Monocyte 19.94 10.72 8.49
mDC 5.03 1.94 0.32
B cell 4.34 3.32 1.23
T cell 2.23 21.62 6.36

Dendritic cell 1.9 3.65 3.72
CD4+ T cell 0.41 3.14 0.99

Blood Plasma cell 0.0052 0.15 5.22

Undetermined
Fibroblast/M1 2.14 4.43 9.75

CD8+/EP 13.77 1.93 0.26

To confirm our cell type assignment, we also compared the cell composition of the
normal group with other studies and our results agreed with the reported cell composi-
tions [25–30]. In Table 3, about 20.97% (5.67% macrophages, 5.39% M2 macrophages, and
9.91% M1 macrophages) and 34.11% (6.01% macrophages, 5.79% M2 macrophages, and
22.31% M1 macrophages) of cells identified were macrophages from samples with mild
and severe symptoms, respectively, suggesting elevated inflammatory responses in mild
and severe groups. Fibroblasts accounted for 0.73%, 4.13%, and 14.35% of cells identified
from samples as normal, mild, and severe symptoms, respectively, indicating possible
structural changes in the infected lungs. Interestingly, it is reported that the proportions of
macrophages significantly increased from 12% in normal (with single-nucleus RNA seq
data) to 20% in lung tissue with COVID-19 infection, as well as those of fibroblasts, from
7% in normal to 23% in infected lungs [31]. The identified sub-types of cells in our study
provide a more detailed picture of the cell-type composition and its dysregulation related
to COVID-19 infection severity.

Table 3 lists the percentage of cell types in each group where we can observe trends of
populations of 13 cells types, including Type II pneumocytes, anterior foregut endoderm
(AFE) cell, T cell, dendritic cell, Macrophage, fibroblast/M1 macrophage, fibroblast, M1
macrophage, B cell, mDC, CD8+/EP, monocytes, and basal cells, identified in N, M, and S
groups (See Figure 4). T cells and AFE cells demonstrated a “Λ” shape, with an increased
percentage in the mild group and a decreased percentage in the severe group compared
to the normal group (Figure 4A). As an indicator of immune defense, populations of T
cells (T cells and CD4+ T cells) accounted for 24.76% in the mild group and decreased to
7.35% in the severe group. Cell proportions of monocytes, basal cells, and mDC in the
mild and severe groups significantly decreased compared to the normal group (Figure 4C).
Since macrophages were differentiated from monocytes, decreased monocyte populations
(Figure 4C) were observed with the increased populations of macrophages (Figure 4B).
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3.5. Deep Learning Models for COVID-19 Infection Severity Prediction Supported by Significant
Differences in the Gene Expression Profiles of Subtypes of Immune Cells

One ANN model and one GCNN model were trained with 80% of cells from each
patient without consideration of cell types, while M-specific ANN and M-specific GCNN
models were trained with cells identified as M1, M2, and macrophage in Section 3.4.

ANN models include one input layer with 2000 nodes for gene expressions, one
hidden layer with 32 nodes, and one output layer with three nodes representing the normal,
mild, and severe levels of infection. The model was trained with the dropout rate as 0.5,
the learning rate as 0.0006, the batch size as 128, softmax activation, adam optimizer, and
sparse–categorical cross–entropy loss function using the Keras package.

GCNN models were also developed for all cell types and macrophages specifically
with the model structure. The GCNN models include one graph with 2000 nodes (genes)
and 199,900 edges. After the input graph, a hidden layer with 128 nodes with softmax
activation was introduced, as well as a fully connected output layer with three nodes
representing the normal, mild, and severe infection levels. The parameters for GCNN
models were chosen as follows: dropout rate is 0.5, the learning rate is 0.0005, and the batch
size is 128.

A total of 15 data partitions were established with 80%, 10%, and 10% of cell types
extracted from each patient to train, validate, and test the models. Both ANN and GCNN
models were developed, trained, and tested with the same data partitions. All ANN and
GCNN models have comparable training losses. Average and the best performances of
ANN and GCNN models with 15 partitions were presented in Table 4. The best performance
of the M-specific GCNN model has a testing performance of 91.48% and beats all other
models. Prediction accuracy generated from an M-specific GCNN model was shown in
Table 5. The prediction accuracy for the mild group was the worst due to a smaller sample
size compared with severe and normal groups, as shown in Table 1.

Table 4. Performance of ANN and GCNN models using all cell types and macrophage-specific ANN
and GCNN models for COVID-19 infection severity prediction.

Average Performance 15 Partitions Best Performance

Train Validate Test Train Validate Test
ANN 84.09% 82.62% 82.73% 84.28% 82.97% 83.02%

GCNN 77.09% 76.49% 76.59% 88.61% 88.64% 88.14%
M-specific ANN 87.64% 84.99% 84.86% 88.13% 86.19% 85.86%

M-Specific GCNN 91.16% 89.13% 89.23% 91.48% 90.04% 90.25%
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Table 5. Confusion matrix for the M-specific GCNN predictions. Rows show the N, M, and S groups,
while columns show the number of cells predicted for each group.

Predicted Class

Normal Mild Severe

True class

Normal 145 12 44

Mild 22 64 66

Severe 15 21 1231

We also performed classification using logistic regression in scikit-learn by using a
5-fold cross-validated grid parameter search. The best parameters across all searched
parameters are inverse regularization of 10 and L1 penalty using linear optimizer. The
logistic regression model has achieved the best score of 82.9%, and the testing set has the best
score of 82.9%. The average prediction accuracy of ANN and GCNN modes using all cell
types reached a performance similar to the logistic regression approach and did not show
significant improvement. However, gene expression profiles in identified macrophages
significantly improved the prediction accuracy, suggesting that the characterization of
macrophages might be related to COVID-19 infection severity.

3.6. A Subtype of M1 Macrophages Is Associated with Severe COVID-19 Cases

With the cell type identified, we further examined if cells in a cluster are observed
in samples from a unique group (See Table 6). In cluster 0, which is assigned as M1
macrophage, 93.2% of cells belong to severe samples, 3.45% to mild samples, and 3.35%
to normal samples (see Table 6). Similarly, cells from clusters 5, 7, 15, and 18 belong to
samples from the N, M, and S groups. Cells from cluster 27 (M1 macrophages) are only
observed in samples from the M and S groups.

Table 6. Percentage of cells from normal, mild, and severe groups in the clusters assigned as
macrophage subtypes.

Cluster/Subtype Number of
Cells

Percentage of
Normal Cells

Percentage of
Mild Cells

Percentage of
Severe Cells

0/M1 6572 3.33% 3.45% 93.20%
5/M2 3544 29.00% 11.40% 59.50%

7/Macrophage 3241 18.30% 13.19% 68.40%
15/M1 1436 5.90% 28.03% 66.05%
18/M1 1218 13.90% 7.95% 78.90%
27/M1 255 0% 2.76% 97.20%

Since M1 macrophages were assigned to multiple clusters, we further examined the
DEG in these clusters to see if we can assign a subtype to a cluster. A total of 142 genes
were found to be differentially expressed (90 for up-regulated, and 52 for down-regulated)
in cluster 0 (See Tables S4 and S5) compared to the other M1 macrophage clusters (15, 18
and 27). Interestingly, all the 90 up-regulated DEGs and 51 down-regulated DEGs were
only found in cluster 0 and not in the other clusters (see Table 7 for unique DEGs). The
number of DEGs and unique DEGs in cluster 0 are significantly higher than the other
clusters designated as M1 macrophages, suggesting a possible subtype of M1 macrophages.

To further investigate if this is a subtype of M1 macrophages, we examined the
biological processes enriched by the DEG with larger FC (see Table S2 for up-regulated
genes and S4 for down-regulated genes). The enriched biological processes of up-regulated
genes include chemotaxis, cytokines, immunity, inflammatory response, antiviral defense,
and apoptosis (Table S3), which are strongly associated with the COVID-19 infection. The
DEGs with larger FC include the alarmins S100A8, S100A9, CXCL10 and CCL2. S100A8
and S100A9 are endogenous molecules released in response to environmental triggers and
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cellular damage. They are constitutively expressed in immune cells and their expression is
up-regulated under inflammatory conditions [32] (see Table 7). CXCL10 and CCL2 have
been reported as key players in the onset and maintenance of cytokine storm in severe
cases of COVID-19 [33]. Additionally, the expression levels of GNLY, GSZMB, and CCL5
were significantly downregulated (see Table 8). It is well-known that GNLY functions as
an antimicrobial peptide [34]. GSZMB deficiency exacerbates lung inflammation in mice
after acute lung injury [35]. Moreover, low levels of CCL5 have been associated with severe
COVID-19 infection [36]. Based on these results, we speculate that this subtype of M1
macrophages in cluster 0 is an intermediate subtype related to immunity, inflammatory
responses, and cytokine storm in COVID-19 infection.

Table 7. Up-regulated DEGs in clusters identified as M1 macrophages.

Cluster Total DEG * Number of Unique
DEG Genes ** Top 5 Up-Regulated (FC)

0 90 90 S100A8 (15.1), S100A9 (14.3), CCL2 (9.3), CXCL10 (8.3), IL1RN (8.1)
15 29 15 CST7 (3.5), RPS27(3.1), RPS19(2.6), ALOX5AP(2.5), XCL2(2.5)
18 40 29 IL32 (6.9), CD3E (3.7), CD2 (3.6), CORO1A (3.5), CD3D (3.3)
27 23 2 ZNF683 (2.0), BGLAP (2.1)

* Differentially expressed genes of one cluster compared to the rest of the clusters identified as M1 macrophages.
** Differentially expressed genes found only in one cluster.

Table 8. Down-regulated DEG in clusters identified as M1 macrophages.

Cluster Total DEG * Number of Unique
DEG Genes ** Top 5 Down-Regulated (FC)

0 52 51 GNLY (0.03), GZMB (0.05), CCL5 (0.09), NKG7 (0.10), IL32 (0.11)
15 72 9 MT2A(0.4), ACTB (0.44), CSTB (0.44), S100A4 (0.46), HLA-DRA (0.47)
18 73 27 FOS (0.30), SRGN (0.36), NEAT1 (0.39), CCL4 (0.39), TNFSF10 (0.42)
27 66 0 N/A

* Differentially expressed genes of one cluster compared to the rest of the clusters identified as M1 macrophages.
** Differentially expressed genes found only in one cluster.

In particular, we identified two genes (APOBEC3A and IDO1) that are unique to this
cluster and that may also be considered as gene markers for the M1 subtype. APOBEC3A
has a key role in cytidine deaminase for transcriptomic and functional polarization of M1
macrophages [37], while IDO1 plays a potential role in macrophage differentiation where
the expression levels of this gene modulate macrophage differentiation. Previous findings
support the role of IDO1 with regard to the polarization of macrophages to restrain excessive
or inappropriate immune activation in inflammatory or tumor microenvironments [38].

4. Discussion

This is the first study to line up the characterization of macrophages to the severity
of COVID-19 infections using a single-cell RNA Seq analysis. A total of 31 cell clusters
were found in a previously published dataset and the percentages of the cell clusters from
12 samples were used to successfully predict the severity of the COVID-19 infections. To
gain a better understanding of the specific cellular responses to COVID-19 infections, these
31 cell clusters were further mapped into 20 cell types with well-defined gene markers in the
lungs. Trends of the cell profiles in the normal, mild, and severe groups were then compared.
The most significant changes for the immune system and inflammatory responses were
found in macrophages, monocytes, and T cells, while for lung function and structures, they
were found in fibroblasts, EP, and basal cells. Different cell proportions identified in the
normal, mild, and severe groups triggered a further characterization of specific cell types.
ANN and GCNN models were developed to predict COVID-19 infection severity with
gene expressions in all cell types and with gene expressions from M1+M2+macrophages,
considering that macrophages are the most significant cell type changes among the normal,
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mild, and severe groups. Our results showed that the macrophage-specific GCNN model
had the highest prediction accuracy, confirming the significant role of macrophages in
predicting the severity of COVID-19.

The novelty of this study lies in the integration of a single-cell RNA seq analysis with
DL models to predict the severity of COVID-19 infection. Due to the complexity of single-
cell data, a significant research effort was allocated at the early stage for normalization
and batch effect correction to reduce technical experimental variations and individual
differences among batches and cells, while keeping meaningful biological information.
Though multiple scRNA-Seq pipelines such as Seurat [13] and Scanpy [39] are available
for users to perform the analysis, the rationale for selecting special thresholds during
the analysis should be carefully examined by users with a good understanding of both
statistical analysis and biological processes. Overwhelming batch correction may lead to
the loss of biological information for a scRNA-Seq analysis.

With the availability of DL modeling tools such as Keras, training DL models is
getting easier, while the interpretation of DL remains premature. We adopted a feature
selection-searching approach in this study. The completeness and soundness of the model
should be further investigated in future studies. There are other approaches to establishing
a GCNN graph for scRNA-Seq data, including using a cell–cell graph or a gene-to-cell
graph [40,41]. Since the goal of this study was to line up gene expression profiles to cell
types and then infection severity, we first established a data-driven graph from genes to
cell clusters, borrowing the idea reported in [41]. However, the performance of the GCNN
with gene-to-cell cluster graph was not as good as the GCNN models presented here. We
examined the edges in the data-driven gene-to-cell cluster graph and found the number
of edges was much smaller than that in other graphs used before. In addition, since there
is no backward prorogation to refine the weights of the edges in the gene-to-cell cluster
graph, any error introduced in the graph will stay there and affect the prediction accuracy.
On the other hand, the adopted gene-to-gene interaction graph is a pure knowledge-driven
graph. Thus, the errors introduced to the graph are controllable based on prior knowledge.
One possible way to improve the performance of the GCNN model is to establish a pure
biology-driven graph combining gene–gene interactions and links from marker genes to
specific cells for GCNN models in the future.

Our study indicates significant differences in the gene expression profiles of subtypes
of immune cells of COVID-19-infected patients. The molecular components of these profiles
deserve further research and experimentation as potential therapeutical factors.
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