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Abstract: Solving transient heat transfer equations is required to understand the evolution of temper-
ature and heat flux. This physics is highly dependent on the materials and environmental conditions.
If these factors change with time and temperature, the process becomes nonlinear and numerical
methods are required to predict the thermal response. Numerical tools are even more relevant when
the number of parameters influencing the model is large, and it is necessary to isolate the most
influential variables. In this regard, sensitivity analysis can be conducted to increase the process
understanding and identify those variables. Here, we combine the complex-variable differentiation
theory with the finite element formulation for transient heat transfer, allowing one to compute
efficient and accurate first-order sensitivities. Although this approach takes advantage of complex
algebra to calculate sensitivities, the method is implemented with real-variable solvers, facilitating the
application within commercial software. We present this new methodology in a numerical example
using the commercial software Abaqus. The calculation of sensitivities for the temperature and heat
flux with respect to temperature-dependent material properties, boundary conditions, geometric
parameters, and time are demonstrated. To highlight, the new sensitivity method showed step-
size independence, mesh perturbation independence, and reduced computational time contrasting
traditional sensitivity analysis methods such as finite differentiation.

Keywords: finite differences; finite elements; transient conduction; complex-variable differentiation;
sensitivity analysis; heat conduction

1. Introduction

The physics of transient heat transfer allows one to evaluate the dynamics of energy
movements for bodies subjected to changes in temperature, enabling the analysis of the
heat flux, temperature history, and temperature rate of different processes. Transient heat
transfer problems have significant applications in food processing [1,2], alternative ener-
gies [3,4], oil and gas [5], metallurgical processes [6,7], metallography [8,9], infrastructure
materials [10,11], and electronics and semiconductor cooling [12–14], among others. These
applications require analysis of multiple parameters, e.g., time-dependent boundary con-
ditions [15], temperature-dependent thermo-mechanical properties [16,17], and evolving
geometries [18] to guide the design of components.

Experimental, analytical, and numerical approaches have been proposed to model
transient heat transfer processes. In the experimental approach, level values of the inputs
are set to generate random and independent experimental runs. This approach allows the
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empirical models to capture the dynamic characteristics of a thermal problem regardless
of its complexity [19]. It has been used to optimize operational parameters of radiation
heat exchange materials [20], induction heating [21], heat treatments [22], sensor design
and calibration [23,24], cooling devices [25,26], and electronics refrigeration [27]. However,
when the processes of interest involve many parameters, and the factors are prone to
uncontrollable changes (e.g., uncontrolled room conditions), the experimental approach
becomes time-consuming and expensive, limiting its application.

Approximations for specific processes can be obtained using simplified analytical
solutions for the heat diffusion equation for plates [28], walls [29], cylinders [30,31], or
spheres [32] under temperature, heat flux, or periodic heating [29]. For instance, predictions
in the thermal profile of a plate due to a moving heat source can be approximated by this
method [33]. However, explicit analytical solutions are uncommon when systems are
large, complex, and time-dependent. The approximations based on simplified models
lead to significant errors. As a result, numerical models such as the finite element method
(FEM), finite-difference methods, and boundary element methods are popular for solving
transient heat transfer problems due to their flexibility and versatility. These numerical
methods have been used to approximate the solution of the heat diffusion equation in large
and complex problems such as the analysis of fractal piping design [34], phase change
materials [35], enhanced surfaces [36], heat exchangers [37], heat sinks [38] and additive
manufacturing [39,40], among others. In addition, these and other numerical techniques
have been used to study the rate of change of temperature to time in crystallization [2,41],
microstructural evolution [42], and superconducting devices [43].

Regardless of the modeling technique, the more elaborate the model, the more challeng-
ing it is to track the effects of the input variables on the outputs of the models. Sensitivity
analysis is a technique to determine the interactions among the input parameters in a model.
For instance, an output could be insensitive to a specific input but highly sensitive to a com-
bination of that input with other parameters in the model. Sensitivity analysis is also used to
quantify the influence of these parameters on the model response [44]. In sensitivity analy-
sis, each of the inputs is represented by sensitivity coefficients given by the partial derivative
of the output of interest with respect to each input [19,23,24,45–50]. The traditional methods
to obtain sensitivities are hand-coded analytical differentiation [44], symbolic differentia-
tion [51], automatic differentiation [52], and finite differentiation (FD) [44]. Hand-coded
analytical and symbolic differentiation are similar methods as both are exact and rely on
analytical models. However, in the hand-code differentiation, the sensitivities are obtained
by hand procedures and typed directly in the code. These make the method error-prone,
time-consuming to develop and code, and challenging for implicit models. In contrast,
symbolic differentiation generates explicit symbolic expressions of explicit analytical mod-
els and uses computational symbolic packages to obtain the sensitivities automatically [53].
Automatic differentiation or algorithmic differentiation takes advantage of the chain rule
and function composition to sequentially decompose a function in the root variables and its
operations in the function. Then the recurrent evaluation of the decomposition in the chain
rule of the function allows the algorithm to recover the sensitivity using forward, backward,
or adjoint schemes. The formulation of the method makes the algorithm slow and memory
demanding [52–54]. Another traditional method for obtaining the sensitivities of a model
is the numerical FD. This technique has been widely applied in sensitivity analysis in many
fields because it is easy to implement as it only requires multiple model evaluations with a
small step size for the analyzed variable. Nevertheless, when the model becomes nonlinear,
obtaining high precision sensitivities using FD is challenging because the method is subject
to computational subtraction cancellation errors and truncation errors [55,56]. In addition,
the step size for each input to the model is problem dependent and usually requires a
convergence analysis to select it for each of the inputs. Moreover, multiple evaluations
of the model are required to calculate each parameter sensitivity of interest, making the
technique disk memory intensive and time demanding [54].
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An alternative approach for the numerical calculation of sensitivities is the Complex
Taylor Series Expansion Method (CTSE) [57]. Unlike finite differencing, CTSE does not
require the difference of two analyses. Instead, the derivatives are computed using a small
perturbation along the imaginary axis of the input parameters, evaluating the function,
extracting the imaginary part of the outputs, and dividing by the perturbation magni-
tude (more details shown in Section 2.2). In this context, since no subtraction operations
are needed, no subtractive error is generated, and the computed sensitivity is highly ac-
curate [56]. CTSE can be incorporated in partial differential equation solvers based on
techniques such as the finite-differences method [58], the boundary element method [59],
and the FEM [60,61].

The combination between CTSE and analytical modeling has been successfully applied
to transient heat transfer analysis. For instance, Jayapragasam et al. [53] showed a sensitivity
study for a 1D transient heat conduction problem. The authors compared analytical
differentiation, FD, and CTSE methodologies for calculating sensitivities and concluded
that CTSE provides certain advantages over other methods, such as near analytical accuracy,
step size independency, reduction of computing time, and elimination of the subtractive
cancelation problem. Similarly, CTSE has been applied to calculate sensitivities to solve
inverse heat transfer problems using the finite-differences method. In this application,
the sensitivities calculated using CTSE were used to guide the optimization algorithms to
recover the values of temperature-dependent thermal properties and thermal boundary
conditions [62–64]. Moreover, some authors have reported improved computational times
and convergence rates in the minimization algorithms when CTSE is used over other
numerical differentiation algorithms [65–67].

This work presents and verifies a methodology that integrates CTSE and the transient
heat transfer FEM. We call this method the transient heat transfer complex-variable finite
element method or Transient Thermal ZFEM. This methodology allows the calculation of
faster and more accurate sensitivities of heat flux and temperature history with respect to
constant and temperature-dependent thermo-physical properties, boundary conditions, ini-
tial conditions, time, and geometry than FD. Moreover, although the essence of the method
takes advantage of complex variable operations to calculate sensitivities, it is demonstrated
how this method can also be applied in real-variable solvers. A sensitivity analysis for
a fin problem under 1D transient thermal conditions was performed to demonstrate our
methodology. This device, as represented in Figure 1a, was selected due to the availability
of an analytical solution with constant parameters and the relevance of the problem in
thermal systems. Fins are present in almost all heat transfer applications such as engines,
computers and electronics, and cooling systems. It is worth highlighting that ZFEM has
been verified in a number of application areas such as elastic analysis [60], fatigue [68,69],
fracture mechanics [61,70–73], plasticity [74], residual stresses [75], creep [76], variance
estimates [77], reliability-based design optimization [78], steady-state thermo-elasticity [79],
structural dynamics [80], and periodic material design [81]. However, this is the first
demonstration of ZFEM in transient heat transfer problems.

The outline for the rest of the paper is as follows: Section 2 presents the background re-
lated to the transient heat transfer FEM and CTSE. Section 3 presents our new methodology
that integrates FEM and CTSE to form the Transient Thermal ZFEM methodology. Section 4
demonstrates the application of the methodology on the analysis of the fin problem consid-
ering thermal transient conditions for constant parameters (e.g., constant material proper-
ties and boundary conditions, see Figure 1). The results are compared against analytical
equations. Subsequently, we analyzed the case of temperature-dependent specific heat,
and the results were compared against FD. Finally, the conclusions and future work are
presented in Section 5.
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Figure 1. (a) Schematic representation of the fin problem, including geometrical parameters and
boundary conditions. The colormap represents the steady-state solution for a fin with an insulated
tip subjected to room conditions with a predefined wall temperature. (b) Transient Thermal ZFEM
methodology for sensitivity analysis.

2. Background
2.1. Finite Element Method Formulation for Transient Heat Transfer Problems

The governing equation for transient heat transfer for a solid body with unit length,
isotropic thermal conductivity k[W/mK], is presented in Equation (1), where ρ

[
kg/m3]

corresponds to the density, CP[J/kg K] the specific heat,
.

QV
[
W/m3] is the volumetric

internal heat generation rate, I corresponds to the identity matrix, and ∇ is the nabla
differential operator.

ρCP
∂T(x, y, z, t)

∂t
= −kI∇T∇T(x, y, z, t) +

.
QV (1)

T(x, y, z, 0) = T0 (2)

T(xS, yS, zS, t) = TS =
−
T (3)

∇T(xS, yS, zS, t) = ∇TS =
−
→
q (4)

∇T(xS, yS, zS, t) = ∇TS = hU(T∞ − TS)

hU = hconv + hrad

hrad = εσ
(

T2
∞ + T2

S

)
(T∞ + TS)

(5)

This equation allows one to find a solution for the temperature T(x, y, z, t)[K] at
time t[s] and any position (x, y, z)[m] in a geometric domain. To solve Equation (1), a
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time-dependent temperature condition, e.g., the initial temperature (T0[K]) in Equation
(2), and surface boundary conditions are required. Surface conditions are denoted by
the sub-index S in Equations (3)–(5). The surface boundary conditions are predefined

temperatures (T[K], in Equation (3)) and predefined heat fluxes (
→
q
[
W/m2], in Equation

(4)). For example, Figure 1a represents a fin with a predefined wall temperature (T = TW),

and insulation at the tip (
→
q = 0 W/m2). Heat fluxes can be position-dependent, time-

dependent, or surface temperature-dependent, as in convection and radiation conditions
(Equation (5)). Here, ε is the material’s surface emissivity, σ = 5.67× 10−8 W/m2K4 is
the Stefan-Boltzmann constant. If there are multiple boundary conditions on the same
surface, superposition is used for the analysis. For instance, if radiation and convection
boundary conditions are applied over the same surface, the global heat transfer coefficient
hU
[
W/m2K

]
is used to represent the contribution from both heat transfer mechanisms,

as shown in Equation (5). Here, T∞[K] is the room temperature, hconv
[
W/m2K

]
is the

convection heat transfer coefficient, and hrad is the radiation heat transfer. When T0 and T∞
are similar, hrad

[
W/m2K

]
can be treated as a constant by replacing the surface temperature

(TS) in Equation (5) by the average temperature among T0 and T∞ [29,32].
Using the finite element method, the representation of the nodal temperatures, Te, in

the element is specified by the shape functions, Φe, given by:

T(x, y, z, t) = ΦeTe =
n

∑
j=1

Te
j ·Φe

j (x, y, z, t) (6)

where n represents the number of nodes of the element [82]. Combining Equations (1)–(6),
we obtain Equation (7), which represents the transient heat transfer FEM formulation
for any time step (ts). In this equation, Me[J/K] is the element capacitance matrix, Ke

c
[W/K] is the symmetric element conductivity matrix, Ke

hconv
[W/K] and Ke

hrad
[W/K] are the

asymmetric convective and radiative flux matrixes, respectively. The right-hand side terms
include the heat flux vectors f e

→
q
[W], f e

conv [W], f e
rad [W], and the volumetric heat generation

vector f e
QV

[W] for the element e.

Me
.
T

e
+ (Ke

c + Ke
conv + Ke

rad)T
e = f e

→
q
+ f e

conv + f e
rad + f e

QV
(7)

To obtain the temperature history from Equation (7), the generalized Crank-Nicholson
method for the time integration recurrence scheme is applied. This integration scheme is

obtained by a trapezoidal approximation of the elemental temperature rate
.
T

e
and solving

for Te
ts+1. Using the substitutions Ke = Ke

c + Ke
conv + Ke

rad and f e = f e
→
q
+ f e

conv + f e
rad + f e

QV
,

the time integration scheme is given by [82]:(
1

∆t
Me + β Ke

)
Te

ts+1 =

(
1

∆t
Me − (1− β)Ke

)
Te

ts + (1− β) f e
ts + β f e

ts+1 (8)

where ∆t is the time increment and the temperature of the time ts + 1 is obtained based
on the values of Me, Ke, Te, and f e

ts, and the next value of f e
ts+1. For linear problems,

f e
→
q

, f e
conv, f e

rad, f e
QV

are constant, then the flux vectors f e
ts = f e

ts+1, therefore (1− β) f e
ts +

β f e
ts+1 = f e

ts. Setting β = 1 in Equation (8) minimizes numerical integration problems,
prevents spurious oscillations, and ensures stability for the solution [82,83]. With this
condition, the system of equations becomes the fully implicit system AeTe

ts+1 = RHSe,
where the coefficient matrix for the time increment (Ae[W/K]) and the right-hand side of
the equation (RHSe[W]) are defined in Equations (9) and (10), respectively.

Ae =

(
1

∆t
Me + Ke

)
(9)
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RHSe =
1

∆t
MeTe

ts + f e
ts (10)

It is noted that when 2D conditions are assumed, the FEM formulation for 2D elements
considers that the temperature gradient in the out-of-plane direction is null. For instance,
if the problem is modeled in the xy plane, then ∂T/∂z = 0. This implies that the heat
flux in the z-direction is zero, and the element is insulated along with the front and back
faces. To overcome this issue, Morville et al. [84] and La Batut et al. [85] proposed the
use of the volumetric sink term (QV in Equation (1)) to enhance the heat transfer in a 2D
model. QV is defined in Equation (11) with UV

[(
W/

(
m2K

))
/m
]

corresponding to the
heat transfer coefficient per unit of thickness. In this equation, the temperature-dependent
heat sink dissipates more heat as the temperature difference increases. This is similar to
having surface convection/radiation heat transfer in the out-of-plane direction. In addition,
UV should be tuned to minimize the error of the temperature response of the FEM and a
reference solution.

QV = −UV(T − T∞) (11)

2.2. Numerical Differentiation by CTSE

CTSE is used to calculate the numerical sensitivities of any function g(φ) with re-
spect to any input parameter φ. To obtain the sensitivity g(1)(φ) = ∂g/∂φ, where the
superscript indicates the order of differentiation, φ is perturbed by a small amount h (i.e.,
h ≤ 10−10 [61]) in the imaginary axis. Then, the evaluation of the function with the com-
plex input, g(φ + ih), is obtained by considering a Taylor’s series expansion as shown in
Equation (12). Truncating the infinite series to the first-order term of h and solving for
the first-order sensitivity g(1)(φ), Equation (13) presents the formulation for the numerical
sensitivity of the function g for the parameter of interest φ [56]. If h is small enough, the
truncation of the higher-order terms is accurate because the powers of h of order two and
higher will be approximately zero. Moreover, the original response of the solution variable
is returned unchanged in the real component.

g(φ + ih) ≈ g(φ) + g(1)(φ)
ih
1!

+ g(2)(φ)
(ih)2

2!
+ . . . (12)

g(1)(φ) =
∂g(φ)

∂φ
≈ Im[g(φ + ih)]

h
(13)

The sensitivities obtained from Equation (13) have the units of the output parameter
(g) divided by the perturbed parameter (φ). To simplify the analysis of sensitivities, it is
recommended to transform them into relative coefficients [45]. The calculation of these
relative coefficients can be achieved by the application of Equation (14), where the relative
sensitivities of g with respect to the parameter of interest φ or Sg

φ, have the same units of g.

Sg
φ(x, y, z, t) = |φ|∂g(x, y, z, t)

∂φ
(14)

On the other hand, when analyzing sensitivities regarding T∞, T0, and T in heat trans-
fer problems, it is common to normalize these sensitivities using the maximum temperature
difference in the system (∆Tmax[K]) instead of the values of T∞, T0, or T. For example, in
the extended surface of Figure 1a, |φ| = |∆Tmax| = |TW − T∞| [32]. This is commonly used
to normalize temperature differences in thermal systems because the sensitivity to those
temperatures can be explained as the change of the output g due to a small change ∆ in
T∞, T0, or T.
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3. Sensitivity Analysis in Transient Heat Transfer Problems Using Transient Thermal
ZFEM

To obtain sensitivity information for transient heat transfer problems, we propose a
methodology that combines the solution of the transient heat transfer equation using the
finite element method with the Complex Taylor Series Expansion. We call this methodology
Transient Thermal ZFEM, and the main concepts are presented in Figure 1b. To begin, all of
the components in the FEM formulation, such as nodal coordinates, material properties, and
boundary conditions, become complex-valued variables [79]. Then, to obtain sensitivities
of T or any other output of the Transient Thermal ZFEM model with respect to the input
parameters φ, different perturbation schemes for φ should be followed depending on the
kind of input, as follows:

• Constant inputs: to obtain sensitivities with respect to the input variables in the model
that are constant, the procedure presented in Equation (13) can be applied with only
a small imaginary perturbation h applied to the variable of interest. For instance, to
obtain sensitivities with respect to T∞, we evaluated the model is evaluated with a
value of T∗∞ = T∞(1 + hi).

• Geometry sensitivities: to obtain sensitivities with respect to geometric shapes, per-
turbations to the geometry are required. In Transient Thermal ZFEM, the domain
shape is represented by the nodal coordinates. As previously mentioned, the nodal
coordinates are converted to complex-variable. For reference, Figure 2a shows a mesh
where the nodal coordinates are in the plane xy, and the out of plane represents the
imaginary component Im. Moreover, Figure 2b shows the representation of a planar
element with real and imaginary coordinates. To obtain sensitivities with respect to
the geometry, the imaginary component of the nodal coordinates should be perturbed
according to the following guidelines: First, the direction of the perturbation should
be selected. For instance, considering sensitivities with respect to the length b[m] in
the fin problem (see Figure 2a), as b is parallel to the x-axis and its boundaries normal
to that axis, the perturbation should be applied by translating the imaginary nodal
coordinates along the direction of positive Im axis. Second, a fraction of the nodes (λ)
should be selected in the mesh to be perturbed. As presented in Figure 2a, λ can take
values from zero to one. The selected value for this fraction depends on the balance
between precision and computational time. This parameter is problem-dependent
and could be determined with convergence analysis. However, previous works have
shown that considering a value of λ large enough to perturb at least two elements nor-
mal to the boundary is enough for most problems [60,71,86,87]. Next, a perturbation
function P(x) is selected. In Figure 2a a linear P(x) is considered. This function has a
minimum value of zero and a maximum value of one. The maximum and minimum
values of P(x) are located along the geometric boundaries of dimension λb. Finally, the
fraction of the imaginary coordinates of the nodes are shifted in the selected imaginary
direction, a magnitude h× P(x), and the sensitivity is obtained following Equation
(13). An example of this perturbation scheme is presented in Figure 2a, where the
wireframe mesh presents the real components of the nodal coordinates and surface
pointing out of the plane, representing the perturbation on the imaginary axis.

• Temperature-dependent properties: to obtain sensitivities with respect to temperature-
dependent properties, the properties should be defined for any given temperature;
therefore, fitting or interpolating from experimental values is necessary. After fitting,
the perturbation is applied by shifting h units in the imaginary axis of the resulting
temperature-dependent curve, and the perturbed function is used to perform the
calculations as usual. This procedure is analogous to the perturbation of a constant
parameter. Finally, Equation (13). is used to obtain the numerical sensitivities. An
example of the fin problem is presented in Section 4.3.

• Time sensitivities: to obtain sensitivities with respect to time, the time increment ∆t
is perturbed by a value h in the imaginary component. Then the standard solution
method is applied. After the model is solved, the time sensitivities are calculated using
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Equation (15). The time function in the denominator of Equation (15) compared to
Equation (13) is a consequence of the numerical time integration of the imaginary per-
turbation associated ∆t where #inc is the total number of converged times increments
in the solution. A convergence study should be performed on the time increment to
determine the correct balance between computational time and accuracy.

∂g
∂t
≈ Im[g(∆t + hi)]

h× t
tmax
× #inc

(15)
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Solution of Complex-Valued System of Equations: Cauchy-Riemann Matrix Notation

As most numerical packages do not support complex variable linear algebra opera-
tions, it is possible to take advantage of the multicomplex algebra isomorphism to represent
any complex number as a matrix with all real numbers [79]. This representation of complex
numbers is known as the Cauchy-Riemann (CR) matrix notation and allows for the use
of matrix functions and arithmetic operations as homologous of the operations between
complex numbers [88].

Consider the complex-variable Ae matrix and RHSe vector in Equations (9) and (10),
respectively, these quantities can be represented as the CR matrices following Equation (16)
and CR vectors following Equation (17). This representation implies the addition of extra
degrees of freedom in the Transient Thermal ZFEM model. Consequently, a duplicated
mesh approach is used to consider the extra degrees of freedom provided by the sensitivity
information in the imaginary components. In Figure 2b, a 2D Transient Thermal ZFEM
element with the duplicated mesh approach is presented. In this case, the original mesh of
the FEM (nodes 1 to 4) will carry the real information, while the secondary or imaginary
mesh (nodes 11 to 14) contains the sensitivity of the output with respect to the perturbed
input. A four-node—four-quadrature point complex 2D isoparametric element is shown in
Figure 2c.

Ae = Ae
Re + iAe

Im =

[
Ae

Re −Ae
Im

Ae
Im Ae

Re

]
(16)

RHSe = RHSe
Re + iRHSe

Im =

[
RHSe

Re
RHSe

Im

]
(17)
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4. Numerical Example: Transient Fin Problem

We implemented the method in 2D User Element Subroutine (UEL) within the com-
mercial finite element analysis software Abaqus to demonstrate the performance of the
Transient Thermal ZFEM method. Abaqus cannot solve systems with complex variables
directly because its built-in equation solver is made for real-valued components. As a result,
the complex-variable right-hand side of the element (RHSe), and the complex-variable
coefficient matrix for the element (Ae) are transformed to the Cauchy-Riemann form of all
real numbers before returning the results to Abaqus. Then, the global system of equations
is assembled internally by Abaqus and solved for each time increment. This process is
presented in the flowchart of Figure 3, and the full version of the UEL is presented in the
Supplementary Material.
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Figure 3. Flowchart of Transient Thermal ZFEM and Abaqus User Element Subroutine. All complex
operations are performed inside the UEL and the A matrix and the RHS vector are decomposed into
Cauchy-Riemann form before exiting the UEL.

The method was verified by analyzing the heat transfer behavior for the thin fin shown
in Figure 1a. The geometry of the fin is characterized by the length b, height δ, and thickness
L, and it is made from a material with conductivity k, density ρ, and specific heat CP. The
results computed using ZFEM were compared with the analytical solution using symbolic
differentiation and Abaqus simulation with 2D DC2D4 elements and finite differentiation.
The errors were measured using the Normalized Root Mean Square Error (NRMSE) metric
as described in Equation (18). In this equation, o corresponds to the order of the sensitivity

of g, g(o) is the reference results, and #inc is the total number of sampling points which is
coincident with the total number of increments in the transient thermal problem.

NRMSE =
1

max
(

g(o)
)
−min

(
g(o)

)
√√√√∑

(
g(o) − g(o)

)2

#inc
(18)

The analytical solution for the temperature as a function of time for the fin problem was
obtained by considering the dimensionless parameters for the position X in Equation (19),
the time τ in Equation (20), N2 in Equation (21), λn in Equation (22), the temperature θ in
Equation (23), and by adding the steady-state θss(X) and the transient solutions θτ(X, τ) as
shown in Equations (24) and (25), respectively [28]. For this solution, it was also assumed
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that the axis x and X were aligned with the length of the fin, and the fin had an adiabatic
tip.

X =
x
b

(19)

τ =
tk

b2ρCP
(20)

N2 =
2hUb2

kδ
(21)

λn =
2n− 1

2
π (22)

θ =
T − T∞

TW − T∞
= θss(X) + θτ(X, τ) (23)

θss(X) =
cosh(NX)

cosh(N)
(24)

θτ(X, τ) = 2
∞

∑
n=1

(−1)n+1
(

θ0

λn
− λ2

n
N2 + λ2

n

)
cos(λnX)e−(N2+λ2

n)τ (25)

In this problem, the fin was in thermal equilibrium with the environment at t = 0 s,
meaning that the room temperature (T∞) was equal to the initial temperature (T0). Then,
a prescribed temperature Tw was applied at the base of the fin, i.e., x = b. As soon as
the fin started to heat, energy dissipation occurred due to the film conditions in the top,
bottom, back, and front surfaces determined by T∞ and the global heat transfer coefficient
hU . In the case of ZFEM and Abaqus built-in models, combined convection and radiation
boundary conditions were applied on the top and bottom edges, and Tw was applied to
the left edge as depicted in Figure 1a. In addition, enhanced dissipation was considered to
obtain the effects of out-of-plane dissipation. The convergence analysis for UV is presented
in Figure 4a, where the optimal was found at 735

(
W/

(
m2K

))
/m and is highlighted with

the blue marker. The temperature and sensitivity information were extracted from the node
located in the centerline of the fin’s tip. For reference, the analytical solution at that point
is presented as a solid black line in Figure 4b. The mesh was discretized along with the
height, δ[m], using 10 equally spaced elements, and 1000 elements along the length, b, and
the time increment for the solver was set to ∆t = 1 s. We used convergence analyses to set
the values of discretization in space and time. We varied the number of elements in the
domain by one order of magnitude up to 105 elements. A similar approach was followed
for the time discretization up to a maximum of 104 time increments. Full details about the
convergence analyses are presented in the Supplementary Material.

Using the parameters in Table 1 (obtained from [28]), the analytical dimensionless
temperature history, (θ), at the fin’s tip (X = 0) is presented in Figure 4b. In this figure, the
analytical θ history is presented as a solid black line, θSS as a dashed red line, and the results
using the Transient Thermal ZFEM UEL and the built-in Abaqus functions are overlaid
using a yellow star and a blue square, respectively. This convention will be preserved for
the rest of the results presented in this work. The sampling rate for the figures was every
14 time steps for visualization purposes. From the results presented in Figure 4b, it is noted
that as the temperature approaches the steady-state (approximately at t = 350 s), and the
simulations using the Transient Thermal ZFEM UEL and the built-in Abaqus functions
match the temperature history of the analytical solution.
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history of fin tip: solid black line, Equation (23), yellow star, the real part of Transient Thermal ZFEM
solution, blue square, Abaqus built-in element solution, thin red dashed line, steady-state solution
(Equation (24)).

Table 1. Parameters involved in the transient thermal fin problem.

Parameter Type Parameter of Interest (φ) Value Units

Material Properties
k 7.1 W/(m ·K)

Cp 580 J/(kg ·K)
ρ 4430 kg/m3

Boundary Conditions
hU 114 W/

(
m2 ·K

)
T∞ 283 K
Tw 389 K

Initial Conditions T0 283 K

Geometry
b 51 mm
L 1 m
δ 4.75 mm

Although the Transient Thermal ZFEM method for obtaining sensitivities can be
applied to any input variable in the models, out of briefness, the next sections will focus
on obtaining sensitivities for the transient behavior of a material property (k), a boundary
condition (T∞), a geometric parameter (b), a temperature dependent-property (CP(T)), and
for the calculation of heating rates (∂θ/∂t), which will cover all the perturbation cases
described in Section 3. The results for the remaining parameters affecting the fin’s thermal
transient behavior are relegated to the Supplementary Material.

4.1. Sensitivity Analysis of Temperature History

As stated in Section 3, the first step to obtain sensitivities using Transient Thermal
ZFEM is to apply a perturbation, h, to the variable of interest. While many other references
have shown the step size independence for CTSE when applied in other fields, a step
size analysis was conducted for transient thermal analysis to verify previous findings. In
addition, the optimal step size for FD was also computed for comparison purposes.

Considering the analytical equations as a reference for the calculation of the error, the
NRMSE for the responses as a function of the step size for Transient Thermal ZFEM and FD
calculated with built-in Abaqus functions is presented in Figure 5a, using continuous and
dashed lines, respectively. All the FD results were obtained by using a forward differentia-
tion scheme and first-order accuracy, which is analogous to applying a positive imaginary
perturbation in the CTSE method integrated into Transient Thermal ZFEM. In agreement
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with previous literature about numerical sensitivities [89], for values above h × φ with
h = 10−4, the truncation error completely cancels the precision of the sensitivity response
in the FD method. However, the Transient Thermal ZFEM is completely insensitive to the
step size for the analyzed input parameters. The change in the trend for the dashed red
and dashed green lines in FD is related to a shift in the dominance of the truncation error
to round-off error. This analysis highlights one of the main advantages of the Transient
Thermal ZFEM over the regular FD in that CTSE is dramatically less prone to step size
inaccuracies. Based on the perturbation step analysis study, the rest of the results presented
herein were calculated using h = 10−10φ for the Transient Thermal ZFEM and h = 1%φ for
FD.

For geometrical perturbations, it is required to perturb a fraction of nodes in the mesh.
Besides using the rule of thumb for this parameter, a convergence for study for λ was
performed. Figure 5b, shows the NRMSE for the sensitivity with respect to b, Sθ

b , as a
function of λ. In this figure, the top insert shows the rule of thumb suggested λ, and the
bottom inset shows a completely perturbed mesh. For the transient thermal fin problem, the
precision of Sθ

b is insensitive to λ, as shown by the almost flat line of Figure 5b. Therefore,
the rule of thumb and the case when λ = 1 have almost the same precision. For illustration
purposes in the fin problem, we picked λ = 1 for the sensitivity analysis of the fin length.
This means that all the imaginary coordinates of the mesh have non-zero values as shown
in the bottom right inset in Figure 5b.
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Figure 5. (a) Step size convergence analysis comparing Transient Thermal ZFEM and FD for the UEL
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corners, respectively.

The sensitivities history of θ concerning the thermal conductivity, Sθ
k , the room tem-

perature, Sθ
T∞

, and the fin’s height, Sθ
b , are shown in Figure 6a–c, respectively. A negative

relative sensitivity predicts a decreasing trend for the temperature with an increment of the
input parameter and vice versa. Overall, a good agreement between analytical differentia-
tion, FD, and Transient Thermal ZFEM is observed. The solutions from the simulations
using Transient Thermal ZFEM had a better match than built-in Abaqus functions with FD
match when compared with the analytical values, as could be seen by error measurements
in Table 2. These errors are on the same order as the NRMSE for θ; therefore, we attribute
the good agreement among methodologies to the enhanced dissipation implemented to
counter the lack of heat transfer in the out-of-plane direction in the 2D FEM and Transient
Thermal ZFEM elements.
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Figure 6. Dimensionless temperature sensitivity history at the fin tip to (a) thermal conductivity;
(b) room temperature; (c) fin length. Solid black line, analytical sensitivity using analytical differenti-
ation in Equation (23), yellow star, sensitivity using Transient Thermal ZFEM, blue square, sensitivity
using 1% FD and Abaqus built-in element solutions, thin red dashed line, sensitivity using analytical
differentiation for steady-state using Equation (24).

Table 2. NRMSE of θ and the selected sensitivities compared to the analytical solution.

NRMSE
θ Sθ

k T∞ Sθ
b

ZFEM 0.003 0.011 0.002 0.003
FD 0.003 0.009 0.009 0.019

From the time-dependent sensitivity analysis in Figure 6, it can be stated that T∞ is
only influential in the transient state, since Sθ

T∞
≈ 0 at steady state while k and b are not

influential at the beginning, but they are influential in steady-state given that Sθ
k 6= 0 and

Sθ
b 6= 0 at 425. Based on the information provided by Figure 6a, a less conductive fin will

reduce θ given that Sθ
k(t) ≥ 0. On the other hand, Figure 6b,c show that longer fins exposed

to higher room temperatures will reduce the fin’s tip temperature. This is explained by the
inverse relation of θ, Sθ

b(t), and Sθ
T∞

(t). In the current application, reducing the fin’s tip is
desired because it means that more energy can be dissipated in the system before reaching
the tip.
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Computational Efficiency of Transient Thermal ZFEM

For the numerical solutions to the transient fin problem, the computational system
used consisted of an Intel Xeon W-2265 at 3.50 GHz, 128 Gb of RAM, Abaqus 2021 Hot Fix 5,
and Ubuntu 20.04 Long Term Support. In this specific case, the total CPU time of three pairs
of sequential and independent simulation runs made with ZFEM and FD were conducted
and averaged. The results showed that on average, ZFEM required 45% less total CPU
time to solve the Transient Thermal ZFEM model and obtain sensitivities compared to
using built-in Abaqus functions and FD. This contrasts with that reported in the ZFEM
literature for more complicated physics, where 2.5 to 4 times longer computational times
were obtained for equivalent real variable runs [71,74,87]. This behavior shows another
advantage of using CTSE for the transient thermal linear problem as it requires only one
evaluation of the model to obtain sensitivities. In contrast, at least two evaluations of the
models are required for FD, assuming the optimal step size is known a priori.

4.2. Heating Rate

Figure 7 shows the results for the heating rate, ∂θ/∂t, at the fin’s tip. This rate was
obtained by directly evaluating the Transient Thermal ZFEM model and applying the
methodology shown in Section 3. In contrast, one is required to post-process the built-in
Abaqus solutions by computing FD using the time domain to obtain the heating rate. The
NRMSE for Transient Thermal ZFEM and Abaqus built-in functions with FD is 0.012 and
0.010, respectively. The small deviations with respect to the analytical solutions can be
attributed to the time increment used in the simulations. A detail about the influence of the
time incrementation in the heating rate can be seen in the Supplementary Material.
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Figure 7. The heating rate in time for fin tip: solid black line, rate using analytical differentiation in
Equation (23), yellow star, rate using Transient Thermal ZFEM, blue square, FD using Abaqus built-in
element solution.

4.3. Sensitivity Analysis of Temperature History for a Fin with Temperature-Dependent Specific
Heat

When any coefficient of Equation (1) is temperature-dependent, the transient heat
transfer problem becomes nonlinear and analytical equations are no longer available [82].
To test the capacity of Transient Thermal ZFEM to handle nonlinearities, a model containing
temperature-dependent specific heat was created and solved. For this analysis, the specific
heat was selected as the variable of interest because it is temperature-dependent in the
model and it directly modifies the thermal capacitance of the material. Moreover, according
to Equations (1) and (7), this property is expected only to affect the process in the transient
state. The values for CP(T) used in the model are presented in Figure 8a and correspond
to Ti64 alloy [90]. Due to the lack of analytical equations, the response obtained from
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built-in Abaqus functions combined with FD was used as a reference to calculate the
NRMSE. To calculate the reference response for Sθ

Cp
with FD, one model was run with

the nominal parameters from the curve shown in Figure 8a, and for the second model,
all the values in the curve defining CP(T) were shifted 5.5 J/Kg K which corresponds to
1% of the minimum value of the specific heat. The convergence analysis for these models
is presented in the Supplementary Material. For the calculation of the sensitivities using
Transient Thermal ZFEM, the procedure described in Section 3 was followed as: (a) first
interpolating the experimental values for CP(T) in the temperature range of the solution,
and then (b) applying an imaginary perturbation, h = 10−10 to all values as shown in the
inset of Figure 8a. Finally, to normalize the sensitivity results, we used |φ| = 580 J/Kg K
for Equation (10) which corresponds to the specific heat reported in Table 1.
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Figure 8. (a) Temperature-dependent specific heat of Ti64. Experimental data obtained from [90].
The inset shows the original and the perturbed property in the T − CP − i space; (b) dimensionless
temperature history of fin tip for temperature-dependent specific heat; (c) sensitivity of θ to specific
temperature-dependent specific heat. Yellow star, sensitivity using Transient Thermal ZFEM, blue
square, sensitivity using 1% FD and Abaqus built-in element solution, black dashed line, steady-state
solution.

The θ response for Transient Thermal ZFEM and built-in Abaqus functions is reported
in Figure 8b, and the sensitivity response is presented in Figure 8c. A good agreement was
found between both models with an NRMSE of 0.003 for θ, and 0.007 for Sθ

Cp
. These results

show that the Transient Thermal ZFEM can accurately determine sensitivities considering
material nonlinearities and temperature-dependent parameters.
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4.4. Sensitivity Analysis of the Heat Flux History: Defining the Fin’s Performance

Using the heat flux output, two measurements of performance were calculated for the
fin: heat transfer effectiveness, ε, calculated using Equation (26), and the thermal efficiency,
η, defined in Equation (27). The heat transfer effectiveness corresponds to the ratio of the
heat flux (

→
q ) from a wall with a fin to the heat flux of the same wall without a fin, and the

efficiency is the relationship of effective heat transfer from the fin to the room regarding the
heat transfer of an ideal fin kept at the initial temperature θ0 [24]. The sensitivity analysis of
these two performance indices represents useful information for improving the design of
fins since it can identify which variables positively affect their performance. In this regard,
the main idea is to reduce the values of parameters with negative sensitivities and increase
the importance of parameters with positive sensitivities.

ε(t) =
→
q (θ(X = 1, t))
→
q (X = 1)

(26)

η(t) =

.
Q(θ(X, t))

.
Q(θ(X) = θ0)

= ε(t)
δ

2b
(27)

To calculate the performance parameters using Transient Thermal ZFEM and built-in
Abaqus functions, the heat flux was obtained at the wall-fin interface (x ≈ b). The evolution
of ε and η are presented in Figure 9a,b, respectively, showing good agreement between
the Transient Thermal ZFEM and the Abaqus built-in element response and with NRMSE
values of 0.052 and 0.052, respectively, when compared with the analytical equations. η
and ε quickly reach the steady-state value with an asymptotic behavior tending to positive
infinity in t = 0 s. This behavior is explained by the discontinuity of the temperature
profile at the wall-fin interface at that time. In addition, this is similar to the behavior of the
transient heat transfer coefficient studied in similar problems [30,31].
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Figure 9. (a) Time history of fin ε, (b) time history of fin η. Black line, Equation (13), yellow star,
Transient Thermal ZFEM solution, blue square, Abaqus built-in element solution, black thin dashed
line, black dashed line, the steady-state solution.

A comprehensive sensitivity analysis of the fin performance parameters involving all
of the parameters affecting the model was performed. The time history evolutions for all
sensitivities are shown in the Supplementary Material, and only the results for k, T∞, and b,
are included in Figure 10 for ε and Figure 11 for η. The maximum error for the sensitivities
corresponded to 0.048 for Sε and 0.048 for Sη when compared to the analytical solution.
As observed in the time history for the sensitivities, the values quickly stabilized to the
steady-state. Therefore, pie charts were developed showing the values of the contribution



Appl. Sci. 2022, 12, 2738 17 of 23

of the individual sensitivities to the total sum of the sensitivities for all variables in the
model after steady-state conditions have been reached. Figures 10d and 11d show the
sensitivities for ε and η, respectively. In the pie charts, the (+) symbol inside each of the
colored sections implies a direct relationship between the output and the input variable
while the (−) implies an inverse relationship.
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Figure 10. Thermal effectiveness sensitivity history in fin tip to (a) thermal conductivity; (b) room
temperature; (c) fin length. Solid black line, analytical sensitivity using analytical differentiation
in Equation (26), yellow star, sensitivity using Transient Thermal ZFEM, blue square, sensitivity
using 1% FD and Abaqus built-in element solutions, thin red dashed line, sensitivity using analytical
differentiation for steady-state using Equation (26). (d) Steady-state influence of fin parameters in
ε based on relative sensitivities. In the pie chart, the missing parameters (b, ρ, CP, T∞, T0) have an
influence of less than 1% compared to the sum of all relative sensitivities. Moreover, the (−) in the
pie sections implies an inverse relationship between the output variable and the input parameter,
while a (+) parameter has a direct relationship with the output.

From Figure 10d, it is possible to identify that δ, hU , and k are the most influential
parameters to modify ε. Each of these variables accounts for nearly a third of the total
sensitivity of the effectiveness. Based on Equation (14), if δ, hU , or k are duplicated, an
equivalent thermal effectiveness increment (or reduction) in the fin at steady-state will
occur. In this regard, the (−) inside the pie sections for δ and hU means that they should
be reduced to increase the effectiveness. The other parameters, e.g., b, ρ, CP, T∞, and T0
influence the effectiveness less than the 1% compared to the sum of all relative sensitivities.
This means that an increment or reduction of these five variables will not produce a
significant change in the effectiveness of the fin.
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Figure 11. Thermal efficiency sensitivity history in fin tip to (a) thermal conductivity; (b) room
temperature; (c) fin length. Solid black line, analytical sensitivity using analytical differentiation
in Equation (27), yellow star, sensitivity using Transient Thermal ZFEM, blue square, sensitivity
using 1% FD and Abaqus built-in element solutions, thin red dashed line, sensitivity using analytical
differentiation for steady-state using Equation (27). (d) Steady-state influence of fin parameters in
η based on relative sensitivities. In the pie chart, the missing parameters (ρ, CP, T∞, T0) have an
influence of less than 1% compared to the sum of all relative sensitivities. Moreover, the (−) in the
pie sections implies an inverse relationship between the output variable and the input parameter
while a (+) parameter has the opposite relationship with the output.

Similarly, from Figure 11d, it is possible to identify that δ, b, hU , and k are the most
influential parameters to modify the thermal efficiency. Therefore, increments in δ and k
will increase this index. For the efficiency, the weights are not equally split as in the case
of the effectiveness. For instance, the fin length is almost twice more influential than hU ,
and k. Moreover, the fin thickness is approximately 2.4 times less influential in η than the
length of the fin. This means that larger geometries will reduce the thermal efficiency of the
fin while enhancing the heat transfer with more conductive materials larger heat transfer
coefficients are beneficial for η.

From these results, some guidelines for the fin’s design can be stated: To cool a
heated wall, it is preferred to have a fin with a low aspect ratio made of a material with
high conductivity and low heat transfer coefficient. This boundary condition requirement
is counterintuitive because larger heat transfer coefficients typically improve the heat
exchange from the external surfaces to the room. However, this also means that the heat
will be transferred only at the beginning of the fin. Therefore, according to the first-order
sensitivity information, a shorter and thicker fin made of more conductive materials is
preferred to increase the dissipation performance.

It is worth highlighting that although we show the Transient Thermal ZFEM method-
ology in a simple thermal problem, the methodology is general. For instance, we have
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included an additional verification of the capabilities of the Transient Thermal ZFEM in
the Supplementary Material for a 2D problem corresponding to a rotating disk under
nonconstant initial temperature.

5. Conclusions

In this work, the complex Taylor series expansion method was integrated with the
transient heat transfer FEM to create the Transient Thermal ZFEM methodology. This
methodology enables the calculation of high precision sensitivities regarding geometrical
parameters, boundary conditions, time, and material properties. Although the method
takes advantage of complex algebra to obtain the sensitivities, we do not require complex
variable solvers. Instead, the system of equations is solved using the Cauchy-Reimann
matrix representation of a complex number. This transformation allows the solution of
the FEM equations in any real-variable solver facilitating the implementation of the new
method within commercial finite element software.

We verified the Transient Thermal ZFEM method against the analytical solution for
a fin with an insulated tip. Our methodology accurately computed temperature and
temperature sensitivity history regarding specific heat, thermal conductivity, ambient
temperature, and fin geometry. Good agreement with the reference solutions was obtained
for the numerical example. Similarly, the thermal performance of the fin based on the fin’s
heat flux presented a good agreement with the analytical solution. The sensitivities using
Transient Thermal ZFEM were compared with FD using built-in Abaqus elements. Overall,
we found a reduction of 45% in the computational time compared with FD. Moreover,
we demonstrated that the Transient Thermal ZFEM is step-size independent and mesh
perturbation independent for the transient thermal linear problem. On the other hand, the
time derivative obtained by Transient Thermal ZFEM is highly dependent on the number
of increments of time but only limited by the computing hardware.

Implementing the Transient Thermal ZFEM in finite element analysis programs will
enable the sensitivity analysis of heat transfer models with a fraction of the computational
cost and higher precision than sensitivity analysis using the traditional finite differentia-
tion method. Moreover, Transient Thermal ZFEM can improve the convergence rates and
computational times on gradient-based optimizations, especially in inverse heat transfer
problems. These improvements are possible because the Transient Thermal ZFEM method-
ology allows one to obtain a more precise and computationally efficient calculation of
partial derivatives than the traditional methods.

Given the advantages of Transient Thermal ZFEM over the traditional sensitivity
analysis methodologies, our methodology is especially attractive for complicated systems
in alternative energies, petroleum engineering, chemical, agriculture, materials, and metal-
lurgical industries. Accurate sensitivity information in transient thermal problems allows
one to understand the system’s thermal behavior better. For instance, in the numerical ex-
ample, using Transient Thermal ZFEM, the variables can be sorted by their influence in the
transient state and steady states. Then, it was possible to effectively filter the variables that
affect the processes after reaching the steady-state, even if the parameters of the systems
are temperature dependent.

As future work, this method will be extended to calculate higher-order sensitivities
and to explore other multiphysics problems such as thermo-mechanical, microstructural
evolution, crystal plasticity, heat treatments, and thermo-electrical. Moreover, we will
explore the use of sensitivities to perform a derivative-based approximation of functions
that enable predictions in complicated problems or to evaluate models with output un-
certainty related to the input parameters for uncertainty quantification. In addition, these
sensitivities could guide semiempirical techniques that rely on simulations to recover basic
parameters of the process as the Nusselt numbers, Biot numbers, or Prandtl numbers.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12052738/s1, Supplementary Material 1: Transient Thermal
ZFEM user element for ABAQUS; Supplementary Material 2: Convergence analysis and detailed
sensitivity analysis for θ; Supplementary Material 3: Convergence study for temperature dependent
specific heat model; Supplementary Material 4: Detailed sensitivity analysis of fin performance;
Supplementary Material 5: numerical sensitivities of a rotating disk under nonconstant initial tem-
perature.
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