Engineering Fracture Mechanics 247 (2021) 107638

Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

Check for

A complex-variable cohesive finite element subroutine to enable updtes]
efficient determination of interfacial cohesive material parameters

Daniel Ramirez-Tamayo *°, Ayoub Soulami ®, Varun Gupta %', David Restrepo?,
Arturo Montoya *¢, Harry Millwater "

a Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA

b pacific Northwest National Labs, Richland, WA, USA

¢ Department of Civil and Environmental Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
d ExxonMobil Upstream Research Company, Spring, TX, USA

ARTICLE INFO ABSTRACT

Keywords: A new complex-variable version of a cohesive element is presented that provides highly
Complex-variable finite element method accurate first order derivatives of the nodal displacements with respect to the cohesive fracture
Complex Taylor series expansion parameters. These sensitivities are provided as a byproduct of the analysis using the complex

Inverse determination of material parameters
UEL
Automatic differentiation

Taylor series expansion method. This information is useful for inversely determining the
cohesive fracture parameters from experimental or synthetic data using a finite element-based
approach. In particular, the PPR cohesive element (Park et al., 2009), was extended using
complex variables as a user element for the well-known commercial finite element program,
Abaqus. The source code for the element is provided as an educational resource. The advantage
of having accurate first order derivatives on both accuracy and efficiency is demonstrated
through numerical examples.

1. Introduction

The structural performance prediction of a mechanical joint requires characterization of the interface resulting from the joining
process. Cohesive zone modeling (CZM) is a popular approach to investigate fracture, seams, and joints [1]. The CZM requires
a cohesive constitutive law which, in the context of a joint, relates the tractions at the interface to the separation displacement
of the two surfaces. Some techniques to obtain the parameters for a cohesive law place restrictions on the test geometries and
require the existence of analytical solutions [2,3]. In addition, these techniques use a global response (load—displacement curve)
to describe a local material property, resulting in uncertainties in the adopted model [4]. That is, different combinations of the
cohesive parameters could recreate the global behavior of the joint while the local behavior (near crack fields) is inaccurate. Hence,
the uniqueness of the CZM is not guaranteed.

Other techniques such as hybrid inverse techniques [4] use full-field kinematic measurements from a suitable test geometry
obtained using the Digital Image Correlation (DIC) procedure and an inverse finite element analysis to identify the cohesive
parameters by solving an optimization problem. Valoroso et al. [5] used an experimental data set consisting of the measured load—
deflection curve and crack length to inversely determine the mode-I cohesive parameters of a bonded interface using a double
cantilever beam test. In their optimization algorithm, derivatives of the nodal displacements and reaction forces with respect to

* Corresponding author.
E-mail addresses: daniel.ramirez@my.utsa.edu (D. Ramirez-Tamayo), ayoub.soulami@pnnl.gov (A. Soulami), varun.gupta@exxonmobil.com (V. Gupta),
david.restrepo@utsa.edu (D. Restrepo), arturo.montoya@utsa.edu (A. Montoya), harry.millwater@utsa.edu (H. Millwater).
1 Work was performed while still at PNNL.

https://doi.org/10.1016/j.engfracmech.2021.107638
Received 1 October 2020; Received in revised form 6 February 2021; Accepted 23 February 2021

Available online 1 March 2021
0013-7944/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/engfracmech
http://www.elsevier.com/locate/engfracmech
mailto:daniel.ramirez@my.utsa.edu
mailto:ayoub.soulami@pnnl.gov
mailto:varun.gupta@exxonmobil.com
mailto:david.restrepo@utsa.edu
mailto:arturo.montoya@utsa.edu
mailto:harry.millwater@utsa.edu
https://doi.org/10.1016/j.engfracmech.2021.107638
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfracmech.2021.107638&domain=pdf
https://doi.org/10.1016/j.engfracmech.2021.107638
http://creativecommons.org/licenses/by/4.0/

. Ramirez-Tamayo et al.

Engineering Fracture Mechanics 247 (2021) 107638

Nomenclature

SO TN ISR SR VR 3

«

=R

~
~

~

SIS
=
o

nes> “te

Q < » DI N D
3 3
> [N

Q

max> T

Pus ¢
¥

Q
Subscript ¢
Subscript e

max

Subscript Im
Subscript n
Subscript Re
Subscript t

Superscript COMP

Superscript EXP
Superscript *
CR

CTSE

CZM

Beam initial crack length

Beam width

Elastic modulus

Function

Elemental load vector

Global load vector

Perturbation step size along the imaginary axis
Beam arm height

Imaginary direction

Elemental stiffness matrix

Global stiffness matrix

Beam length

Beam distance to applied load
Non-dimensional exponents

Reaction force

Residual vector of the reaction force

Normal and tangential cohesive tractions
Global solution vector

Complex-valued gobal solution vector
Residual function to be minimized

Shape parameters of the PPR model

Energy constant

Final crack opening width

Final crack opening width in the normal and tangential directions
Normal and tangential critical opening displacements
Separation along the fracture surface

Normal and tangential separations

Finite element strain vector

Vector consisting of the material parameters to be optimized
Material parameter of interest

Initial slope indicators in the PPR model
Poisson’s ratio

Finite element stress vector

Normal and tangential cohesive strengths
Fracture energy components in the normal and tangential directions
Potential function for cohesive fracture

Finite element domain

Cohesive finite element domain

Elastic finite element domain

Imaginary component of a complex variable
Normal direction

Real component of a complex variable
Tangential direction

Denotes computational results

Denotes experimental results

Denotes a complex variable

Cauchy-Riemann

Complex Taylor series expansion

Cohesive zone modeling

the maximum traction and fracture energy were computed using a custom version of the finite element code FEAP [6] with direct
differentiation capabilities. Direct differentiation requires extensive chain rule formulations and source code modifications and is
usually limited to first order derivatives [7-13]. This method is efficient but time consuming to implement, and not practical for

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

DIC Digital image correlation

DOF Degrees of freedom

FD Finite difference

PPR Park-Paulino-Roesler (Names of the authors that proposed the PPR cohesive law)

RF Reaction force

RHS An array containing the contributions of this element to the right-hand-side vectors of the overall system
of equations

SLSQP Sequential least squares programming

SVARS Solution-dependent state variable

UEL User-defined element

zCoords Complex version of the coordinates

ZFEM Hypercomplex finite element method

ZPPR Complex-variable version of the PPR cohesive element

zU Complex version of the nodal displacements

() Macaulay bracket

Re[] Real component of a complex variable

Im|[-] Imaginary component of a complex variable

large-scale finite element programs that contain a large variety of element formulations. Shen and Paulino [4] used experimental
DIC data from an edge-notched specimen and retrieved the bulk material properties and the mode-I parameters that govern the
traction-separation law. These authors used a Nelder-Mead [14] gradient-free optimization algorithm which is known to have a
slower convergence rate than gradient-based algorithms.

A key ingredient in all these problems is the existence of a finite element code containing a cohesive element formulation. Several
numerical implementations of the cohesive element have been proposed [15-25]. Park and Paulino [26] presented a computational
implementation of the potential-based cohesive zone model (PPR) into a commercial finite element software, in particular using
a user-defined element (UEL) subroutine within the Abaqus software [27]. They provided the source code to the UEL to facilitate
understanding and implementation of the element formulation and its capabilities. This source code provides the basis for our effort
to develop a complex-variable UEL in order to compute highly accurate derivatives of the displacements with respect to the cohesive
material properties. In this paper, derivatives with respect to the CZM parameters will be computed using the complex Taylor series
expansion method. These gradients can then be used in gradient-based optimization algorithms for the determination of the specific
numerical values of variables that govern the traction-separation law for any particular application.

The hypercomplex finite element method, ZFEM, incorporates the complex Taylor series expansion method (CTSE) [28] to
compute highly accurate estimates of arbitrary shape, material property or loading sensitivities without the step size issues associated
with finite differencing — complex variables provide first order derivatives, hypercomplex variables provide mixed and higher
order derivatives. The use of this method allows existing codes to compute derivatives in a way that is conceptually simple
and straightforward to implement, and once the code is “complexified”, the derivative to compute is determined from the input
file. By augmenting the finite element variables to complex type and perturbing the variable of interest along the imaginary
axis, the user gains the capability to compute highly accurate derivatives. This method has been demonstrated for linear elastic
fracture mechanics [29,30], elastic plastic fracture mechanics [31], thermoelastic fracture [32], mixed-mode loading and interface
cracks [33]. All of these applications have been implemented through the use of a user element subroutine in Abaqus [27]. This
paper explains and demonstrates how to implement CTSE into an existing finite element code. In particular, the application of this
approach has been demonstrated by implementing the complex version of the PPR cohesive element in Abaqus as a user element
subroutine [26]. The resulting complex element is hereafter referred to as the “ZPPR” element.

The paper is organized as follows. First, the methodologies for the cohesive zone element (CZM) and the CTSE method are briefly
outlined. Section 2.3 discusses the specifics of how to implement ZFEM into a finite element code, in particular, the commercial
software Abaqus through the use of a user element subroutine (UEL). Modifications required to the UEL and input file are shown
for a particular example. Numerical examples are provided and the results are compared against other numerical solutions. Then,
concluding remarks are provided. The UEL source code and input file are provided in the Appendix for the numerical example that
will be discussed throughout the paper.

2. Background and methodology
2.1. Cohesive zone modeling
The cohesive zone model has been used to approximate the non-linear fracture process for a wide variety of engineering

problems. It was first presented by Barenblatt [7] and Dugdale [34], and has since been used to investigate fracture of quasi-
brittle materials [35], concrete [36], delamination of adhesive joints [20] and debonding [37], among others. Several numerical

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

g
Omax |________

1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
! A,

An 1 On

Fig. 1. Linear softening traction-separation law.
g
Omazx | ________ o< 2

|
1
1
1
1
1
'
1
'
1
'
1
1
1
1
:
1
1
i An
1

An 1 on

Fig. 2. Potential-based traction separation law.
Source: Adapted from [26].

implementations of the cohesive model have been presented [21,25,26,38]. A critical aspect in cohesive zone modeling is the
selection of the traction-separation relation, which can lead to a variety of structural response and failure behaviors. Traction
separation laws can be broadly categorized into potential-based and nonpotential-based responses.

For nonpotential-based models, several shapes of the traction-separation law have been proposed such as linear softening [39],
trapezoidal [18], bilinear softening [17], trilinear softening [22] and exponential [24]. The simplest traction-separation response is
the linear softening model where the behavior is defined by three parameters: the cohesive strength (s,,,), the critical opening
displacement (4,), and the fracture energy (¢,), which is the area under the ¢ — 4 curve, see Fig. 1, where 4, is the normal
separation which is normalized by the final crack opening width in the normal direction, §,. This model has been implemented
into the commercial finite element software Abaqus [19,27]. However, as shown by Park et al. [40], nonpotential-based models can
provide non-physical behavior for certain separation paths because the model does not always provide a negative tangent stiffness
within the softening region.

To address this issue, potential-based models, initially proposed by Xu and Needleman [37], use a cohesive energy potential in
which the derivative of this potential describes the traction-separation behavior for the softening region. Several potential-based
models have been proposed [15,41-44]. Amongst these models, the PPR model [15] (Park-Paulino-Roesler) has several advantages
over other models as was shown in [45]. In this reference, the authors performed an extensive review of traction-separation
relationships for cohesive models (potential- and nonpotential-based) and the limitations of other models are listed and compared
against the PPR model. The PPR model contains shape parameters (« and f) that allow the user to select different behaviors within
the softening region which can be used to characterize different material responses such as brittle and quasi-brittle. Fig. 2 shows a
schematic of the mode-I traction-separation law of the PPR model for different values of a. When a = 2, the PPR model exhibits an
almost linear softening behavior.

The cohesive traction-separation relationship in the PPR model is obtained from a fracture potential given by

m A4,

¥Y(4,.4,) = min(g,, p,) + [F,, (1 - 2—:) (; + a) +(¢n—¢,)] X

[F, (1—|§—t’|)ﬂ<§+|z\,|5,>n+<¢,—¢n>] e}

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

Table 1

PPR parameters.
Condition Description
Complete normal failure T,(,, 4)=0
Complete tangential failure T,(4,,5)=0
mode-I fracture energy f()&" T,(4,,0)d4, = ¢,
mode-II failure energy f()&' T,(0,4)d4, = ¢,
Normal cohesive strength T,,(6,c,0) = Oprax
Tangential cohesive strength T:(0.6;.) = Tpax

where 4 is the separation along the fracture surface, I is the energy constant, § is the final crack opening width, « and p are the
shape parameters, m and »n are non-dimensional exponents, and ¢ is the fracture energy. The subscripts “n” and “t” denote normal
and tangential directions, respectively.(.) is the Macaulay bracket, i.e.,

) {0, x<0 .

x, x>0

In this cohesive model, four fracture parameters categories are employed for each fracture mode: fracture energies (¢,, ¢,),
cohesive strengths (T, 7,), shape parameters (a, f), and initial slope indicators (4,, 4,). The PPR model satisfies the conditions
stated in Table 1.

T, and T, are the normal and tangential cohesive tractions, and §,. and §,, are the normal and tangential critical opening
displacements which denote the start of the softening region. The derivatives of the PPR potential model (Eq. (1)) with respect to
the normal and tangential separations, 4, and 4,, respectively, lead to the normal and tangential cohesive tractions, T,,(4,, 4,) and
T,(4,, 4,). Once the final crack opening width is reached, either in the normal (§,) or tangential (6,) direction, complete separation
occurs. The area under the traction separation curve is known as the fracture energy, with its components in the normal and
tangential directions, ¢, and ¢,, respectively. With these values and the slope indicators (m, n, « and p), it is possible to recreate
the nonlinear fracture process using a cohesive model. For further references, please refer to [26,46].

2.2. Complex-variable finite element method, ZFEM

ZFEM calculates sensitivities with respect to variables of interest based on a Complex Taylor Series Expansion (CTSE)
method [28]. In a ZFEM analysis, the perturbation is applied to the variable of interest, X = x,, along the imaginary axis, to
become, X = x, +ih, where x is the original real part, i denotes the imaginary direction, and 4 is the step size along the imaginary
axis. Using CTSE, a function f can be expanded as

) ih ih)? ih)?
S+ i) = FGo) + /G + 1) B+ 77 G+ O ®

where “H.O.T” stands for higher order terms. Taking the imaginary part of both sides, and dividing by & yields
Im[f(xy + ih)]
—

The error induced by the higher order terms can be reduced to below machine precision with the use of a very small 4, e.g. 10710

times the variable of interest. As a result, highly accurate first order derivatives of f with respect to the variable of interest can be
computed as

of _Im[f(xo + ih)]
0X |vaxy h

CTSE is equivalent in concept to the finite differencing approach except that the perturbation is applied along the imaginary axis.
In CTSE, the derivative information can be obtained in a single run and the step size issues are circumvented if a sufficiently small 4 is
used. This is in contrast to the finite difference method which requires at least two analyses and the determination of the appropriate
step size is usually problematic. Obtaining derivatives in a finite element analysis requires a complex-variable finite element method
that allows perturbations along the imaginary axis. This will be discussed in the following section. CTSE has been applied in a number
of engineering fields such as shape sensitivity analysis [47], linear, non-linear and mixed mode fracture mechanics [29,31,33],
aerodynamics [48], computational fluid dynamics [49], creep [50], structural dynamics [51,52], among others.

= f'(x9) + O(h?) Q)

(5)

2.3. Complex-variable finite element implementation

In this section, the required changes to modify the PPR element to a complex-variable form, the ZPPR element, are described. In
particular, the specifics of implementing the ZPPR element into Abaqus [27] are presented such as: modifications to the real-valued
user element subroutine (UEL), and needed changes to the input file for complex nodes. While changes specific to the PPR element are
described, similar changes can be applied to convert any element to complex-variable form for implementation within Abaqus as a
UEL. If the finite element software lacks a complex-variable solver, a Cauchy—-Riemann (CR) representation of a complex-variable can
be used to address this issue as will be demonstrated below. In addition, higher order derivatives can be obtained using hypercomplex
algebra [52-54]. The term “ZFEM” is used to describe a complex- or hypercomplex-variable finite element method.

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

Real

Nodal Coordinates

Fig. 3. 8-noded (4 real and 4 imaginary) element. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

2.3.1. ZPPR element Abaqus implementation

The ZPPR element has been implemented in Abaqus through the complexification of a real-valued user element subroutine
(UEL) [29-33,50,55]. In a real-valued UEL, the elemental stiffness matrix, K,, and the load vector, f,, are computed and returned
to Abaqus for assembly and solution of the global system of equations as

Ku=f (6)

where K, u and f are the global stiffness matrix, displacement vector, and force vector, respectively.

In ZFEM, the finite element displacement degrees of freedom are now complex-valued where the real part is the conventional
finite element variable and the imaginary part contains the derivative information with respect to the variable of interest. Therefore,
a duplicate set of nodes is used to store the derivative information at each nodal point and, in the case of a shape perturbation
analysis, define a perturbation of the real spatial coordinates. Fig. 3 shows the nodes from a conventional 4-noded element (black)
augmented by 4 imaginary nodes (red). The result is a 8-noded (4 real and 4 imaginary) complex element with a total of 16 degrees
of freedom for which the solution of a complex-variable system of equations is required.

Given the fact that Abaqus does not have a built-in complex solver, a Cauchy-Riemann (CR) representation of a complex-variable
is employed to return a real-valued stiffness matrix to Abaqus. In summary, using the CR representation, a complex number a* = a-+bi
can be represented as a matrix of all real numbers as

a —b] 7)

a:b a

where * denotes a complex variable. This approach can be applied at the element stiffness level before returning to Abaqus for
assembly. The result is a 2N x 2N system of equations, where N is the number of real degrees of freedom. The additional runtime
using ZFEM depends upon the analysis type. For an analysis using the ZPPR element with a symmetric solver, the additional
computational time is approximately 50% of a real analysis. Runtimes for other analysis types can be found in [30-32]. Egs. (8)
and (9) show the complex system of equations and its CR representation used in a ZFEM analysis

K'u* = f* ®

[KRe _Klm] [uRe] — [fRe] 9
KIm KRe Uim fIm

where the subscripts “Re” and “Im” denote the real and imaginary components of a complex variable, respectively. Numerically,
the imaginary component, Ky, is the derivative of Kp, with respect to the parameter of interest, 6, times the step size, i.e., K, =
(0KRe/06) X h. Similarly, f;, = (0fge/060) X h, and uy, = (dug./06) X h. After the CR system of equations is solved, the real part of
the displacement vector, ug,, contains the nodal displacements as in a real-variable analysis, and uy, contains the derivatives of
the displacement with respect to the perturbed variable times the step size. Other post-processing quantities and their derivatives
such as strains, stresses and potential energy can be computed using traditional equations but using the complex variable nodal
displacement vector.

2.3.2. Formulation of the User Element Subroutine (UEL)

In this section, the formation of the CR form of the complex-variable stiffness matrix, K*, the solution vector, u*, and right
hand side vector, f*, for the ZPPR element are defined. The changes required to complexify the real-variable PPR element (and, in
general, any real-variable UEL) are: (i) redefine specific UEL variables as complex type, (ii) perturb the variable of interest through
the input file, and (iii) convert the complex variables to CR format before exiting the UEL for assembly and solution of the system of
equations. All of these changes will be explained in detail in this section. In this paper, only derivatives with respect to the cohesive
parameters will be computed. Hence, for the bulk (4-noded linear elastic) elements, a traditional real-valued UEL will be used. The
only modification required for these elements is that before exiting the UEL, the real-valued stiffness matrix has to be expanded to
CR format with zero contributions to the imaginary parts.

D. Ramirez-Tamayo et al.

Engineering Fracture Mechanics 247 (2021) 107638

Listing 1: UEL variable definitions

INTEGER, PARAMETER DP = SELECTED_REAL_KIND(15,

! Parameters Useful for Calculations
PARAMETER ZER0=0.0_DP,

half, two
PARAMETER gaussCoord=SQRT(3.0_DP)/3.0_DP, gausslie

ONE=1.0_DP, NONE=-1.0_DP,

! Variables used within the cohesive UEL

! Complex Variables

COMPLEX (DP), DIMENSION (mcrd*nnode/2,mcrd*nnode/2) Sc
element

COMPLEX (DP), DIMENSION (mcrd*nnode/2,nrhs) Fc
COMPLEX (DP), DIMENSION (mcrd,nrhs) T
COMPLEX (DP), DIMENSION (mcrd,mcrd) T_d

Tangent matrix)
COMPLEX (DP), DIMENSION (mcrd, mcrd) Arot
COMPLEX (DP), DIMENSION (mcrd*nnode/2, mcrd*nnode/2) R
COMPLEX (DP), DIMENSION (mcrd*nnode/2) U_1

coordinate system
COMPLEX (DP), DIMENSION (mcrd,mcrd*nnode/2) Bc

relation matrix
COMPLEX (DP), DIMENSION (mcrd) del
COMPLEX (DP), DIMENSION (nnode/2) del_1
COMPLEX (DP), DIMENSION (mcrd*mcrd, mcrd*nnode/2) L

matrix
COMPLEX (DP), DIMENSION(mcrd*nnode/2, 1) Fcoh
COMPLEX (DP), DIMENSION (mcrd*nnode/2, mcrd*nnode/2) Kcoh
COMPLEX (DP), DIMENSION (mcrd, nnode/2) zCoords
COMPLEX (DP), DIMENSION(nnode/2*ndofel/2) zU
COMPLEX (DP) G_n, G_t ! Normal and Tangential Fracture Energies
COMPLEX (DP) Tn_m, Tt_m ! Normal and Tangential Cohesive Strength
COMPLEX (DP) alph, beta ! Shape Parameters
COMPLEX (DP) 1l_n, 1_t ! Slope Indicators
COMPLEX (DP) dn, dt ! Final crack opening widths
COMPLEX (DP) m, n ! Exponents to compute Potential Function
COMPLEX (DP) Gam_n, Gam_t ! Energy constants,
COMPLEX (DP) dGnt, dGtn ! Macauley bracket <G_n-G_t> or <G_t-G_n>,
COMPLEX (DP) dell, del3 ! Nodal separations in x (Local Coords)
COMPLEX (DP) del2, del4d ! Nodal separations in y (Local Coords)
COMPLEX (DP) deln_max, delt_max !
COMPLEX (DP) el_length ! Length of the cohesive element
COMPLEX (DP) dvol ! Volume Differential
! Real and complex parts of the cohesive stiffness matrix
REAL(DP), DIMENSION(mcrd*nnode/2, mcrd*nnode/2) Kreal, Kimag
! Real and complex parts of the RHS vector
REAL(DP), DIMENSION(mcrd*nnode/2,1) Freal, Fimag
REAL (DP), DIMENSION(2,nnode/2) shapeN ! Shape function matrix
REAL(DP), DIMENSION(2) GP ! Gauss points
REAL(DP), DIMENSION(2) GP_w ! Weight at the Gauss points
REAL (DP) N1, N2 ! Shape Functions
REAL(DP) :: h ! Perturbation step size
REAL(DP) :: th ! Thickness
INTEGER :: perturbation_flag ! Perturbation flag
INTEGER :: I ! Counter
INTEGER :: nn_real ! Number of real nodes
INTEGER ndof_real ! Number of real DOF

307)

HALF=0.5_DP,

ight=1.0_DP,

TW0=2.0_DP !

ninpt=2 !

related to the fracture energies

Maximum displacements jumps during load history

Zero, one, negative one,

For Gaussian integration

Element stiffness matrix of a cohesive
force vector

vector

cohesive traction (

Cohesive intermnal
Cohesive traction
Derivative of the

Coordinate transformation matrix
Rotation Matrix
Nodal displacement in the local

Global displacement-separation

Normal and tangential separations
local nodal displacement jumps
local displacement-separation relation

Cohesive Traction
Stiffness Matrix
Complex Coordinates
Complex Displacement

respectively

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

Table 2
ZPPR element properties passed to the Abaqus UEL.

PPR properties

UEL property ID Property
1 Element type
2 Normal fracture energy, ¢,
3 Tangential fracture energy, ¢,
4 Normal cohesive strength, o,,,,
5 Tangential cohesive strength, 7,
6 Normal shape parameter, a
7 Tangential shape parameter, f
8 Normal slope indicator, 4,
9 Tangential slope indicator, 4,
10 Thickness of the element, ¢
11 Perturbation step size, h
12 Perturbation flag

Table 3

Linear elastic element properties passed to the Abaqus UEL.

Linear elastic element properties

UEL property ID Property

1 Element type

2 Elastic modulus, E

3 Poisson’s ratio, v

4 Thickness of the element, ¢

The first modification performed to the UEL is on the variable definition section. The following lines of Fortran code (Listing
1) show the variable definitions of the complex variable ZPPR UEL. Note that not all the variables need to be complexified, some
variables such as the shape functions and the Gaussian integration quadrature remain the same as in the real-valued UEL. For the
matrix variables, the only required modification is on the variable type, that is, change REAL to COMPLEX. The dimensions of the
complex-valued cohesive stiffness matrix (Kcoh) are given by the variables “nnode/2=4" and “mcrd=2". “nnode” and “mcrd” are
Abaqus UEL variables that are defined through the input file as will be shown in Section 2.3.3. “nnode” is the number of nodes per
element and “mcrd” is the number of dimensions or degrees of freedom per node. For the real-valued 2D PPR element nnode=4
and mcrd=2; for the ZPPR element nnode=8 (4 real and 4 imaginary nodes) and mcrd remains unchanged. For the scalar variables
such as the volume differential, dvol, and the fracture energies, Gn and Gt, no modifications other than changing the variable type
to complex are needed. When a Fortran code is provided, a comment or an index from an array is represented with black color,
magenta denotes a variable and blue means a Fortran keyword.

Next, through the input file (as will be shown in the following section) the user defines the material parameter 6 that will
be perturbed along the imaginary axis, yielding derivatives of the nodal displacements with respect to the parameter of interest,
dug,/d6. In this paper, only derivatives with respect to the material properties of the PPR element will be discussed. However, for
the ZFEM methodology in general, shape derivatives can be also obtained by perturbing the coordinates of the imaginary nodes as
shown in [29-33]. Shape derivatives can be used for shape optimization and fracture mechanics analyses where the energy release
rate is computed as the derivative of the potential energy with respect to the crack length.

Listing 2 shows a Fortran case statement where the perturbation is being applied along the imaginary axis of the cohesive material
parameter of interest where the “perturbation_flag” variable is passed from the input file. The real variable material values of the
PPR elements are passed from the input file in PROPS(1-10) (Table 2). PROPS(11-12) are the perturbation step size and perturbation
flag respectively. These properties are only passed for the cohesive elements. For the linear elastic elements, the properties passed
to the UEL are shown in Table 3. More details regarding the input file are explained in the following Section 2.3.3. The perturbation
step size, h, is set as 1 x 10710 times the variable of interest.

Two additional changes are needed in the UEL, one in the beginning of the UEL to convert the nodes and displacements from
CR to complex form, and one before exiting the UEL to convert the stiffness matrix and load vector from complex to CR form.
By default, Abaqus calls the UEL at least twice per increment before obtaining the solution vector for the current increment. The
first time is when the elemental stiffness matrix and right hand side vector are computed for each element and then returned for
assembly. Once the global stiffness matrix is assembled, Abaqus solves the system of equations and calls the UEL once more to
compute the force residual for each element. Post-processing quantities such as strains, stresses and energies are computed in this
second pass through the UEL. If a tolerance is satisfied, the same process is repeated for the next increment. Otherwise, the loading
increment is reduced until convergence is achieved. As it was explained in Section 2.3.1, the solution of the CR system of equations

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

returns a vector of the form
e
uRe
1
VRe
2
uRe

1
Im

4
ut = [“Re] =|"re (10)

1
va

2

uhn

4
_va A

where there are a total of 16 degrees of freedom (DOF) per element, 8 real and 8 imaginary. ullze and “11m denote the real and
complex x-displacements of node number 1. v}‘{e and vI‘m denote the real and complex y-displacements of node number 1, etc. The
derivative with respect to the perturbed parameter is obtained as

ou _ Imfug,]

0~ h
where 6 is the perturbed variable and # is the perturbation step size. In order to compute post-processing quantities (strains, stresses
and energies) and the force residual in the second pass through the UEL using the intrinsic Fortran complex type, the CR form of
the solution vector, u*, is converted to complex format as

u* = complex(ugg, Uy,) (11)

Listing 2: Perturbation definition

! Read UEL Properties

perturbation_flag = PROPS(12) ! Defines variable to be perturbed
h PROPS(11) ! ZFEM’s perturbation step size

! Define fracture parameters
G_n = PROPS(2)
G_t = PROPS(3)
Tn_m = PROPS(4)
Tt_m = PROPS(5)
alph = PROPS(6)

beta = PROPS(7)
1_n = PROPS(8)
1_t = PROPS(9)
th = PROPS(10)

! Apply perturbation to the parameter of interest
SELECT CASE (perturbation_flag)

CASE (1)

G_n = CMPLX(PROPS(2), h*PROPS(2))
CASE (2)

G_t = CMPLX(PROPS(3), h*xPROPS(3))
CASE (3)

Tn_m = CMPLX(PROPS(4), h*xPROPS(4))
CASE (4)

Tt_m = CMPLX(PROPS(5), h*PROPS(5))
CASE (5)

alph = CMPLX(PROPS(6), h*PROPS(6))
CASE (6)

beta = CMPLX(PROPS(7), h*PROPS(7))
CASE (7)

1_.n = CMPLX(PROPS(8), h*PROPS(8))
CASE (8)

1_t = CMPLX(PROPS(9), h*PROPS(9))

END SELECT

In addition to the solution vector, u*, the nodal coordinates are converted into a complex-variable format to link the real and
complex degrees of freedom as shown in Fig. 4. The offset value, shown in Fig. 4 is a constant value that is greater than the total
number of real nodes. The offset is a convenience for mesh generation and results extraction. Any value can be used that is greater

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

3+offset

Im

2+offset

Real

2
Nodal Coordinates

Fig. 4. 8-noded complex element (4 real and 4 imaginary).

than the number of real nodes. For ease of understanding, a particular example will be shown in the following section where the
creation of the input file will be discussed.

The implementation of this change into the UEL can be observed in Listing 3 where “zCoords” and “zU” denote the complex
version of the coordinates and nodal displacements, respectively.

Listing 3: Conversion of the nodes and displacements from CR format to complex variable type

! Complex Version of the Coordinates and displacements

zCoords = CMPLX(coords(1:2,1:nn_real), coords(1:2,(nn_real+1):(2*nn_real)))
zU = CMPLX(u(l:ndof_real*nn_real), u(ndof_real#*nn_real+1:2%ndof_real*nn_real))

After this change, all mathematical operations within the UEL are carried without further modifications from the standard PPR
element but now using the complex-variable intrinsic type. If a comparison operator such as greater than (>) or less than or equal
(>) is used, the real part of the variable has to be used as in the real-valued UEL. Listing 4 shows an example where the Macauley
bracket of the energy constants is computed using comparison operators.

Listing 4: Comparison operator example

! Macauley bracket of the Energy constants
IF (REAL(G_n) > REAL(G_t)) THEN
dGnt = G_n - G_t
dGtn = ZERO
ELSEIF (REAL(G_n) < REAL(G_t)) THEN
dGnt = ZERO
dGtn = G_t - G_n
ELSE
dGnt = ZERO
dGtn = ZERO
END IF

As a final step, the complex-valued stiffness matrix and force vector have to be converted back into CR format and assigned to the
Abagqus intrinsic variables (amatrx and RHS), respectively, before exiting the UEL for assembly and solution as aforementioned. The
assignments of the CR form of the cohesive stiffness matrix and force vector to the Abaqus intrinsic variables within the PPR UEL
are shown in Listing 5. The same process is done within the linear elastic UEL as can be seen in the source code listing Appendix
section.

The Cauchy-Riemann form of the stiffness matrix is non-symmetric due to the negative sign in the upper right quadrant of the
stiffness matrix as shown in Eq. (9). However, although not discussed here, it can be shown that the magnitude of this term is not
significant in the solution of the system of equations. As a result, one can use an unsymmetric solver keeping the negative sign in
place, or make that term positive and use a symmetric solver. Empirical evidence shows that the symmetric solver is approximately
13% faster. Listing 5 uses a symmetric version of the CR stiffness matrix.

10

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

Listing 5: Conversion from complex type to CR format for the stiffness matrix and force vector

! Volume Differential
dvol = HALF % el_length x GP_.w(i) * th

! Cohesive Traction
Fcoh = MATMUL(TRANSPOSE(Bc), T)xdvol

! Cohesive Stiffness Mat
Kcoh = MATMUL(TRANSPOSE(Bc) ,MATMUL(T_d , Bc))=*dvol

! Real and complex parts of the rhs and stiffness matrix

Freal (:,1) = REAL(Fcoh(:,1))
Fimag(:,1) AIMAG(Fcoh (:,1))

Kreal = REAL(Kcoh)
Kimag = AIMAG(Kcoh)

! Add contributions for this integration point

NOTE: CR form is unsymmetric but upper right term is not
significant. Therefore it is set as +Kim to have a
symmetric matrix.

K = |Kre +Kim]|
! | Kim Kre|

! CR form of right hand side vector (Abaqus UEL intrinsic variable)

rhs(1:merd*xnn_real ,1) rhs(1:merd+xnn_real ,1) — Freal(:,1)
rhs(merdxnn_real+1:2«mcrd«nn_real ,1) = rhs(merd«nn_real+1:2xmerd«nn_real ,1) — Fimag(:,1)

! CR form of stiffness matrix (Abaqus UEL intrinsic variable)

! Upper left — REAL part of Kcoh
amatrx (1:merd*nn_real ,1:mcrd*nn_real) = amatrx(1l:merd+xnn_real, 1l:mecrd*nn_real) + Kreal

! Lower right — REAL part of Kcoh(same as upper left)
amatrx (merd*nn_real+1:2«mecrd*xnn_real ,mcrd*nn_real+1:2xmcrd*nn_real) = amatrx(mecrd*xnn_real+1:2xmcrd+*nn_real , mecrdxnn_real
+1:2xmcrd+«nn_real) + Kreal

! Lower left — Imaginary part of Kcoh
amatrx (mcrd«nn_real+1:2xmerd«nn_real , l:mcrdxnn_real) = amatrx(mcrdxnn_real+1:2xmecrd«nn_real, l:mcrd+xnn_real) + Kimag

! Upper right — Imaginary part of Kcoh (same magnitude as lower left but sign difference. To use a symmetric solver use the
same sign)
amatrx (1:mecrd«nn_real ,merdxnn_real+1:2«mcrd«nn_real) = amatrx(l:mecrdxnn_real, mecrdxnn_real+1:2«mcrd«nn_real) + Kimag

Algorithm 1 summarizes how the complex-valued Abaqus UEL works in order to compute the CR form of the stiffness matrix and
right hand side vector for both, cohesive and linear elastic elements. If the element is cohesive, then the cohesive material variable
of interest is perturbed along the imaginary axis and the complex-valued elemental stiffness matrix and RHS vector are computed
using Fortran intrinsic complex type. As Abaqus does not have a complex-valued solver, a CR representation is used to return a
real-valued matrix and vector for subsequent assembly and solution of the system of equations. If the element is linear elastic, only
the real-valued stiffness matrix and RHS vector are required as the variable of interest belongs to the ZPPR subroutine. A CR form
of the linear elastic elemental stiffness matrix and RHS vector with zero imaginary components are returned to Abaqus for assembly
and solution. Finally, during the second pass through the UEL where the residual is checked, post-processing quantities such as
strain and stresses, and their derivatives with respect to the perturbed variable, are computed.

2.3.3. Input file generation

In this section, the generation of the input file for a particular example will be shown. In Section 3, a plate under mode-I traction
will be used as a verification example, see Fig. 5. This example has been used by other authors to verify their method [26]. The plate
contains 2 elements, a linear elastic element (shaded in gray) and cohesive element (outlined in red). Fig. 5 shows the finite element
mesh for a regular (real-valued) finite element analysis. In order to run a ZFEM analysis, the degrees of freedom are augmented,
resulting in a mesh with both, real and imaginary nodes. Fig. 6 shows the complex mesh with the real nodes (black) and imaginary

11

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

// ZFEM UEL Procedure
Data: Nodes, Elements, Properties, Loads, Boundary Conditions (BCs), Perturbation Information.
Result: Displacement vector u, Derivatives of displacement vector with respect to the variable of interest du/06

for e € 2 do // For all the elements in the mesh

if e € Q, then // If the element is cohesive
0*=0+ih; // Apply perturbation to the parameter of interest (defined in the input file)
u* = cmx(uge, Ugy); // Create complex form of displacement vector
Xy* = cmx(XyRe, XYim); // Create complex form of nodal coordinates
Ke*c’fe*c « ZPPR_UEL(e,); // Compute complex-valued elemental stiffness matrix and RHS vector
K=| Kre K],f: [fre]; // Convert K* and f* to CR form

Kim Kge fim b ¢

Return to Abaqus for assembly and solution;

else if e € 22, then // If the element is linear elastic
K, .f,, < ELASTIC UEL(e,); // Compute real-valued elemental stiffness matrix and RHS vector
K= | Kre KO] = [fl(‘)e]; // Convert CR form with zero imaginary components

Re

Return to Abaqus for assembly and solution;

end

// Compute complex-valued post-processing quantities such as strains and stresses and its derivatives with respect to the

perturbed variable

e*(u*) = € + (de/00) X h; // Strains and derivatives with respect to 6

o*(u*) = ¢ + (06/00) X h; // Stresses and derivatives with respect to ¢

end

Algorithm 1: Pseudocode for ZFEM UEL

Fig. 5. Real-valued finite element mesh corresponding to the mode-I verification example. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Source: Adapted from [26].

nodes (red). Now, instead of having 4 nodes per element, both elements (linear elastic and cohesive) consist of 8 nodes (4 real
and 4 imaginary). Since Abaqus has no knowledge of imaginary coordinates, the input file contains real coordinates that are then
“stitched” together as a complex-variable node within the UEL. As such, a pairing of element numbers is needed to indicate which
real and imaginary numbers comprise a complex node. In this example the nodal values are “offset” by an arbitrary large integer
number, 1000, e.g., the linear elastic element is formed by the nodes (4, 3, 5, 6, 1004, 1003, 1005, 1006). As aforementioned in
Fig. 4, the offset value used to define the imaginary node is a number greater than the number of real nodes, - for this particular
case 1000 was chosen as the offset value for ease of understanding. For instance, node 4 (real) and node 1004 (imaginary) are
stitched together as a complex node.

Listing 6 shows the section of the Abaqus input file for the mode-I example where the nodes and nodal sets are defined. Nodes
1-6 define the real-variable nodes and nodes 1001-1006 define the imaginary nodes. The imaginary nodal coordinate values define
the “perturbation” of the geometry, e.g., a shape sensitivity. Since only material property values are being perturbed here, the

12

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

Fig. 6. Complex-valued finite element mesh corresponding to the mode-I verification example. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

imaginary x— and y—coordinates are zero. The entire input file is defined by combining Listings 6-8. A double star ‘“**” means a

comment in the input file.

Listing 6: Nodes and node sets definition for ZFEM’s input file

*HEADING

Patch test, Mode I
*NODE

% Real nodes
1, 0.0, -0.1

2, 100, -0.1

3, 100, 0.0

4, 0.0, 0.0

5, 100, 100

6, 0.0, 100

% Imaginary nodes (offset=1000)
1001, 0.0, 0.0

1002, 0.0, 0.0

1003, 0.0, 0.0

1004, 0.0, 0.0

1005, 0.0, 0.0

1006, 0.0, 0.0

*+ Nodal sets

*NSET, NSET=NODES RE, generate
1, 6

*NSET, NSET=NODES_IM, generate
1001, 1006

Subsequently, the element type and the elements and element sets are defined as shown in Listing 7. The first line defines the
element type, the number of nodes per element, the number of active coordinates, number of real property values associated with
the element, and the number of solution-dependent state variables associated with the element using the keywords: TYPE, NODE,
COORDINATES, PROPERTIES, and VARIABLES, respectively. TYPE=U1 means a user defined element. For the complex element
NODE=8, and this variable is accessed within the UEL through the variable “nnode” as was shown in Section 2.3.2. Similarly, the
number of active degrees of freedom per node is given by COORDINATES=2 and is accessed within the UEL through the variable
“mcrd”. PROPERTIES=12 is defined by the maximum number of properties passed to an element set. In particular, 12 properties
will be passed to the cohesive elements (ELSET=COHESIVE_ELEMS) and 4 to the linear elastic elements (ELSET=ELASTIC_ELEMS).

13

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

Table 4
Solution-dependent state variables, SVARS (“*” denotes a complex-variable).

SVARS Description

Real component of the normal displacement, Re [A:], from integration point 1

Real component of the tangential displacement, Re [Aj], from integration point 1

Real component of the normal displacement, Re [A:], from integration point 2

Real component of the tangential displacement, Re [A,*], from integration point 2
Imaginary component of the normal displacement, Im 4], from integration point 1
Imaginary component of the tangential displacement, Im [4?], from integration point 1
Imaginary component of the normal displacement, Im [A;], from integration point 2

0ONO U A WN -

Imaginary component of the tangential displacement, Im [4?], from integration point 2

Last, there is a total of 8 solution-dependent state variables which will be updated for every cohesive element at the end of every
increment. These variables, accessed within the UEL through the variable SVARS, are shown in Table 4.

Listing 7: Elements definition for ZFEM’s input file

kK

** User Defined Elements

kK

*«USER ELEMENT, TYPE=Ul, NODE=8, COORDINATES=2, PROPERTIES=12, VARIABLES=8
1, 2

*ELEMENT, TYPE=Ul, ELSET=ALL ELEMS

1, 4, 3, 5, 6, 1004, 1003, 1005, 1006
2, 1, 2, 3, 4, 1001, 1002, 1003, 1004
#x Element sets

*ELSET, ELSET=ELASTIC_ELEMS

1

*ELSET, ELSET=COHESIVE_ELEMS

2

The line following “*USER ELEMENT” in Listing 7, shows the active degrees of freedom in the analysis. “1” corresponds to
displacements in the x-direction and “2” to displacements in the y-direction. The keyword “*ELEMENT” is used to define the
elements the two complex-elements (one linear elastic and one cohesive), as shown in Fig. 6. The first column is the element ID and
the following columns define the nodes that form the element, 4 real and 4 imaginary. Then, linear elastic and cohesive element

sets are defined. Element 1 is linear elastic and 2 is cohesive.

Lastly, the loading amplitude, additional nodal sets to define boundary conditions or output requests, and the loading step are
defined (see Listing 8). Then, the UEL properties for each element set are defined starting with the ‘“*UEL PROPERTY” keyword.
A total of 4 properties are passed to the linear elastic elements which belong to the element set “ELASTIC_ELEMS”, see Table 3.
For the cohesive elements, corresponding to the element set “COHESIVE_ELEMS”, there are a total of 12 properties, see Table 2.
The first property denotes the element type, where 1 means linear elastic and 2 cohesive. Then, properties 2-10 correspond to the
normal and tangential fracture energies (G,, G,), normal and tangential cohesive strength (7, 7;), shape parameters (a, f), slope
indicators (4,, 4,) and the thickness of the element (¢). These properties define the mechanical response of a cohesive element using
the PPR model. The additional variables define ZFEM’s perturbation step size, A, and an indicator that defines the variable to be
perturbed. In Abaqus, a total of 8 properties have to be defined per line. If there are less than 8 properties, Abaqus will default
the missing properties to zero. For example, properties 5-8 for the linear elastic elements in the example input file have a value of

Zero.

The analysis type and the boundary conditions are subsequently defined. A non-linear static analysis is defined with an initial
step size of 0.05, total time of 3.0, minimum step size of 3.0x 10~>, and a maximum step size of 0.05. Then the boundary conditions
are defined. Note that if a boundary condition is defined on the real nodes, the displacement along the imaginary direction is set
to zero, that is, if the displacement is enforced to be a constant, the derivative of that displacement with respect to any parameter
must be enforced to be zero. Finally, output to the “.dat” file is requested. In this particular example, the nodal displacements and
reaction forces denoted with U and RF, respectively in Abaqus were requested for the real (NODES_RE) and imaginary (NODES_IM)

nodal sets.

14

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

Listing 8: Loading amplitude, nodal sets, element properties and step definitions

KK
*% Loading Amplitude

KK e
«Amplitude , name=Amp-1

0., 0., 1., 0.03, 2., -0.01, 3., 0.1
e e adadadadod

*+ Other nodal sets

*+ fof BC definition

A e e et e et et et e e e e e e e

*NSET, NSET=UP_RE

5, 6

*«NSET, NSET=UP_IM
1005, 1006

*«NSET, NSET=ROLLER_RE
2

*NSET, NSET=ROLLER_IM
1002

*NSET, NSET=PIN_RE

1

*NSET, NSET=PIN_IM

1001

s+ Everything should be in [mm]

** Elastic element properties

*UEL PROPERTY, ELSET=ELASTIC_ELEMS

*x elem_type, Emod nu thick
1, 32.0e3, 0.20, 10

**% Cohesive element properties

*UEL PROPERTY, ELSET=COHESIVE_ELEMS

*+ elem_type Gn Gt Tn T_t alph beta In
2, 0.100, 0.200, 4, 3, 5, 1.6, 0.005
*x It thick h pert_flag
0.005, 10, 1le-10, 1
>k 3k >k 3k >k 3K 3k oK 3k ok ok k- 3k 3k >k 3k ok 3k kK

K e e e e
*% Step definition

KK o
*STEP, NLGEOM, INC=4000, UNSYMVENO
*STATIC

0.05, 3.0, 3e-05, 0.05
et e aiadadad

** Boundary Conditions

I i adade e e dade e e ot

*+ Fixed sets

*BOUNDARY

ROLLER RE, 2, 2
ROLLER IM, 2, 2
PIN RE, 1, 2
PIN_IM, 1, 2

*% Moving sets

*Boundary, amplitude=Amp-1
UPRE, 2, 2, 1.0

UP.IM, 2, 2, 0.0

L e e e adadad et dadadad
«x Prints to dat file

KAk
** Real nodes

*NODE PRINT, NSET=NODES RE

U, RF

*+ Imaginary nodes

*NODE PRINT, NSET=NODES_IM

U, RF

*END STEP

3. Numerical examples

In this section, ZFEM'’s capabilities of computing accurate sensitivities of displacements with respect to the parameters of the PPR
cohesive model are demonstrated. Once the derivatives are verified, its use to inversely determine the cohesive material parameters
is shown for an adhesively bonded double cantilever beam.

15

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

d
01 T
0.03 7T
: : :
-0.01— T
1 2 3
Loading 1 Unloading Loading 2
Fig. 7. Loading history.
47 ——ZFEM Real Results||
o PPR
_ 3}]
&
(ol
=Y ¥]
S 3
%ﬁ
21/]
—~
-
n
0+ © § f
-1

-0.02 0 0.02 0.04 0.06 0.08 0.1
Displacement, § [mm]

Fig. 8. Comparison of Park and Paulino [26] and ZFEM’s real-valued results.

3.1. Mode-I patch test

A plate subjected to mode-I traction was used as a verification example for both real displacements and their derivatives with
respect to the chosen traction-separation variable. The geometry consisted of a square plate (100 mm x 100 mm) with a cohesive
element at the bottom with an aspect ratio of 1000:1, see Fig. 5. The geometry was first elongated at the top up to 0.003 mm,
then compressed to 0.001 mm, and finally elongated again until failure as shown in Fig. 7. Linear elastic material behavior was
considered for the plate with the following parameters: elastic modulus E = 32 GPa, Poisson’s ratio v = 0.2 and the PPR parameters
were ¢, = 0.1N/mm, ¢, = 0.2N/mm, o,,,, = 4MPa, 7,,. = 3MPa, a« =5, f = 1.6, 4, = 0.005 and A, = 0.005. These are the same
numerical values used in [26] in their verification example.

The plate was modeled using two 8-noded (4 real and 4 imaginary) quadrilateral plane strain elements. One element followed a
traditional linear-elastic formulation (gray element in Fig. 6) and the other followed the PPR cohesive formulation (red element in
Fig. 5). In order to compute the derivatives, the perturbation step size, i, was set as 10710 times the value of the parameter being
perturbed. A total of 4 nonlinear ZFEM analyses were needed to compute 4 derivatives, one for each mode-I cohesive property:
normal fracture energy (¢,), maximum normal traction (o,,,,), normal shape parameter («) and the normal slope indicator (4,).

Fig. 8 shows a comparison of the y-displacement vs. stress of the upper edge (either node 5 or 6 in Fig. 5) obtained from [26]
and the real part of ZFEM’s results. As expected, the results obtained from the real valued analysis and the real part of ZFEM’s
results are overlapping.

The derivatives of the y-displacement of node 3 (v;) with respect to the mode-I cohesive parameters (normal fracture energy,
normal cohesive strength, normal shape parameter and normal slope indicator) were computed, dv3/d¢,, 0V3/06,,,., 0V3/0a, and
0v3/04,, respectively. The derivatives were verified against those obtained with the finite difference (FD) method with step sizes
varying from 0.001 and 0.05 times the perturbed variable. Refer to Fig. 7 for the different loading/unloading zones and Table 5
for the step size used in finite differences for each variable. In order to find the optimal step size for the FD scheme, a convergence

analysis was carried out where several step sizes were tested until convergence was achieved. In FD, the step size is problem
dependent and the convergence analysis must be performed for each derivative obtained through FD. ZFEM is independent of

16

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

Table 5
Step sizes used with finite differences.

Finite difference step size

Variable
o, 0.01 X ¢,
Cpiax 0.001 X 6,4,
* 0.05x a
A 0.01x A,
0.02 0.02 0
-0.01
0 0
-0.02
£-0.02 $-0.02 $
< < <
< 2 $-003
= = =
> 3 > -0.04
& -0.04 & -0.04 S
-0.05
-0.06 -0.06
-0.06
-0.0: -0.08 -0.07
0.005 0.01 0.015 0.02 0.025 0.02 0.015 0.01 0.005 0 0 0.02 0.04 0.06 0.08
Displacement, 4, [mm] Displacement, §, [mm)] Displacement, §, [mm)]
(a) (b) (c)
Fig. 9. Derivatives with respect to ¢, for (a) loading zone 1, (b) unloading zone, and (c) loading zone 2.
3 5 4
1 x10 8 x10 8 x10
0 6
6
g g
g4 g
5 5
S R4
~ ~
> >
> 2 >
- N
2
-4 0
-5 -2 0
0.005 0.01 0.015 0.02 0.025 0.02 0.015 0.01 0.005 0 0 0.02 0.04 0.06 0.08
Displacement, 4, [mm)] Displacement, d, [mm] Displacement, d, [mm]
(a) (b) (c)

Fig. 10. Derivatives with respect to ¢,,, for (a) loading zone 1, (b) unloading zone, and (c) loading zone 2.

1 —4 —5 —4
2 X10 15 %10 s X10

10

3

<

= 5

2

®
0
-5 -

0.005 0.01 0.015 0.02 0.025 0.02 0.015 0.01 0.005 0 0 0.02 0.04 0.06 0.08
Displacement, §, [mm] Displacement, §, [mm)] Displacement, §, [mm)]
(a) (b) (©)

Fig. 11. Derivatives with respect to « for (a) loading zone 1, (b) unloading zone, and (c) loading zone 2.

this issue and does not require a convergence analysis - a single analysis provides accurate derivative results. It can be observed
that the results presented in Figs. 9-12 are in excellent agreement.

For the derivatives with respect to the normal fracture energy (Fig. 9), it can be observed that during loading zone 1, an increase
of ¢, results in lower y-displacement of node 3 (derivative with negative sign), which is caused by greater stiffness of the cohesive
element, see Fig. 9a. During unloading, Fig. 9b, an increase of ¢, decreases v; with lower magnitude as the displacement decreases.
Finally, during loading zone 2 (Fig. 9¢), an increase of ¢, will result in a lower value for v; and the effect becomes greater until
the last point of loading zone 1 is reached again. Then, the effect is still negative but it diminishes its magnitude as loading zone 2

continues.

17

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

3 3
0 x10 2 x10
1 15
-2 210
D)
~ ~
g)
& -3 & 5
4 0
—Finite Difference |—+—Finite Difference
—ZFEM
0.15 -5 -5
0.005 0.01 0.015 0.02 0.025 0.02 0.015 0.01 0.005 0 0 0.02 0.04 0.06 0.08
Displacement, ¢, [mm)] Displacement, §, [mm)] Displacement, ¢, [mm)]
(a) (b) (c)

Fig. 12. Derivatives with respect to 4, for (a) loading zone 1, (b) unloading zone, and (c) loading zone 2.

Fig. 10 shows the derivatives of vy with respect to ¢,,,. During loading zone 1, an increase of ¢,,,, will result in lower y-
displacement of node 3. The effect reduces after the peak load is reached and softening starts. Then, during unloading, an increase
of ¢,,,, increases the magnitude of v; and its effect decreases as the last point of the unloading zone is reached. During loading zone
2 the derivative is positive and its magnitude decreases towards the end.

The derivatives of v; with respect to the normal shape parameter, «, are shown in Fig. 11. During loading zone 1, an increment
of a results in a larger y-displacement of node 3 with increasing magnitude towards the end of this loading zone. For the unloading
zone, see Fig. 11D, the effect is still positive but its magnitude decreases as the end of the unloading zone is reached. During the last
loading zone (Fig. 11c¢), initially, an increase of « results in a greater v;. Then, the curve shifts from positive to negative magnitude
and from concave to convex where an increase of « will now reduce the magnitude of v;. The change from concave to convex curve
can be also observed in Fig. 2 where the dependency of the traction-separation curve with respect to different values of « is shown.

Finally, the derivatives of v; with respect to 4, are shown in Fig. 12. During loading 1, see Fig. 12a, an increase of 1, will
decrease the magnitude of v;. Then, during unloading (Fig. 12b), the effect is still negative with a decreasing magnitude towards
the end of this loading zone. For the last loading zone, see Fig. 12c, the effect is now positive and the magnitude starts decreasing
towards the end of loading zone 2.

3.2. Inverse determination of cohesive material properties for an adhesively bonded double cantilever beam

As shown in Section 2.1, the mode-I traction-separation behavior of the PPR constitutive model is defined by 4 parameters:
normal fracture energy (¢,), maximum normal traction (o,,,,), normal shape parameter («) and the normal slope indicator (4,).
In order to inversely determine the cohesive material parameters a residual function, w, which compares the experimental and
computational load-displacement curve, is defined as

w(®) = | Rp]|* (12)

where 6 is a vector consisting on the material parameters to be optimized as
6=| " 13)

and Rp is the residual vector of the reaction force
PEXP _ PCOMP(@)
Rp,=yY — %
Zt: (IPEXP||

where the superscripts “EXP” and “COMP” denote the reaction force obtained experimentally and computationally, respectively.
The load residual, R p, is computed for every loading increment of the finite element simulation. Note, however, that this approach

can also be used to determine elastic material properties such as E and v. These properties can be added to 6.

Then, the optimization procedure is defined as

0 = arg min w(9) a4
0

where a gradient-based optimization algorithm will be used for its solution. For a gradient based optimization algorithm, it is
necessary to compute the derivatives of the finite element output variables with respect to the unknown parameters. In this paper,
ZFEM, will be used to compute the derivatives of the finite element solution vector with respect to the cohesive fracture parameters
that govern the interfacial behavior of an adhesively bonded joint. This allows one to compute the derivative of the residual function
with respect to the cohesive material parameters as

dw(O) -9 < PEXP _ PCOMP(@)) ()Rl

15
26, [PEXP| a0, (15

18

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

Table 6

Dimensions for the DCB test specimen.
Dimension Symbol Value [mm]
Length L 101.6
Initial crack size ay 38.57
Distance to applied load Ly 12.96
Arm height H 1.016
Specimen width B 25.4

Lp
P,d
Specimen width = B
‘QH
P,§
i ao
L

Fig. 13. Schematic of the DCB sample.

[T [T

Fig. 14. Finite element mesh for the DCB specimen. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

where 6,(i = 1, ..., Ny) is the ith element from the solution vector 6 and N, is the number of material properties to be optimized.
The derivative of the load residual, Rp, is given by

70PCOMP
JRp 96,
P _ T 16
99, Z [IPEXP|| (10)

t

For each material property in 6, a ZFEM analysis is required to compute the derivative of the residual function (Eq. (15)). Hence,
a total of N, ZFEM analyses are required to provide the gradient of the residual function to the optimizer.

A double cantilever beam (DCB) test was used to demonstrate the use of ZFEM’s gradients towards the inverse determination of
the interfacial properties. A “synthetic” load-displacement data set from a finite element simulation was used as the reference curve.
The mode-I cohesive parameters optimized were the normal fracture energy (¢,), maximum normal traction (o,,,,). The geometry
of the beam is shown in Fig. 13 with the dimensions summarized in Table 6.

The DCB was modeled using a total of 5639 8-noded (4 real and 4 imaginary) ZFEM elements. For the steel adherends (plates),
a total of 5159 8-noded (4 real and 4 imaginary) quadrilateral plane stress linear elastic elements were used. A total of 480 8-noded
(4 real and 4 imaginary) ZPPR cohesive elements (green elements in Fig. 14) were used to recreate the bond at the interface. Linear
elastic material behavior was considered for the steel with elastic modulus E = 200 GPa and Poisson’s ratio v = 0.3. The finite
element mesh can be observed in Fig. 14. The PPR parameters used to generate the “synthetic” load-displacement curve were
$, = 0.835N/mm, ¢, = 0.835N/mm, o,,,, = 13MPa, t,,,, = 13MPa, « =2, § =2, A, =0.005 and A, = 0.005.

In order to minimize the objective function and find the optimized parameters, the scipy.optimize.minimize [56] library was used;
in particular a conjugate gradient method by Polak and Ribiere, which is a variant of the Fletcher-Reeves method described in [57]
and the sequential least squares programming (SLSQP), a non-gradient based method, were employed to minimize the residual.
For the finite difference-based optimization, the gradient was approximated using 2-point finite differencing. Hence, two additional
function evaluations (per variable being optimized) were needed in order to compute the gradient of the residual function using FD.
With ZFEM, no additional function calls are needed in order to compute the gradient as the derivatives are obtained as a byproduct

19

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

Table 7
Optimized values comparison.

Method ¢, [N/mm] ¢, relative error [%] o, [MPa] o, relative error [%]

max ‘max

ZFEM 0.83063 0.527 13.435 3.3070
FD 0.83009 0.588 10.001 23.076
SLSQP 0.83153 0.415 10.087 22.406
Table 8
Optimization times comparison.
Method Function calls Iterations Total time [s]
ZFEM 38 4 2361
FD 72 1 3794
SLSQP 48 7 2529

300
£
/550 — ZFEM
32007 —&—FD

——SLSQP

Fig. 15. Optimization results for the DCB.

of the complex-valued analysis. For this particular example involving two parameters, a total of 2 ZFEM analyses are needed in
order to compute the residual function (Eq. (12)) and its derivative with respect to the variables being optimized (Eq. (15)). An
initial educated guess of the parameters to be optimized was provided to the three methods (ZFEM, FD and SLSQP)

[| _[05
0= [a ;] - [10.0] an

max

Table 7 shows a comparison of the optimized cohesive material parameters obtained using ZFEM, FD and SLSQP. The convergence
criterion for the gradient-based optimization was that the norm of the gradient vector must be less than 1.0. As it can be
observed, ZFEM’s results are in excellent agreement with those used to generate the synthetic data set (¢, = 0.835 N/mm and
Omax = 13 MPa). However, the FD result for o,,, has a large relative error due to truncation errors (a common issue associated
with finite differencing). Similarly, for the SLSQP method, there is good agreement for ¢, but ¢,,,, has a large error. In addition, as
shown in Table 8, ZFEM requires a total of 38 complex-valued analyses for a total of 4 iterations of the conjugate gradient method.
In contrast, FD required 72 real-valued analyses for only one iteration of the optimizer. When using SLSQP, 48 real-valued analyses
were required for a total of 7 iterations. Hence, when highly accurate and truncation error free derivatives are provided to the
optimization subroutine, the optimization algorithm converges faster and to a more accurate answer. In summary, using ZFEM with
accurate derivatives resulted in a 40% reduction in computational time compared to finite differencing, and 7% reduction in time
compared to SLSQP, see Table 8, yet ZFEM obtained significantly superior numerical results.

Fig. 15 shows a three-dimensional representation of the residual function with 4 iterations for ZFEM, 1 for FD and the last three
iterations for SLSQP (for illustrative purposes). As it can be observed, both FD and SLSQP converge in the same region. A close-up
of the region where ZFEM converges is also shown.

Fig. 16 compares the load-displacement curves for the converged values of ZFEM, FD and SLSQP against the “synthetic” data
curve. The curves corresponding to the initial guess of cohesive parameters and the analytical solution obtained using beam theory

20

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

120
100
80
60
------ Analytical
0 = Synthetic Data
—— Initial Guess
20 —e— SLSQP
—— FD
0 -=- 7FEM
0 1 2 3 1 5 6 7

0

Fig. 16. Load-displacement curves comparison.

and linear elastic fracture mechanics [1] are also plotted for reference. As it can be observed, ZFEM and the “synthetic” curves are
in excellent agreement while the FD and SLSQP curves have a discrepancy caused by the error in the converged value for o,,,,.

4. Discussion

The process described here to complexify the PPR element is a generic method that can be used to compute numerically exact
derivatives from any finite element implementation. In summary, the process is: (a) duplicate the nodes in order to represent
imaginary nodes required by the complex element, (b) change the variable definition from real to complex for those variables
that are affected by the perturbed variable, (c¢) modify the input file with information of which variable is going to be perturbed
and request output for the imaginary displacements and (d) if the software that is being used lacks a complex-valued solver as is
the Abaqus case, expand both the stiffness matrix and right hand side vector to a Cauchy-Riemann form.

The use of complex-variables provides the capability to compute first order derivatives of displacements and post-processing
quantities, e.g., strains, stresses, strain energy, with respect to any parameter of the cohesive element. This approach can be extended
to higher order and mixed derivatives through the use of hypercomplex algebra [53,58]. However, the use of hypercomplex algebra
requires the implementation of operator overloading and hypercomplex algebra support [30], and the computational runtimes are
greatly increased as a result.

In this paper only derivatives with respect to the cohesive material parameters were computed. However, the methodology is
general and derivatives with respect to any shape e.g., thickness and interface length, material property or loads are possible.

During the optimization procedure, it was shown that FD and SLSQP converge to erroneous o,,,, values. When a tighter tolerance
was defined, ZFEM converged to the same values obtained with a larger tolerance. However, the FD and SLSQP methods did not
show improvements to the optimized values despite almost tripling the number of function calls.

5. Conclusions

The complex Taylor series expansion approach embodied within a finite element formulation, ZFEM, was shown to be an effective
tool to compute highly accurate derivatives of the nodal displacements with respect to the PPR cohesive material parameters. The
results were compared against those obtained using the finite difference with excellent agreement.

The additional computational cost for an analysis with the ZPPR element is approximately 50% over that of a real-variable PPR
element. The results are step size independent and highly accurate with the use of a small step size 4, of 10710 times the parameter
of interest. Contrary to finite differences, ZFEM does not require a search for an accurate step size and a single analysis provides
accurate derivative results.

ZFEM'’s derivatives can be incorporated within an optimization scheme to inversely determine material parameters as demon-
strated in this work. The accuracy of ZFEM derivatives was shown to expedite the convergence rate of a gradient-based optimization
procedure and minimize the error. The performance of the gradient-based optimization scheme fed with ZFEM derivatives was
shown to be superior than a gradient-free method, both in terms of runtime and relative error. Thus, ZFEM derivatives can be used
to improve the efficiency of gradient-based algorithms used for optimizing the design of mechanical systems.

21

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment
This work was funded by Pacific Northwest National Laboratories, USA under Contract No. 484440
Appendix

A complete working UEL for the complex-variable PPR element and the input file corresponding to the numerical example

presented in Section 3.1 are presented below.
Listing 9: Complex-valued UEL containing the ZPPR and the linear elastic element

@mainpage Complex-valued UEL Documentation
\b Subroutines:
\b UEL: Master Subroutine
\b coh_UEL: 8 noded (4 real, 4 imag) PPR Cohesive Element
\b elastic_UEL \b: 8 noded (4 real, 4 imag) Linear Elastic Element

@page tutorials How to run the ZUEL

@section Linux Using the UEL in Linux

1. Load Abaqus and the Intel FORTRAN Compiler
$ module load abaqus/6.12 intel/13/64bit

2. Change directory to the run directory (where you want output files).
$ cd rundir/

3. Run Abaqus
$ abaqus job=job_name inp=input_file_name.inp user=UEL_name.f

The .log and .sta files will let you know if the job has been completed.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
! .dat file has all the output requested through the input file.

! Compilation errors appear in the log file.

!

koo k kR R KRRk kR ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk ok ok ok ok kKRR KRR RRRR KRk Rk ko ok ok ok ok ok ok ok ok sk ok sk sk ok sk sk sk sk ok ok ok sk sk ok ok ok ok ok ok ok o o ok

SUBROUTINE UEL

Qauthor Daniel Ramirez-Tamayo, Arturo Montoya, Harry Millwater, The University of

Texas at San Antonio

based on the paper "Computational implementation of the PPR potential-based cohesive model in ABAQUS:
Educational perspective" by K. Park, G.H. Paulino, and J.R. Roesler.

@brief This is the master subroutine that contains the cohesive and the linear elastic
element subroutines. Here it is decided which subroutine is accessed.

matrix (amatrx) and the right hand side vector (RHS). For the cohesive elements
the "coh_UEL" is used. For the rest, a 8 noded (4 real and 4 imag) linear

>
1
]
]
]
>
]
!
> @details At the end of the subroutine you need to provide the elemental stiffness
]
1
! elastic element is used.

]

]

]

1

]

]

]

1

1

]

]

]

1

@param[in,out] rhs(mlvarx,1) Contributions from the element to the right-hand-side vectors
@param[in,out] amatrx(ndofel, ndofel) Stiffness matrix of the element

@param[in,out] svars (*) solution-dependent state variables

@param[in,out] energy (*) Energy quantities associated with the element

@param [in] ndofel Number of degrees of freedom in the element

@param[in] nrhs Number of load vectors (1)

@param[in] nsvars User-defined number of solution-dependent state variables
@param[in] props (*) Properties assigned to the UEL

@param[in] nprops User-defined number of real property values

@param[in] coords (mcrd, nnode) Spacial coordinates of the element

@param[in] mcrd Number of coordinates per node (2)

@param[in] nnode User-defined number of nodes on the element

22

D. Ramirez-Tamayo et al.

11 @param[in]
'l @param[in]
!l @param[in]
!l @param[in]
1! @param[in]
11 @param[in]
!l @param[in]
!l @param[in]
!l @param[in]
1! @param[in]
11 @param[in]
!l @param[in]
!l @param[in]
!l @param[in]
!'! @param[in]
!l @param[in]
!l @param[in]
!l @param[in]
!l @param[in]
1! @param[in]
!l @param[in]

increment
!l @param[in]
1! @param[in]
11 @param[in]
1

u(ndofel)
du(mlvarx,*)
v(ndofel)
a(ndofel)

jtype

time (2)

dtime

kstep

kinc

jelem

params (*)

ndload
jdltyp(mdload,*)
adlmag (mdload ,*)

predef (2, npredf, nnode)

npredf

1flags (%)

mlvarx
ddlmag(mdload ,*)
mdload

pnewdt

jprops (%)
njprop
period

Engineering Fracture Mechanics 247 (2021) 107638

Solution vector

Incremental values of the solution vector

Time rate of change of the variables

Acceleration of the variables

Integer defining the element type

Time step and total time

Time increment

Current step number

Current increment number

User-assigned element number

Parameters associated with the solution procedure
Identification number of the distributed load or flux
To define distributed loads

Load magnitude of the Kith distributed load

Values of the predefined field variables

Number of predefined field variables,

To define the current solution procedure

Dimensioning parameter

Increments in the magnitudes of the distributed loads
Total number of distributed loads and/or fluxes

Ratio of suggested new time increment to the current time

Integer property values assigned to the UEL
User-defined number of integer property values
Time period of the current step

1ok sk o ok ok ok ok K ok ok o oK oK oK oK K ok oK oK oK ok ok K oK oK K oK oK K oK K oK oK K oK oK o oK K ok ok K oK oK K oK K oK oK K oK oK o oK K ok oK K oK oK K oK K oK oK K oK oK o oK K ok ok K oK oK K oK oK ok oK K oK oK K oK oK ok ok K oK oK K oK oK K oK K oK

SUBROUTINE UEL(rhs, amatrx, svars,
nprops, coords, mcrd, nnode, u, du,
kinc, jelem, params, ndload, jdltyp,

energy,

adlmag,

ndofel, nrhs, nsvars, props, &
jtype, time, dtime, kstep, &
predef, npredf, lflags, &

mlvarx, ddlmag, mdload, pnewdt, jprops, njprop, period)

! Include Abaqus Parameters as inputs
>ABA_PARAM.INC’

INCLUDE

! Select precision that provides 15 digits for a real data type and an exponent range of
SELECTED_REAL_KIND (15,

INTEGER,

PARAMETER

DP =

! Variables used for counters

INTEGER :: i
INTEGER :: elem_type
elastic (=2)
! Abaqus Variables
! Scalar parameters
REAL (DP) dtime
REAL (DP) pnewdt
increment
REAL (DP) period
INTEGER mlvarx
INTEGER ndofel
INTEGER nrhs
INTEGER nsvars
INTEGER nprops
INTEGER njprop
INTEGER mcrd
INTEGER nnode
INTEGER jtype
INTEGER kstep
INTEGER kinc
INTEGER jelem
INTEGER ndload
INTEGER mdload
INTEGER npredf
! Arrays
REAL (DP) props (*)
INTEGER jprops (%)
REAL (DP) coords (mcrd, nnode)
REAL (DP) u(ndofel)
REAL (DP) du(mlvarx ,*)
REAL (DP) v(ndofel)

107+-307"
307)

Counter for the current cohesive element

Flag to determine if the element is cohesive (=1) or linear

Time increment
Ratio of suggested new time increment to the current time

Time period of the current step

Dimensioning parameter

Number of degrees of freedom in the element

Number of load vectors (1)

User-defined number of solution-dependent state variables
User-defined number of real property values
User-defined number of integer property values

Number of coordinates per node (2)

User-defined number of nodes on the element

Integer defining the element type

Current step number

Current increment number

User-assigned element number

Identification number of the distributed load or flux
Total number of distributed loads and/or fluxes
Number of predefined field variables,

Properties assigned to the UEL

Integer property values assigned to the UEL
Original coordinates of the element
Solution vector

Incremental values of the solution vector
Time rate of change of the variables

23

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

REAL(DP) :: a(ndofel) ! Acceleration of the variables

INTEGER :: jdltyp(mdload,*) ! To define distributed loads

REAL(DP) :: adlmag(mdload,*) ! Load magnitude of the Kith distributed load

REAL(DP) :: ddlmag(mdload,*) ! Increments in the magnitudes of the distributed loads
REAL(DP) :: predef (2, npredf, nnode) ! Values of the predefined field variables

REAL(DP) :: params (x) ! Parameters associated with the solution procedure
INTEGER :: 1flags (%) ! To define the current solution procedure

REAL(DP) :: time(2) ! Time step and total time

! Variables to be defined

REAL(DP) :: rhs(mlvarx,1) ! Contributions from the element to the right-hand-side vectors
REAL(DP) :: amatrx(ndofel, ndofel) ! Stiffness matrix of the element

REAL(DP) :: svars(x) ! solution-dependent state variables

REAL(DP) :: energy(x) ! Energy quantities associated with the element

! Flag that determines if the element is cohesive or linear elastic
elem_type = PROPS(1)

SELECT CASE (elem_type)
CASE (1) ! If the element is cohesive

CALL elastic_uel(rhs, amatrx, svars, energy, ndofel, nrhs, nsvars, props, &
nprops, coords, mcrd, nnode, u, du, v, a, jtype, time, dtime, kstep, &
kinc, jelem, params, ndload, jdltyp, adlmag, predef, npredf, lflags, &
mlvarx, ddlmag, mdload, pnewdt, jprops, njprop, period)

CASE (2) ! If the element is linear elastic

CALL coh_UEL(rhs, amatrx, svars, energy, ndofel, nrhs, nsvars, props, &
nprops, coords, mcrd, nnode, u, du, v, a, jtype, time, dtime, kstep, &
kinc, jelem, params, ndload, jdltyp, adlmag, predef, npredf, 1lflags, &

mlvarx, ddlmag, mdload, pnewdt, jprops, njprop, period)
END SELECT

END SUBROUTINE uel
1ok sk o ok ok ok ok K ok ok o oK oK oK oK K oK oK oK K ok ok K oK oK K oK K K oK K oK oK K oK K o oK K oK oK K oK oK o oK K oK oK K oK oK o oK K ok oK K oK oK 3 oK K oK oK K oK oK ok K ok ok K oK oK oK K oK oK K oK oK K oK K o ok K oK oK K oK K K oK K oK

! SUBROUTINE coh_UEL

!> Qauthor Daniel Ramirez-Tamayo, Arturo Montoya, Harry Millwater, The University of

!l Texas at San Antonio (Complexification of the PPR UEL)

!'! based on the paper "Computational implementation of the PPR potential-based cohesive model in ABAQUS:
!'! Educational perspective" by K. Park, G.H. Paulino, and J.R. Roesler.

N

!> @brief Complex version of the PPR subroutine proposed by Park et al.

1

!> @details This subroutine returns the Cauchy-Riemann version of both, stiffness matrix and RHS vector.
!'! The variable to be perturbed is defined through the input file.

1

!l @param[in,out] rhs(mlvarx,1) Contributions from the element to the right-hand-side vectors
!l @param[in,out] amatrx(ndofel, ndofel) Stiffness matrix of the element

'l @param([in,out] svars(x) solution-dependent state variables

!l @param[in,out] energy(*) Energy quantities associated with the element

!'! @param[in] ndofel Number of degrees of freedom in the element

!l @param[in] nrhs Number of load vectors (1)

!l @paraml[in] nsvars User-defined number of solution-dependent state variables
!'! @param[in] props (*) Properties assigned to the UEL

!'! @param[in] nprops User-defined number of real property values

!l @param[in] coords (mcrd, nnode) Original coordinates of the element

!l @param[in] mcrd Number of coordinates per node (2)

!'! @param[in] nnode User-defined number of nodes on the element

!l @param[in] u(ndofel) Solution vector

!l @param[in] du(mlvarx,*) Incremental values of the solution vector

!'! @param[in] v(ndofel) Time rate of change of the variables

11 @param[in] a(ndofel) Acceleration of the variables

!'! @param[in] jtype Integer defining the element type

!l @param[in] time (2) Time step and total time

!l @param[in] dtime Time increment

!'! @param[in] kstep Current step number

!l @param[in] kinc Current increment number

!! @param[in] jelem User-assigned element number

!l @param[in] params (*) Parameters associated with the solution procedure

[N @param[in] ndload Identification number of the distributed load or flux
1! @param[in] jdltyp (mdload, *) To define distributed loads

'! @param[in] adlmag (mdload,*) Load magnitude of the Kith distributed load

!! @param[in] predef (2, npredf, nnode) Values of the predefined field variables

'l @param[in] npredf Number of predefined field variables,

!'! @param[in] 1flags () To define the current solution procedure

!l @param[in] mlvarx Dimensioning parameter

!'! @param[in] ddlmag(mdload, *) Increments in the magnitudes of the distributed loads
!l @param[in] mdload Total number of distributed loads and/or fluxes

24

D. Ramirez-Tamayo et al.

11 @param[in]

increment
!l @param[in]
!l @param[in]
1! @param[in]

pnewdt

jpr

ops (%)

njprop

per

iod

Engineering Fracture Mechanics 247 (2021) 107638

Ratio of suggested new time increment to the current time

Integer property values assigned to the UEL
User-defined number of integer property values
Time period of the current step

1ok sk o ok ok ok ok K ok ok o oK oK oK oK K oK oK oK K o oK K oK oK K oK oK oK oK K oK oK K oK oK o oK K ok ok K oK oK o oK K oK oK K oK oK o oK K oK oK K oK oK K oK K oK oK K oK oK o oK K ok oK K oK oK K oK K oK oK K oK oK K oK oK o oK K oK oK K K oK K oK K oK

SUBROUTINE coh_uel(rhs,

nprops, coords, m

kinc, jelem,

params,

mlvarx, ddlmag, m

IMPLICIT NONE

amatrx,

crd, nnode,

svars, energy, ndofel, nrhs, nsvars, props, &
u, du, v, a, jtype, time, dtime, kstep, &
jdltyp, adlmag, predef, npredf, 1lflags, &

ndload,
dload, pnewdt,

jprops, njprop, period)

! Properties passed to the UEL from input file
| !

! PROPS(1):
! PROPS(2):
! PROPS(3):
! PROPS (4):
! PROPS(5):
! PROPS(6):
! PROPS(7):
! PROPS(8):
! PROPS(9):
1

1

1

PROPS (10) :
PROPS (11) :
PROPS (12) :

SVARS (1) :
SVARS (2) :
SVARS(3):
SVARS (4) :
SVARS (5) :
SVARS (6) :
SVARS(7) :
SVARS(8) :

INTEGER, PARAMETER :: DP =

Elem

Real
Real
Real
Real

Imaginary
Imaginary
Imaginary
Imaginary

ent type.

component
component
component
component

! Abaqus Variables

! Scalar parameters

REAL (DP) dtime
REAL (DP) pnewdt
increment
REAL (DP) period
INTEGER mlvarx
INTEGER ndofel

INTEGER nrhs
INTEGER nsvars
INTEGER nprops
INTEGER njprop
INTEGER mcrd
INTEGER nnode
INTEGER jtype
INTEGER kstep
INTEGER kinc
INTEGER jelem
INTEGER ndload
INTEGER mdload
INTEGER npredf

! Arrays

REAL (DP) props (*)
INTEGER jprops (x)

Cohesive (=1), linear elastic (=2)

Normal fracture energy (G_n)

Tangential fracture energy (G_t)

Normal cohesive strength (Tn_m)

Tangential cohesive strength (Tt_m)

Normal shape parameter (alph)

Tangential shape parameter (beta)

Normal initial slope indicator (1_n)

Tangential initial slope indicator (1_t)

Thickness of the cohesive element

Perturbation step size (usually 1e-10, then it is multiplied by the variable of interest)
Perturbation flag - indicates which parameter to perturb

of
of
of
of

the
the
the
the

component of
component of
component of
component of

normal displacement from integration point # 1
tangential displacement from integration point # 1
normal displacement from integration point # 2
tangential displacement from integration point # 2

the
the
the
the

normal displacement from integration point # 1
tangential displacement from integration point # 1
normal displacement from integration point # 2
tangential displacement from integration point # 2

SELECTED_REAL_KIND (15, 307)

Time increment
Ratio of suggested new time increment to the current time

Time period of the current step

Dimensioning parameter

Number of degrees of freedom in the element

Number of load vectors (1)

User-defined number of solution-dependent state variables
User-defined number of real property values
User-defined number of integer property values

Number of coordinates per node (2)

User-defined number of nodes on the element

Integer defining the element type

Current step number

Current increment number

User-assigned element number

Identification number of the distributed load or flux
Total number of distributed loads and/or fluxes
Number of predefined field variables,

Properties assigned to the UEL
Integer property values assigned to the UEL

25

D. Ramirez-Tamayo et al.

REAL (DP)
REAL (DP)
REAL (DP)
REAL (DP)
REAL (DP)
INTEGER
REAL (DP)
REAL (DP)
REAL (DP)
REAL (DP)
INTEGER
REAL (DP)

! Variables

REAL (DP)
REAL (DP)
REAL (DP)
REAL (DP)

! Parameters Useful for Calculations

coords (mcrd, nnode)
u(ndofel)
du(mlvarx ,*)
v(ndofel)

a(ndofel)
jdltyp(mdload,*)
adlmag(mdload,*)
ddlmag(mdload ,*)

predef (2, npredf, nnode)

params (*)
1flags (%)
time (2)

to be defined

rhs(mlvarx,1)
amatrx (ndofel,
svars (*)
energy(*)

ndofel)

Engineering Fracture Mechanics 247 (2021) 107638

Original coordinates of the element

Solution vector

Incremental values of the solution vector

Time rate of change of the variables

Acceleration of the variables

To define distributed loads

Load magnitude of the Kith distributed load
Increments in the magnitudes of the distributed loads
Values of the predefined field variables
Parameters associated with the solution procedure
To define the current solution procedure

Time step and total time

Contributions from the element to the right-hand-side vectors
Stiffness matrix of the element

solution-dependent state variables

Energy quantities associated with the element

PARAMETER ZER0=0.0_DP, ONE=1.0_DP, NONE=-1.0_DP, HALF=0.5_DP, TW0=2.0_DP ! Zero, one, negative one,
half, two

PARAMETER gaussCoord=SQRT(3.0_DP)/3.0_DP, gaussWeight=1.0_DP, ninpt=2 ! For Gaussian integration

Tl BEaM - s i e e

! Variables used within the cohesive UEL

! Complex Variables

COMPLEX (DP), DIMENSION(mcrd*nnode/2,mcrd*nnode/2) Sc ! Element stiffness matrix of a cohesive

element

COMPLEX (DP), DIMENSION(mcrd*nnode/2,nrhs) Fc ! Cohesive internal force vector

COMPLEX (DP), DIMENSION(mcrd,nrhs) T ! Cohesive traction vector

COMPLEX (DP), DIMENSION (mcrd,mcrd) T_d ! Derivative of the cohesive traction (
Tangent matrix)

COMPLEX (DP), DIMENSION(mcrd, mcrd) :: Arot ! Coordinate transformation matrix

COMPLEX (DP), DIMENSION(mcrd*nnode/2, mcrd*nnode/2) :: R ! Rotation Matrix

COMPLEX (DP), DIMENSION (mcrd*nnode/2) U1 ! Nodal displacement in the local
coordinate system

COMPLEX (DP), DIMENSION (mcrd,mcrd*nnode/2) Bc ! Global displacement-separation
relation matrix

COMPLEX (DP), DIMENSION (mcrd) del ! Normal and tangential separations

COMPLEX (DP), DIMENSION (nnode/2) :: del_ 1 ! local nodal displacement jumps

COMPLEX (DP), DIMENSION (mcrd*mcrd, mcrd*nnode/2) :: L ! local displacement separation relation
matrix

COMPLEX (DP), DIMENSION(mcrd*nnode/2, 1) :: Fcoh ! Cohesive Traction

COMPLEX (DP), DIMENSION(mcrd*nnode/2, mcrd*nnode/2) :: Kcoh ! Stiffness Matrix

COMPLEX (DP), DIMENSION (mcrd, nnode/2) zCoords ! Complex Coordinates

COMPLEX (DP), DIMENSION (nnode/2%*ndofel/2) zU ! Complex Displacement

COMPLEX (DP) G_n, G_t ! Normal and Tangential Fracture Energies

COMPLEX (DP) Tn_m, Tt_m ! Normal and Tangential Cohesive Strength

COMPLEX (DP) alph, beta ! Shape Parameters

COMPLEX (DP) 1_n, 1_t ! Slope Indicators

COMPLEX (DP) dn, dt ! Final crack opening widths

COMPLEX (DP) m, n ! Exponents to compute Potential Function

COMPLEX (DP) Gam_n, Gam_t ! Energy constants, related to the fracture energies

COMPLEX (DP) dGnt, dGtn ! Macauley bracket <G_n-G_t> or <G_t-G_n>, respectively

COMPLEX (DP) dell, del3 ! Nodal separations in x (Local Coords)

COMPLEX (DP) del2, deld ! Nodal separations in y (Local Coords)

COMPLEX (DP) deln_max, delt_max ! Maximum displacements jumps during load history

COMPLEX (DP) el_length ! Length of the cohesive element

COMPLEX (DP) dvol ! Volume Differential

! Real and complex parts of the cohesive stiffness matrix

REAL(DP), DIMENSION (mcrd*nnode/2, mcrd*nnode/2) Kreal, Kimag

! Real and complex parts of the RHS vector

REAL(DP), DIMENSION(mcrd*nnode/2,1) Freal, Fimag

REAL (DP), DIMENSION(2,nnode/2) shapeN ! Shape function matrix

REAL (DP), DIMENSION(2) GP ! Gauss points

REAL(DP), DIMENSION(2) GP_w ! Weight at the Gauss points
REAL (DP) N1, N2 ! Shape Functions

REAL (DP) h ! Perturbation step size

26

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

REAL(DP) :: th ! Thickness

INTEGER :: perturbation_flag ! Perturbation flag
INTEGER :: I ! Counter

INTEGER :: nn_real ! Number of real nodes
INTEGER :: ndof_real ! Number of real DOF

! Rename Abaqus variables that define the number of real nodes and DOF
nn_real = nnode/TWO
ndof_real = mcrd

! Read UEL Properties

perturbation_flag
h

PROPS(12) ! Defines variable to be perturbed
PROPS(11) ! ZFEM’s perturbation step size

! Define fracture parameters
G_n = PROPS(2)
G_t = PROPS(3)
Tn_m = PROPS(4)
Tt_m = PROPS(5)
alph = PROPS(6)
beta = PROPS(7)

1_n = PROPS(8)
1_t = PROPS(9)
th = PROPS(10)

! Apply perturbation to the parameter of interest
SELECT CASE (perturbation_flag)

CASE (1)

G_n = CMPLX(PROPS(2), h*PROPS(2))
CASE (2)

G_t = CMPLX(PROPS(3), h*PROPS(3))
CASE (3)

Tn_m = CMPLX(PROPS (4), h*PROPS(4))
CASE (4)

Tt_m = CMPLX(PROPS(5), h*PROPS(5))
CASE (5)

alph = CMPLX(PROPS(6), h*PROPS(6))
CASE (6)

beta = CMPLX(PROPS(7), h*xPROPS(7))
CASE (7)

1_n = CMPLX(PROPS(8), hxPROPS(8))
CASE (8)

1_t = CMPLX(PROPS(9), h*xPROPS(9))

END SELECT

! Initialize Variables

rhs = ZERO
amatrx = ZERO
GP (1) = gaussCoord
GP(2) = -gaussCoord

GP_w(1) = gaussWeight
GP_w(2) = gaussWeight

! Complex Version of the Coordinates and displacements

zCoords = CMPLX(coords(1:2,1:nn_real), coords(1:2,(nn_real+1):(2*nn_real)))

zU = CMPLX(u(l:ndof_real*nn_real), u(ndof_real*nn_real+1:2*ndof_real*nn_real))
! Determine Cohesive Parameters

! Eqn 20 (from PPR Paper)

= (alph-0NE)*alph*1_n**xTW0/(ONE-alph*1l_n**TW0)
= (beta-0NE)*beta*l_t**TW0/(ONE-beta*1l_t**xTW0)

BB

! Eqn 21
dn = alph*G_n/(m*Tn_m)*(ONE-1_n)**(alph-0NE) &
* (alph/m*1_n+0NE)**(m-0NE)*(alph+m)*1_n

! Egqn 22
dt = beta*G_t/(n*Tt_m)*(ONE-1_t)**(beta-0NE) &

27

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

* (beta/n*1_t+0NE)**(n-0NE)*(beta+n)*1_t

! Macauley bracket of the Energy constants
IF (REAL(G_n) > REAL(G_t)) THEN
dGnt = G_n - G_t
dGtn = ZERO
ELSEIF (REAL(G_n) < REAL(G_t)) THEN
dGnt = ZERO
dGtn = G_t - G_n
ELSE
dGnt = ZERO
dGtn = ZERO
END IF

! Determine Energy Constants (Eq 18 and 19)

IF (REAL(G_n) == REAL(G_t)) THEN
Gam_n = -G_n*(alph/m)**mn
Gam_t = (beta/n)**n

ELSE

Gam_n = (-G_n)**(dGnt/(G_n-G_t))*(alph/m)**m
Gam_t = (-G_t)**(dGtn/(G_t-G_n))*(beta/n)**n
ENDIF

! Compute transformation matrix (A, Eq 27)

Arot = ZERO

el_length = ZERO

CALL Coords_Transform(Arot, el_length, zCoords, zU, nn_real, mcrd)

R = ZERO

! Assembly of Rotation Matrix (Eq 26)
R(1:2, 1:2) = Arot

R(3:4, 3:4) = Arot

R(5:6, 5:6) = Arot

R(7:8, 7:8) = Arot

! Find displacements in local coords
U_1 = MATMUL(R, zU)

! Local displacement separation Matrix (Eq 29)
! Set the diagonal to -1

L = ZERO

DO i = 1, nn_real
L(i,i) = NONE

END DO

L(1,7) = ONE
L(2,8) = ONE
L(3,5) = ONE
L(4,6) = ONE

! Find nodal displacement jumps (Eq 28)
del_1 = MATMUL(L, U_1)

dell = U_1(7) - U_1(1)
del2 = U_1(8) - U_1(2)
del3 = U_1(5) - U_1(3)
del4 = U_1(6) - U_1(4)

! For all the Gaussian integration points
! integrate over the length of the cohesive element
DO i = 1, ninpt

! Eq 31
N1 = HALF*(ONE - GP(i))
N2 = HALF*(ONE + GP(i))

! E1 30

shapeN = ZERO
shapeN(1,1) = N1
shapeN(2,2) = N1
shapeN(1,3) = N2
shapeN(2,4) = N2

! Normal and Tangential separations
del = MATMUL (shapeN, del_1)

! Update maximum separation from previous increment
delt_max = CMPLX(SVARS(ninpt*(i-1)+1), SVARS(ninpt*(i-1)+1+4))

28

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

deln_max = CMPLX(SVARS(ninpt*(i-1)+2), SVARS(ninpt*(i-1)+2+4))

! Cohesive traction-separation relation of the PPR model

call Cohesive_PPR(T, T_d, Gam_n, Gam_t, alph, beta, m, n, &
dn, dt, dGtn, dGnt, del, deln_max, delt_max)

! Global displacement separation relation matrix (Eq 32)
Bc = MATMUL (shapeN, MATMUL(L,R))

! Volume Differential
dvol = HALF * el_length * GP_w(i) * th

! Cohesive Traction

Fcoh = MATMUL (TRANSPOSE(Bc), T)*dvol

! Cohesive Stiffness Mat

Kcoh = MATMUL (TRANSPOSE (Bc) ,MATMUL(T_d,Bc))*dvol

! Real and complex parts of the rhs and stiffness matrix

Freal(:,1)
Fimag(:,1)

REAL(Fcoh(:,1))
AIMAG(Fcoh(:,1))

Kreal = REAL(Kcoh)
Kimag = AIMAG(Kcoh)

! Add contributions for this integration point

1

! NOTE: CR form is unsymmetric but upper right term is not
! significant. Therefore it is set as +Kim to have a
! symmetric matrix.

! K = |Kre +Kim |
! |Kim Kre|

! CR form of right hand side vector (Abaqus UEL intrinsic variable)

rhs(l:mcrd*nn_real,1) = rhs(1:mcrd*nn_real,1) - Freal(:,1)
rhs (mcrd*nn_real+1:2*mcrd*nn_real ,1) = rhs(mcrd*nn_real+1:2*mcrd*nn_real,1) - Fimag(:,l)

! CR form of stiffness matrix (Abaqus UEL intrinsic variable)

! Upper left - REAL part of Kcoh
amatrx (1:mcrd*nn_real ,l:mcrd*nn_real) = amatrx(l:mcrd*nn_real, 1:mcrd*nn_real) + Kreal

! Lower right - REAL part of Kcoh(same as upper left)
amatrx (mcrd*nn_real+1:2*mcrd*nn_real ,mcrd*nn_real+1:2*mcrd*nn_real) = amatrx (mcrd*nn_real+1:2*mcrd*
nn_real, mcrd*nn_real+1:2*mcrd*nn_real) + Kreal

! Lower left - Imaginary
amatrx (mcrd*nn_real+1:2*mcrd*nn_real, 1l:mcrd*nn_real) = amatrx(mcrd*nn_real+1:2*mcrd*nn_real, 1:
mcrd*nn_real) + Kimag

! Upper right - Imaginary (same magnitude as lower left but sign difference. To use a symmetric
solver use the same sign)
amatrx (1:mcrd*nn_real ,mcrd*nn_real+1:2*mcrd*nn_real) = amatrx(l:mcrd*nn_real, mcrd*nn_real+1:2*mcrd

*nn_real) + Kimag

! Update State Vars
IF ((REAL(delt_max) < ABS(REAL(del(1)))).AND.(ABS(REAL(del(1))) > REAL(1_txdt))) THEN

SVARS (ninpt*(i-1)+1) = abs(REAL(del(1)))
SVARS (ninpt#*(i-1)+1+4) = (AIMAG(del(1)))
END IF
IF ((REAL(deln_max) < REAL(del(2))) .AND. (REAL(del(2)) > REAL(1_nxdn))) THEN
SVARS (ninpt*(i-1)+2) = REAL(del(2))
SVARS (ninpt*(i-1)+2+4) = AIMAG(del(2))
END IF

END DO ! Integration points

29

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

CONTAINS

1 sk sk s ok ok ok ok ok ok ok ok ok K ok ok K ok oK sk ok K ok ok K ok ok ok ok K ok ok K ok ok o ok K ok ok K ok ok ok ok K ok ok K ok ok o ok K ok ok K ok ok 3 ok ok ok ok K ok ok o ok K sk ok K ok ok K ok ok ok ok K ok ok K ok ok ok ok K ok ok K ok oK ok ok K ok ok K ok K K
! SUBROUTINE Cohesive_PPR

!> @brief Computation of the traction vector and the tangent matrix
[N

1
1l @param[in] Gam_n Normal Fracture Energy

11 @paraml[in] Gam_t Tangential Fracture Energy

!l @param[in] alph Mode I shape parameter

!l @param[in] beta Mode II shape parameter

1! @param[in] m Exponent to compute the potential function

!l @param[in] n Exponent to compute the potential function

11 @paraml[in] dn Final normal crack opening width

!l @param[in] dt Final tangential crack opening width

!l @param[in] dGtn Macauley bracket <G_n-G_t>

!l @param[in] dGnt Macauley bracket <G_t-G_n>

!l @param[in] deln_max Maximum normal displacement jump during load history

!l @param[in] delt_max Maximum tangential displacement jump during load history

'l @param[in] del Jumps at the gauss point

!l @param[in, out] T Traction vector

!l @param[in, out] Td Derivative of the coh. traction (tangent matrix)

1 sk sk sk ok o o ok ok sk ok ok ok o ok ok sk sk ok ok o K ok sk sk ok ok o K K sk sk ok ok o ok sk sk ok ok o K K sk sk ok ok o ok sk sk ok ok o K K sk sk ok ok o K K sk sk ok ok o o K sk sk ok ok o K K sk sk ok ok o o K sk sk ok ok o K K ok sk ok ok ok ok K ok ok ok
SUBROUTINE Cohesive_PPR(T, T_d, Gam_n, Gam_t, alph, beta, m, n, &

dn, dt, dGtn, dGnt, del, deln_max, delt_max)
IMPLICIT NONE

INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND (15, 307)

! INPUTS
COMPLEX (DP), INTENT(IN) :: Gam_n, Gam_t, alph, beta, m, n, &

dn, dt, dGtn, dGnt, deln_max, delt_max
COMPLEX(DP), DIMENSION(2), INTENT(IN) :: del ! Jumps at the gauss point
|
! Outputs
COMPLEX (DP), DIMENSION(2,1), INTENT(INOUT) :: T ! Traction vector
COMPLEX (DP), DIMENSION(2,2), INTENT(INOUT) :: T_d ! Derivative of the coh. traction (tangent matrix

)

|
! Internal Variables
COMPLEX(DP) :: Tn, Tt ! Normal and Tangential tractiomns
COMPLEX(DP) :: deln, delt ! Normal and Tangential separations
COMPLEX (DP) :: sign_dt ! Sign of the incremental traction

delt = abs(del(1))
deln = del(2)

! Find the sign of the tangential displacement
IF (REAL(del(1)) >= ZERO) THEN
sign_dt = ONE
ELSE
sign_dt = NONE
END IF
Tn = ZERO

! Cohesive Normal Traction, Eq 12

IF (REAL(deln) < ZERO) THEN
deln = ZERO
ELSEIF ((REAL(deln) >= REAL(dn)) .0OR. (REAL(delt) >= REAL(dt))) THEN

Tn = ZERO
ELSEIF (REAL(deln) >= REAL(deln_max)) THEN
Tn = (Gam_t*(0ONE-delt/dt)**beta*x(delt/dt+n/beta)**n+dGtn) =* &

Gam_n/dn* (m* (ONE-deln/dn) **alph*(m/alph+deln/dn) ** (m-0NE) &
-alph*(ONE-deln/dn)**(alph-0NE) *(m/alph+deln/dn) **m)

ELSE
Tn = (Gam_t*(ONE-delt/dt)**beta*(delt/dt+n/beta)**n+dGtn) * &
Gam_n/dn*(m* (ONE-deln_max/dn) **xalph*(m/alph+deln_max/dn)**(m-0NE) &
-alph*(ONE-deln_max/dn) **(alph-0NE) *(m/alph+deln_max/dn)**m) * &
deln/deln_max
END IF

30

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

! Cohesive Tangential Traction, Eq 12
IF ((REAL(deln) >= REAL(dn)) .OR. (REAL(delt) >= REAL(dt))) THEN

Tt = ZERO
ELSEIF (REAL(delt) >= REAL(delt_max)) THEN
Tt = (Gam_n*(ONE-deln/dn)**alph*(deln/dn+m/alph)**m+dGnt) * &

Gam_t/dt*(n*x(ONE-delt/dt)**beta*(delt/dt+n/beta)**(n-0NE) &
-beta*x(ONE-delt/dt)**(beta-0NE)*(delt/dt+n/beta) **n)

ELSE
Tt = (Gam_n*(ONE-deln/dn)**alph*(deln/dn+m/alph)**m+dGnt) * &
Gam_t/dt*(n*(ONE-delt_max/dt)**beta*(delt_max/dt+n/beta)**x(n-0NE) &
-beta*x(ONE-delt_max/dt)**(beta-0NE)*(delt_max/dt+n/beta)**n) *x &
delt/delt_max
END IF

! Contact
IF (REAL(del(2)) < ZERO) THEN

T_d(2,2) = -Gam_n/dn**TWO*(m/alph)**(m-0NE)*(alph+m)* &
(Gam_t*(n/beta)**n + dGtn)

T_d(2,1) = ZERO

T(2,1) = T_d(2,2)*del(2)

ELSE IF ((REAL(deln)<REAL(dn)).AND.(REAL(delt)<REAL(dt)).AND.(REAL(Tn)>=-1.0E-5)) THEN

! Softening condition
IF (REAL(deln) >= REAL(deln_max)) THEN

T_d(2,2) = (Gam_t*(0ONE-delt/dt)**beta*(delt/dt+n/beta)**n+dGtn) *
Gam_n/dn**TW0 *
((ONE-deln/dn) **(alph-TWO) * (alph-0NE) *alph*(deln/dn+m/alph) **m
TWO* (ONE-deln/dn) *x (alph-0NE) *alph*(deln/dn+m/alph) ** (m-0NE) *m
(ONE-deln/dn)**alph*(deln/dn+m/alph) ** (m-TW0O) * (m~0NE) *m)

ISR

+

T_d(2,1) = Gam_t/dt*(-(0ONE-delt/dt)**(beta-0NE)*beta*(delt/dt+n/beta)**n +
(ONE-delt/dt)**betax(delt/dt+n/beta)**(n-0NE)*n) * sign_dt x*
Gam_n/dn*(-(0ONE-deln/dn)**(alph-0NE)*alph*(deln/dn+m/alph)**m +
(ONE-deln/dn)**alph*(deln/dn+m/alph) ** (m-0NE) *m)

[

T_d(2,2) = (Gam_t*(one-delt/dt)**beta*(delt/dt+n/beta)**n+dGtn) * &
Gam_n/dn*((one-deln_max/dn)**alph*(deln_max/dn+m/alph)**(m-one)*m &
-(one-deln_max/dn)**(alph-one)*alph*(deln_max/dn+m/alph) **m) &
/ deln_max

T_d(2,1) = Gam_t/dt*(-(one-delt/dt)**(beta-one)*betax(delt/dt+n/beta)**n + &
(one-delt/dt)**betax(delt/dt+n/beta)**(n-one)*n) * sign_dt * &
Gam_n/dn*(m*(one-deln_max/dn)**alph*(m/alph+deln_max/dn)**(m-one) &
-alph*(one-deln_max/dn)**(alph-one)*(m/alph+deln_max/dn)**m) * &
deln/deln_max

END IF

ELSE
! Failure condition

T(2,1) = ZERO
T_d(2,2) = ZERO

31

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

T_d(2,1) = ZERO

END IF

! Tangential Cohesive Interaction

IF ((REAL(delt)<REAL(dt)) .AND. (REAL(deln)<REAL(dn)) .AND. (REAL(Tt)>=-1.0E-5)) THEN

T(1,1) = Ttxsign_dt

! Softening condition
IF (REAL(delt) >= REAL(delt_max)) THEN

T_d(1,1) = (Gam_n*(0ONE-deln/dn)**alph*(deln/dn+m/alph)**m+dGnt) * &
Gam_t/dt*x*xTWO * &
((ONE-delt/dt)**(beta-TW0)*(beta-0NE) *beta*(delt/dt+n/beta)**n - &
TWO* (ONE-delt/dt) **(beta-0NE)*beta*(delt/dt+n/beta)**x(n-0NE)*n + &
(ONE-delt/dt)**betax(delt/dt+n/beta)**(n-TW0)*(n-0NE) *n)

T_d(1,2) = Gam_t/dt*(-(ONE-delt/dt)**(beta-0ONE)*beta*(delt/dt+n/beta)**n + &
(ONE-delt/dt)**beta*(delt/dt+n/beta)**(n-0NE)*n) * sign_dt =* &
Gam_n/dn*(-(0ONE-deln/dn)**(alph-0NE)*alph*(deln/dn+m/alph)**m + &
(ONE-deln/dn)**alph*(deln/dn+m/alph) ** (m-0NE) *m)

T_d(1,1) = (Gam_n*(0ONE-deln/dn)**alph*(deln/dn+m/alph)**m+dGnt) * &
Gam_t/dt*(n*(0ONE-delt_max/dt) **beta*(delt_max/dt+n/beta) **(n-0NE)
-beta*x(ONE-delt_max/dt)**(beta-0NE)*(delt_max/dt+n/beta) **n)

/ delt_max

SR

T_d(1,2) = Gam_n/dn*(-(ONE-deln/dn)**(alph-0ONE)*alph*(deln/dn+m/alph)**m +
(ONE-deln/dn)**alph*(deln/dn+m/alph) ** (m-0NE)*m) * sign_dt x*
Gam_t/dt*(n*(ONE-delt_max/dt) **beta*(delt_max/dt+n/beta) **(n-0NE)

-beta*x(0ONE-delt_max/dt)**(beta-0NE)*(delt_max/dt+n/beta) **n) *
delt/delt_max

TR

END IF

ELSE

! Failure condition

T(1,1) = 0.0_DP

T_d(1,1) = 0.0_DP

T_d(1,2) = 0.0_DP
ENDIF

END SUBROUTINE Cohesive_PPR

1k ok ok ok K o ok ok ok K K ok ok ok K K ok ok ok K K ok ok ok K K oK ok ok oK K K ok ok K K K ok ok oK K K ok ok ok K K ok ok ok K K ok ok K K K ok ok oK K K ok ok ok K K ok ok ok K K ok ok ok K K K ok ok oK K K ok ok ok K K ok ok oK K K ok ok ok K K ok ok
! SUBROUTINE Coords_Transform

!> @brief Find transformation matrix of the deformed shape
[}

'l @param[in] nnode Number of real nodes in the element (4)
!l @param[in] mcrd Number of directions per node (x and y)
!'! @param[in] COORD Complex-valued nodal coordinates

!l @param[in] zU Complex-valued displacement vector

'l @param[in, out] el_length Length of the cohesive element

'l @param[in, out] A Transformation Matrix

13k 5k 3k 5k 3k 3k 3k 3k K 5k ok 3k ok 3 oK 3 5k 3 5k 3 5K 3 5K 3 3k 3 5k 5k 5 K 3 5k 3 5k 3 5k 3 5k 3 5 3 5k 3 5 3 5 3k 5 5k 3 5 3 5k 3 5k 3 5 3 5 3 5 3 > 3 5 3k 5 5k 3 % 3 % 3 5 3 5 3 5 3 > 3 > 3 5 3k 3 5 3 % 3 % 3 % 3 5 % > % >k % *k %
SUBROUTINE Coords_Transform(A, el_length, COORD, zU, nnode, mcrd)

IMPLICIT NONE

INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND (15, 307)

! INPUTS

32

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

INTEGER, INTENT (IN) :: nnode, mcrd
COMPLEX (DP), INTENT(IN), DIMENSION(mcrd,nnode) :: COORD
COMPLEX (DP), INTENT(IN), DIMENSION(nnode) HEAV)

! OUTPUTS (to be computed within this subroutine)
COMPLEX (DP), INTENT(INOUT) :: el_length
COMPLEX (DP), INTENT(INOUT) , DIMENSION (mcrd,mcrd) :: A

! Internal Variables

COMPLEX (DP), DIMENSION (mcrd,nnode) :: Co_de ! Coord. of a cohesive element in the deformed
configuration

COMPLEX (DP), DIMENSION(2,2) :: Co_de_m ! Mid-points of a cohesive element to compute the
orientation

COMPLEX(DP) :: d_x, d_y, cos_a, sin_a

INTEGER HE S |

! Find Deformed Coords
DO i = 1, mcrd
DO j = 1, nnode
Co_de(i,j) = COORD(i,j) + zU(2*(j-1)+1i)
END DO
END DO

! Mid-points
DO i =1, 2
Co_de_m(i,1) = (Co_de(i,1)+Co_de(i,4))*HALF
Co_de_m(i,2) = (Co_de(i,2)+Co_de(i,3))*HALF
END DO

! Direction cosines and A matrix
d_x = Co_de_m(1,2) - Co_de_m(1,1)
d_y = Co_de_m(2,2) - Co_de_m(2,1)

el_length = (d_x*x*TW0 + d_y**TWO)**HALF

cos_a = d_x/el_length
sin_a = d_y/el_length

A(1,1) = cos_a
A(1,2) = sin_a
A(2,1) = -sin_a
A(2,2) = cos_a

END SUBROUTINE Coords_Transform
END SUBROUTINE coh_UEL

1 sk sk ok ok ok sk ok ok ok ok o ok ok ok ok K ok ok K ok ok sk ok K ok ok o ok oK o ok K ok ok K ok ok o ok K ok ok K ok oK 3 ok K ok ok K ok ok o ok K sk ok K ok ok o ok K ok ok K ok ok ok ok sk ok K ok ok K ok oK ok ok K ok ok K ok ok ok ok K ok ok K ok ok ok ok K ok ok K
! SUBROUTINE elastic_UEL

!> Qauthor Daniel Ramirez-Tamayo, Arturo Montoya, Harry Millwater, The University of
!'! Texas at San Antonio

1

!> @brief 8 noded (4 real and 4 imag) linear elastic element with 4 integration points.

1

!> @details This subroutine returns the Cauchy-Riemann version of both, stiffness matrix and RHS vector.
!'! The variable to be perturbed is defined through the input file.

1

!

!l @param[in,out] rhs(mlvarx,1) Contributions from the element to the right-hand-side vectors
!l Q@param[in,out] amatrx(ndofel, ndofel) Stiffness matrix of the element

!l @param[in,out] svars(x*) solution-dependent state variables

'l @param[in,out] energy () Energy quantities associated with the element

!l @param[in] ndofel Number of degrees of freedom in the element

!! @param[in] nrhs Number of load vectors (1)

[@param[in] nsvars User-defined number of solution-dependent state variables
!'! @param[in] props (*) Properties assigned to the UEL

!l @param[in] nprops User-defined number of real property values

11 @param[in] coords (mcrd, nnode) Original coordinates of the element

!'! @param[in] mcrd Number of coordinates per node (2)

[@param[in] nnode User-defined number of nodes on the element

!'! @param[in] u(ndofel) Solution vector

!l @param[in] du(mlvarx,*) Incremental values of the solution vector

!'! @param[in] v(ndofel) Time rate of change of the variables

!l @param[in] a(ndofel) Acceleration of the variables

33

D. Ramirez-Tamayo et al.
!'! @param[in] jtype
'l @param[in] time (2)
!l @param[in] dtime
!l @param[in] kstep
!l @param[in] kinc
'1 @param[in] jelem
!l @param[in] params (*)
!l @param[in] ndload
1! @param[in] jdltyp(mdload,*)
1! @param[in] adlmag (mdload ,*)
11 @param[in] predef (2, npredf, nnode)
!l @param[in] npredf
!l @param[in] 1flags ()
!'! @param[in] mlvarx
!'! @param[in] ddlmag (mdload , *)
!'! @param[in] mdload
!l @param[in] pnewdt
increment
!l @param[in] jprops (%)
11 @param[in] njprop
'! @param[in] period
1

Engineering Fracture Mechanics 247 (2021) 107638

Integer defining the element type

Time step and total time

Time increment

Current step number

Current increment number

User-assigned element number

Parameters associated with the solution procedure
Identification number of the distributed load or flux
To define distributed loads

Load magnitude of the Kith distributed load

Values of the predefined field variables

Number of predefined field variables,

To define the current solution procedure

Dimensioning parameter

Increments in the magnitudes of the distributed loads
Total number of distributed loads and/or fluxes

Ratio of suggested new time increment to the current time

Integer property values assigned to the UEL
User-defined number of integer property values
Time period of the current step

15k sk ok ok ok ok K ok ok 3k K ok K oK 3 oK ok K ok 3 ok 3 ok 3k oK ok 3K oK 3 oK 3k oK ok K ok 3 ok 3 oK ok K ok 3 oK 3 oK ok K ok 3 ok 3 ok ok K ok 3K oK K oK 3k oK ok K oK 3 oK 3k oK ok 3K ok 3 ok 3 oK ok K ok 3 oK 3 oK ok K ok K ok 3 ok 3k oK oK K oK K oK ok K ok
SUBROUTINE elastic_UEL(rhs, amatrx,
nprops, coords, mcrd, nnode, u,

kinc, jelem,

params, ndload, jdltyp,

svars,
V,

adlmag, predef, npredf, 1lflags,

energy, ndofel, nrhs, nsvars, props, &

a, jtype, time, dtime, kstep, &
&

mlvarx, ddlmag, mdload, pnewdt, jprops, njprop, period)

IMPLICIT

! PROPS(9):

NONE

! PROPS(10): Elastic Modulus
! PROPS(11): Poisson’s Ratio

Thickness of the element

! Select

| e !

INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND (15, 307)

R e e e e e e

! Abaqus Variables

! Scalar parameters

REAL (DP) dtime ! Time increment

REAL (DP) pnewdt ! Ratio of suggested new time increment to the current time
increment

REAL (DP) period ! Time period of the current step

INTEGER mlvarx ! Dimensioning parameter

INTEGER ndofel ! Number of degrees of freedom in the element

INTEGER nrhs ! Number of load vectors (1)

INTEGER nsvars ! User-defined number of solution-dependent state variables

INTEGER nprops ! User-defined number of real property values

INTEGER njprop ! User-defined number of integer property values

INTEGER mcrd ! Number of coordinates per node (2)

INTEGER nnode ! User-defined number of nodes on the element

INTEGER jtype ! Integer defining the element type

INTEGER kstep ! Current step number

INTEGER kinc ! Current increment number

INTEGER jelem ! User-assigned element number

INTEGER ndload ! Identification number of the distributed load or flux

INTEGER mdload ! Total number of distributed loads and/or fluxes

INTEGER npredf ! Number of predefined field variables,

! Arrays

REAL (DP) props (*) ! Properties assigned to the UEL

INTEGER jprops () ! Integer property values assigned to the UEL

REAL (DP) coords (mcrd, nnode) ! Original coordinates of the element

REAL (DP) u(ndofel) ! Solution vector

REAL (DP) du(mlvarx,*) ! Incremental values of the solution vector

REAL (DP) v(ndofel) ! Time rate of change of the variables

REAL (DP) a(ndofel) ! Acceleration of the variables

INTEGER jdltyp(mdload ,*) ! To define distributed loads

REAL (DP) adlmag(mdload,*) ! Load magnitude of the Kith distributed load

34

D. Ramirez-Tamayo et al.

REAL (DP) ddlmag(mdload ,*) !
REAL (DP) predef (2, npredf, nnode) !
REAL (DP) params (*) !
INTEGER 1flags () !
REAL (DP) time (2) !
! Variables to be defined

REAL (DP) rhs(mlvarx,1) !
REAL (DP) amatrx (ndofel, ndofel) !
REAL (DP) svars (x) !
REAL (DP) energy (%) !

! Parameters Useful for Calculations

Engineering Fracture Mechanics 247 (2021) 107638

Increments in the magnitudes of the distributed loads
Values of the predefined field variables

Parameters associated with the solution procedure

To define the current solution procedure

Time step and total time

Contributions from the element to the right-hand-side vectors
Stiffness matrix of the element

solution-dependent state variables

Energy quantities associated with the element

PARAMETER ZER0=0.0_DP, ONE=1.0_DP, NONE=-1.0_DP ! Zero, one, negative one
PARAMETER HALF=0.5_DP, TW0=2.0_DP, THREE= 3.0_DP, FOUR=4.0_DP ! half, two, three, four
PARAMETER gaussCoord=SQRT(3.0_DP)/3.0_DP, gaussWeight=1.0_DP, ninpt=4 ! For Gaussian integration
PARAMETER nn_real =4 ! Number of real nodes
PARAMETER ndof_real = 2 ! Number of real DOF

! Variables used in the UEL

REAL(DP), DIMENSION(nn_real*mcrd,
REAL(DP), DIMENSION(nn_real*mcrd,
point
REAL (DP), DIMENSION(nn_real*mcrd,
REAL(DP), DIMENSION(3,3)
REAL(DP), DIMENSION(nn_real)
REAL(DP), DIMENSION (mcrd,nn_real)
REAL(DP), DIMENSION(3,nn_real)
REAL(DP), DIMENSION(4,nn_real*mcrd)
REAL(DP), DIMENSION(3,nn_real*mcrd)
matrix
REAL (DP), DIMENSION (mcrd,mcrd)
REAL(DP), DIMENSION(4,4)
REAL(DP), DIMENSION(ninpt)
REAL(DP), DIMENSION(ninpt, mcrd)

1)

REAL(DP), DIMENSION(mcrd,nn_real)

! Scalars

REAL(DP) :: dvol !
REAL (DP) Emod !
REAL (DP) nu !
REAL (DP) th !
REAL (DP) djac !
REAL (DP) g,h !
REAL (DP) CONS, CONS1, CONS2, CONS3 !
! Integers

INTEGER Ps_flag !

INTEGER kintk, I ! Counters

| e e e e e
| e

! Read Input Data

Emod = PROPS(2)

nu = PROPS(3)

th = PROPS(4)

! Initialize Variables

RHS = ZERO
AMATRX = ZERO
Kmat = ZERO

! Gaussian Points and Weights

coord(1,1) = -sqrt(THREE)/THREE
coord(2,1) = -sqrt(THREE)/THREE
coord(83,1) = sqrt(THREE)/THREE
coord(4,1) = sqrt(THREE)/THREE
coord(1,2) = -sqrt(THREE)/THREE
coord(2,2) = sqrt(THREE)/THREE
coord(83,2) = -sqrt(THREE)/THREE

nn_real*mcrd)
nn_real*mcrd)

Stiffness Matrix
Stiffness Matrix of the integration

Kmat !
Kmat_iter !

Fvec ! Force Vector

Dmat ! Constitutive Elastic Matrix
shape_f ! Shape Functions

dShape ! Derivatives of Shape Functions
sd_mat ! Strain-disp Matrix

dN_mat ! ! Expanded Shape Functions
Bmat ! Global displacement-strain relation
xjac, xjaci ! Jacobian and inverse

iJac_mat

weight ! Gauss weight

coord ! Gauss Coords

coords_int ! Internal Coords, Real-Only

Volume Differential

Elastic Modulus

Poisson’s Ratio

Thickness

Determinant of the Jacobian
Coordinates of gauss int points
For Hooke’s Law

Plane strain or plane stress

35

D. Ramirez-Tamayo et al.

sqrt (THREE) /THREE

coord(4,2) =

weight (1) = ONE
weight (2) = ONE
weight (3) = ONE

weight (4) = ON

E

! Material Matrix

PS_flag = 1 !

Dmat = ZERO

1->Plane Strain, 2-> Plane Stress

IF (PS_flag .eq.
! Plane Strain Case
CONS = Emod/((ONE-NU*TWO)* (ONE+Nu))
CONS1 = (ONE-NU)

CONS2 NU

ONE) THEN

CONS3 = (ONE-TWO*NU)

Dmat (1,1)
Dmat (1,2)

Dmat (2,1)
Dmat (2,2)

Dmat (3,3)

ELSEIF (PS_fla

g

CONS*CONS1
CONS*CONS2

CONS*CONS2
CONS=*CONS1

CONS*CONS3/TWO0

.eq. TWO) THEN

! Plane Stress Case

CONS = Emod/(ONE-NU*NU)
CONS1 = ONE
CONS2 = NU

CONS3 = (ONE-NU)

Dmat (1,1)
Dmat (1,2)

Dmat (2,1)
Dmat (2,2)

Dmat (3,3)

ENDIF

CONS*CONS1
CONS*CONS2

CONS=*CONS2
CONS*CONS1

CONS*CONS3/TWO0

! For each integration point of the element:
DO kintk = 1,ninpt

! Variable
Kmat_iter
dShape
shape_f
xjac
xjaci
Bmat

djac

g

h

dvol
sd_mat
iJac_mat

g = coord(kintk,1)!
h = coord(kintk,2)!

)

Engineering Fracture Mechanics 247 (2021) 107638

that require an update in every loop through the integration points

ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO

= ZERO
= ZERO

ZERO
ZERO
ZERO

First natural coordinate
Second natural coordinate

! Shape Functions of the Quadrilateral Element

shape_f (1)
shape_f (2)
shape_f (3)
shape_f (4)

! Derivative

dShape (1,1
dShape (1,2
dShape (1,3
dShape (1,4

)
)
)
)

(ONE-g) * (ONE-h) /FOUR
(ONE+g) * (ONE-h) /FOUR
(ONE+g) * (ONE+h) /FOUR
(ONE-g) * (ONE-h) /FOUR

d(Ni)/d(g) - ksi
= -(ONE - h)/FOUR
= (ONE - h)/FOUR
= (ONE + h)/FOUR
= -(ONE + h)/FOUR

36

D. Ramirez-Tamayo et al.

! Derivative d
dShape(2,1) =
dShape(2,2) =
dShape(2,3)
dShape(2,4) =

(Ni)/d(h) - eta
-(ONE - g)/FOUR
-(ONE + g)/FOUR
(ONE + g)/FOUR
(ONE - g)/FOUR

!
co
co

xj

!
dj

Jacobian
ords_int = ZERO

ords_int = coords(1:2,1:8)

ac = MATMUL (dShape, TRANSPOSE(coords_int))

Jacobian determinant

ac = xjac(1,1)*xjac(2,2) - xjac(1,2)*xjac(2,1)

Engineering Fracture Mechanics 247 (2021) 107638

!Check for Positive Determinant of the Jacobian and find the inverse

IF (djac > ZER
! Jacobian
xjaci(1,1)
xjaci(2,2)
xjaci(1,2)
xjaci(2,1)

ELSE
! negative

PRINT*, ’>WARNING:

ENDIF
dvol = weight(

! Strain Displ
sd_mat = ZERO
sd_mat (1,1) =
sd_mat (2,4) =
sd_mat (3,2)
sd_mat (3,3) =

0) THEN

is positive - o.k.
= xjac(2,2)/djac
= xjac(1l,1)/djac
= -xjac(1,2)/djac
= -xjac(2,1)/djac

or zero Jacobian

kintk)*djac*th
acement Relationship

ONE
ONE
ONE
ONE

! Expanded Inverse Jacobian Matrix

iJac_mat(1:2,1
iJac_mat(3:4,3

! EXPANDED SHA
dN_mat = ZERO

:2) = xjaci(1:2,1:2)
14) = xjaci(1:2,1:2)

PE MATRIX

element’, jelem, ’has neg.

dN_mat (1:2,1:7:2)

dShape

dN_mat (3:4,2:8:2) = dShape

! B Matrix
Bmat = MATMUL (sd_mat,

! Stiffness Matrix

MATMUL (iJac_mat, dN_mat))

Kmat_iter = MATMUL (TRANSPOSE (Bmat) ,MATMUL (Dmat,Bmat))*dvol

Kmat = Kmat +

END DO ! Integrati

AMATRX(1:8, 1:8)
AMATRX(9:16, 9:16)
AMATRX (1:8, 9:16)
AMATRX (9:16, 1:8)

! Right Hand Side
RHS(:,1) = -MATMUL

END SUBROUTINE elastic

*HEADING

Patch test, Mode I
*NODE

** Real nodes

1, 0.0, -0.1
2, 100, -0.1
3, 100, 0.0
4, 0.0, 0.0

Kmat_iter

on

= Kmat
Kmat

ZERO

Vector
(AMATRX, U)

_UEL

Listing 10: Input file for the verification example

ZERO ! Symmetric Version of CR Matrix

37

D. Ramirez-Tamayo et al.

5, 100, 100

6, 0.0, 100

*x Imaginary nodes (offset=1000)
1001, 0.0, 0.0

1002, 0.0, 0.0

1003, 0.0, 0.0

1004, 0.0, 0.0

1005, 0.0, 0.0

1006, 0.0, 0.0

B
** Nodal sets
*NSET, NSET=NODES_RE, generate

1, 6

*NSET, NSET=NODES_IM, generate
1001, 1006

*%

** User Defined Elements

**

*USER ELEMENT, TYPE=U1, NODE=8, COORDINATES=2, PROPERTIES=17,
1, 2
*ELEMENT, TYPE=U1, ELSET=ALL_ELEMS

1, 4, 3, 5, 6, 1004, 1003, 1005, 1006
2, 1, 2, 3, 4, 1001, 1002, 1003, 1004
E 2 eeaiaiiiaiateiaieiaiaiiatatatets
** Loading Amplitude
.

*Amplitude, name=Amp-1

0., 0., 1., 0.03, 2., -0.01, 3., 0.1
ET Stateiaieiuiaieieteiniaintateiatointed

** Other nodal sets

**x fof BC definition

* %k

*NSET, NSET=UP_RE

5, 6

*NSET, NSET=UP_IM
1005, 1006

*NSET, NSET=ROLLER_RE
2

*NSET, NSET=ROLLER_IM
1002

*NSET, NSET=PIN_RE

1

*NSET, NSET=PIN_IM
1001

** Everything should be in [mm]
*UEL PROPERTY, ELSET=ALL_ELEMS

**x Gn Gt T_n T_t alph beta 1n 1t
0.100, 0.200, 4, 3, 5, 1.6, 0.005, 0.005,
** thick Emod nu num_coh_elems, h, pert_flag
10, 32.0e3, 0.20, 1, le-10, 1
** coh_elem_id
2

stk ok sk ok ok sk ok sk ok ok sk sk ok sk ok ok sk sk sk ok ok sk sk sk ok ok sk sk ok sk ok ok sk ok sk ok ok sk sk sk sk ok ok sk sk sk ok ok K ok ok ok K
E2 Tiaiieiaieteinieiatetaieaitetatetatied

** Step definition

E'E Tiaiuietaietainiaitetaietaintetatetaind

*STEP, NLGEOM, INC=4000, UNSYMM=YES

*STATIC

*%
** Fixed sets
*BOUNDARY
ROLLER_RE, 2,
ROLLER_IM, 2,
PIN_RE, 1,
PIN_IM, 1,
** Moving sets
*Boundary, amplitude=Amp-1
UP_RE, 2, 2, 1.0

UP_IM, 2, 2, 0.0

NN NN

* %
** Real nodes

*NODE PRINT, NSET=NODES_RE
U, RF

** Imaginary nodes

*NODE PRINT, NSET=NODES_IM

38

VARIABLES=8

Engineering Fracture Mechanics 247 (2021) 107638

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

U, RF
*END STEP

References

[1] Mi Y, Crisfield M, Davies G, Hellweg H. Progressive delamination using interface elements. J Compos Mater 1998;32(14):1246-72.

[2] Shah SP, Swartz SE, Ouyang C. Fracture mechanics of concrete: applications of fracture mechanics to concrete, rock and other quasi-brittle materials. John
Wiley & Sons; 1995.

[3] van Mier JGM, van Vliet MRA. Uniaxial tension test for the determination of fracture parameters of concrete: state of the art. Eng Fract Mech
2002;69(2):235-47. http://dx.doi.org/10.1016/50013-7944(01)00087-X, URL http://www.sciencedirect.com/science/article/pii/S001379440100087X.

[4] Shen B, Paulino G. Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique. Exp Mech 2011;51(2):143-63.
[5] Valoroso N, Sessa S, Lepore M, Cricri G. Identification of mode-i cohesive parameters for bonded interfaces based on DCB test. Eng Fract Mech
2013;104:56-79. http://dx.doi.org/10.1016/j.engfracmech.2013.02.008, URL http://www.sciencedirect.com/science/article/pii/S0013794413000507.

[6] Taylor RL. FEAP-A finite element analysis program. 2014.

[7]1 Barenblatt GI. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J Appl Math Mech
1959;23(3):622-36.

[8] Bischof C, Khademi P, Mauer A, Carle A. Adifor 2.0: Automatic differentiation of fortran 77 programs. IEEE Comput Sci Eng 1996;3(3):18-32.

[9] Bischof CH, Roh L, Mauer-Oats AJ. Adic: an extensible automatic differentiation tool for ansi-c. Softw - Pract Exp 1997;27(12):1427-56.

[10] Phipps ET, Gay DM. Automatic differentation of C++ codes with sacado. Tech. rep. SAND2006-7054C, Albuquerque, NM (United States): Sandia National
Laboratories (SNL-NM); 2006.

[11] Griewank A, Walther A. Evaluating derivatives: principles and techniques of algorithmic differentiation, Vol. 105. Siam; 2008.

[12] Hascoet L, Pascual V. The tapenade automatic differentiation tool: principles, model, and specification. ACM Trans Math Softw (TOMS) 2013;39(3):20.

[13] Pascual V, Hascoét L. Mixed-language automatic differentiation. Optim Methods Softw 2018;33(4-6):1192-206. http://dx.doi.org/10.1080/10556788.2018.
1435650.

[14] Nelder JA, Mead R. A simplex method for function minimization. Comput J 1965;7(4):308-13.

[15] Park K, Paulino GH, Roesler JR. A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 2009;57(6):891-908. http:
//dx.doi.org/10.1016/j.jmps.2008.10.003, URL http://www.sciencedirect.com/science/article/pii/S0022509608001713.

[16] Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 1976;6(6):773-81.
http://dx.doi.org/10.1016/0008-8846(76)90007-7, URL http://www.sciencedirect.com/science/article/pii/0008884676900077.

[17] Wittmann F, Rokugo K, Brithwiler E, Mihashi H, Simonin P. Fracture energy and strain softening of concrete as determined by means of compact tension
specimens. Mater Struct 1988;21(1):21-32.

[18] Yang Q, Thouless MD. Mixed-mode fracture analyses of plastically-deforming adhesive joints. Int J Fract 2001;110(2):175-87.

[19] Camanho PP, Davila CG, de Moura MF. Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater
2003;37(16):1415-38. http://dx.doi.org/10.1177/0021998303034505, arXiv:https://doi.org/10.1177/0021998303034505.

[20] Xu C, Siegmund T, Ramani K. Rate-dependent crack growth in adhesives: I. Modeling approach. Int J Adhes Adhes 2003;23(1):9-13.

[21] Xie D, Waas AM. Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng Fract Mech 2006;73(13):1783-96.

[22] Park K, Paulino GH, Roesler J. Cohesive fracture model for functionally graded fiber reinforced concrete. Cem Concr Res 2010;40(6):956-65.

[23] Campilho R, Banea M, Neto J, da Silva L. Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhe-
sive layer. Int J Adhes Adhes 2013;44:48-56. http://dx.doi.org/10.1016/j.ijadhadh.2013.02.006, URL http://www.sciencedirect.com/science/article/pii/
S0143749613000353.

[24] JMcGarry JP, Méirtin EO, Parry G, Beltz GE. Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-
closure. Part I: Theoretical analysis. J Mech Phys Solids 2014;63:336-62. http://dx.doi.org/10.1016/j.jmps.2013.08.020, URL http://www.sciencedirect.
com/science/article/pii/S0022509613001737.

[25] Spring DW, Paulino GH. A growing library of three-dimensional cohesive elements for use in ABAQUS. Eng Fract Mech 2014;126:190-216. http:
//dx.doi.org/10.1016/j.engfracmech.2014.04.004, URL http://www.sciencedirect.com/science/article/pii/S0013794414001003.

[26] Park K, Paulino GH. Computational implementation of the PPR potential-based cohesive model in ABAQUS: educational perspective. Eng Fract Mech
2012;93:239-62.

[27] ABAQUS. Abaqus finite element software. Providence, RI: Dassault Systéemes Simulia Corp.; 2015.

[28] Squire W, Trapp G. Using complex variables to estimate derivatives of real functions. SIAM Rev 1998;40(1):110-2.

[29] Millwater H, Wagner D, Baines A, Montoya A. A virtual crack extension method to compute energy release rates using a complex variable finite element
method. Eng Fract Mech 2016;162:95-111. http://dx.doi.org/10.1016/j.engfracmech.2016.04.002, URL http://www.sciencedirect.com/science/article/pii/
S0013794416301540.

[30] Aguirre-Mesa AM, Ramirez-Tamayo D, Garcia MJ, Montoya A, Millwater H. A stiffness derivative local hypercomplex-variable finite element method
for computing the energy release rate. Eng Fract Mech 2019;218:106581. http://dx.doi.org/10.1016/j.engfracmech.2019.106581, URL http://www.
sciencedirect.com/science/article/pii/S0013794419306666.

[31] Montoya A, Ramirez-Tamayo D, Millwater H, Kirby M. A complex-variable virtual crack extension finite element method for elastic-plastic fracture
mechanics. Eng Fract Mech 2018;202:242-58. http://dx.doi.org/10.1016/j.engfracmech.2018.09.023, URL http://www.sciencedirect.com/science/article/
pii/S0013794418306775.

[32] Tamayo DR, Montoya A, Millwater H. A virtual crack extension method for thermoelastic fracture using a complex-variable finite element
method. Eng Fract Mech 2018;192:328-42. http://dx.doi.org/10.1016/j.engfracmech.2017.12.013, URL http://www.sciencedirect.com/science/article/pii/
S0013794417309049.

[33] Ramirez Tamayo D, Montoya A, Millwater H. Complex-variable finite-element method for mixed mode fracture and interface cracks. AIAA J
2018;56(11):4632-7. http://dx.doi.org/10.2514/1.J057231, URL arXiv:https://doi.org/10.2514/1.J057231.

[34] Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids 1960;8(2):100-4.

[35] Hillerborg A, Modéer M, Petersson P-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.
Cem Concr Res 1976;6(6):773-81.

[36] Ingraffea AR, Gerstk WH, Gergely P, Saouma V. Fracture mechanics of bond in reinforced concrete. J Struct Eng 1984;110(4):871-90.

[37] Xu X-P, Needleman A. Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 1994;42(9):1397-434. http://dx.doi.org/10.1016/
0022-5096(94)90003-5, URL http://www.sciencedirect.com/science/article/pii/0022509694900035.

[38] Mergheim J, Kuhl E, Steinmann P. A finite element method for the computational modelling of cohesive cracks. Internat J Numer Methods Engrg
2005;63(2):276-89.

[39] Camacho G, Ortiz M. Computational modelling of impact damage in brittle materials. Int J Solids Struct 1996;33(20):2899-938. http://dx.doi.org/10.
1016/0020-7683(95)00255-3, URL http://www.sciencedirect.com/science/article/pii/0020768395002553.

39

http://refhub.elsevier.com/S0013-7944(21)00102-8/sb1
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb2
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb2
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb2
http://dx.doi.org/10.1016/S0013-7944(01)00087-X
http://www.sciencedirect.com/science/article/pii/S001379440100087X
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb4
http://dx.doi.org/10.1016/j.engfracmech.2013.02.008
http://www.sciencedirect.com/science/article/pii/S0013794413000507
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb6
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb7
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb7
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb7
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb8
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb9
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb10
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb10
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb10
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb11
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb12
http://dx.doi.org/10.1080/10556788.2018.1435650
http://dx.doi.org/10.1080/10556788.2018.1435650
http://dx.doi.org/10.1080/10556788.2018.1435650
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb14
http://dx.doi.org/10.1016/j.jmps.2008.10.003
http://dx.doi.org/10.1016/j.jmps.2008.10.003
http://dx.doi.org/10.1016/j.jmps.2008.10.003
http://www.sciencedirect.com/science/article/pii/S0022509608001713
http://dx.doi.org/10.1016/0008-8846(76)90007-7
http://www.sciencedirect.com/science/article/pii/0008884676900077
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb17
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb17
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb17
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb18
http://dx.doi.org/10.1177/0021998303034505
https://doi.org/10.1177/0021998303034505
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb20
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb21
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb22
http://dx.doi.org/10.1016/j.ijadhadh.2013.02.006
http://www.sciencedirect.com/science/article/pii/S0143749613000353
http://www.sciencedirect.com/science/article/pii/S0143749613000353
http://www.sciencedirect.com/science/article/pii/S0143749613000353
http://dx.doi.org/10.1016/j.jmps.2013.08.020
http://www.sciencedirect.com/science/article/pii/S0022509613001737
http://www.sciencedirect.com/science/article/pii/S0022509613001737
http://www.sciencedirect.com/science/article/pii/S0022509613001737
http://dx.doi.org/10.1016/j.engfracmech.2014.04.004
http://dx.doi.org/10.1016/j.engfracmech.2014.04.004
http://dx.doi.org/10.1016/j.engfracmech.2014.04.004
http://www.sciencedirect.com/science/article/pii/S0013794414001003
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb26
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb26
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb26
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb27
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb28
http://dx.doi.org/10.1016/j.engfracmech.2016.04.002
http://www.sciencedirect.com/science/article/pii/S0013794416301540
http://www.sciencedirect.com/science/article/pii/S0013794416301540
http://www.sciencedirect.com/science/article/pii/S0013794416301540
http://dx.doi.org/10.1016/j.engfracmech.2019.106581
http://www.sciencedirect.com/science/article/pii/S0013794419306666
http://www.sciencedirect.com/science/article/pii/S0013794419306666
http://www.sciencedirect.com/science/article/pii/S0013794419306666
http://dx.doi.org/10.1016/j.engfracmech.2018.09.023
http://www.sciencedirect.com/science/article/pii/S0013794418306775
http://www.sciencedirect.com/science/article/pii/S0013794418306775
http://www.sciencedirect.com/science/article/pii/S0013794418306775
http://dx.doi.org/10.1016/j.engfracmech.2017.12.013
http://www.sciencedirect.com/science/article/pii/S0013794417309049
http://www.sciencedirect.com/science/article/pii/S0013794417309049
http://www.sciencedirect.com/science/article/pii/S0013794417309049
http://dx.doi.org/10.2514/1.J057231
https://doi.org/10.2514/1.J057231
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb34
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb35
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb35
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb35
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb36
http://dx.doi.org/10.1016/0022-5096(94)90003-5
http://dx.doi.org/10.1016/0022-5096(94)90003-5
http://dx.doi.org/10.1016/0022-5096(94)90003-5
http://www.sciencedirect.com/science/article/pii/0022509694900035
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb38
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb38
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb38
http://dx.doi.org/10.1016/0020-7683(95)00255-3
http://dx.doi.org/10.1016/0020-7683(95)00255-3
http://dx.doi.org/10.1016/0020-7683(95)00255-3
http://www.sciencedirect.com/science/article/pii/0020768395002553

D. Ramirez-Tamayo et al. Engineering Fracture Mechanics 247 (2021) 107638

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]
[55]

[56]

[57]
[58]

Park K, Choi H, Paulino GH. Assessment of cohesive traction-separation relationships in ABAQUS: A comparative study. Mech Res Commun 2016;78:71-
8. http://dx.doi.org/10.1016/j.mechrescom.2016.09.004, URL http://www.sciencedirect.com/science/article/pii/S0093641316301628 Recent Advances in
Multiscale, Multifunctional and Functionally Graded Materials.

Needleman A. A continuum model for void nucleation by inclusion debonding. ASME J Appl Mech 1987;54(3):525-31.

Needleman A. An analysis of tensile decohesion along an interface. J Mech Phys Solids 1990;38(3):289-324. http://dx.doi.org/10.1016/0022-5096(90)
90001-K, URL http://www.sciencedirect.com/science/article/pii/002250969090001K.

Beltz GE, Rice J. Dislocation nucleation versus cleavage decohesion at crack tips. Model Deformation Cryst Solids 1991;457-80.

Freed Y, Banks-Sills L. A new cohesive zone model for mixed mode interface fracture in bimaterials. Eng Fract Mech 2008;75(15):4583-93. http:
//dx.doi.org/10.1016/j.engfracmech.2008.04.013, URL http://www.sciencedirect.com/science/article/pii/S0013794408001100.

Park K, Paulino GH. Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev 2013;64(6):060802.
http://dx.doi.org/10.1115/1.4023110, URL arXiv:https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/64/6,/060802/6073587 /amr_
64_6_060802.pdf.

Park K. Potential-based fracture mechanics using cohesive zone and virtual internal bond modeling. University of Illinois at Urbana-Champaign; 2009.
Voorhees A, Millwater H, Bagley R. Complex variable methods for shape sensitivity of finite element models. Finite Elem Anal Des 2011;47(10):1146-56.
http://dx.doi.org/10.1016/j.finel.2011.05.003, URL http://www.sciencedirect.com/science/article/pii/S0168874X11000990.

Anderson WK, Newman JC, Whitfield DL, Nielsen EJ. Sensitivity analysis for Navier-Stokes equations on unstructured meshes using complex variables.
AIAA J 2001;39(1):56-63.

Burg CE, Newman III JC. Computationally efficient, numerically exact design space derivatives via the complex taylor’s series expansion
method. Comput & Fluids 2003;32(3):373-83. http://dx.doi.org/10.1016,/50045-7930(01)00044-5, URL http://www.sciencedirect.com/science/article/pii/
S0045793001000445.

Montoya A, Fielder R, Gomez-Farias A, Millwater H. Finite-element sensitivity for plasticity using complex variable methods. J Eng Mech
2015;141(2):04014118. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000837.

Wang BP, Apte AP. Complex variable method for eigensolution sensitivity analysis. AIAA J 2006;44(12):2958-61.

Garza J, Millwater H. Multicomplex newmark-beta time integration method for sensitivity analysis in structural dynamics. AIAA J 2015;53(5):1188-98.
http://dx.doi.org/10.2514/1.J053282, URL arXiv:https://doi.org/10.2514,/1.J053282.

Lantoine G, Russell RP, Dargent T. Using multicomplex variables for automatic computation of high-order derivatives. ACM Trans Math Software
2012;38(3):16:1-21. http://dx.doi.org/10.1145/2168773.2168774, URL http://doi.acm.org/10.1145/2168773.2168774.

Millwater HR, Shirinkam S. Multicomplex taylor series expansion for computing high order derivatives. Int J Appl Math 2014;27(4):311-34.
Gomez-Farias A, Montoya A, Millwater H. Complex finite element sensitivity method for creep analysis. Int J Press Vessel Pip 2015;132-133:27-42.
http://dx.doi.org/10.1016/j.ijpvp.2015.05.006, URL http://www.sciencedirect.com/science/article/pii/S0308016115000587.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nat Methods 2020;17(3):261-72.

Nocedal J, Wright S. Numerical optimization. Springer Science & Business Media; 2006.

Fike J, Alonso J. The development of hyper-dual numbers for exact second-derivative calculations. In: 49th AIAA aerospace sciences meeting including
the new horizons forum and aerospace exposition. 2011, p. 886.

40

http://dx.doi.org/10.1016/j.mechrescom.2016.09.004
http://www.sciencedirect.com/science/article/pii/S0093641316301628
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb41
http://dx.doi.org/10.1016/0022-5096(90)90001-K
http://dx.doi.org/10.1016/0022-5096(90)90001-K
http://dx.doi.org/10.1016/0022-5096(90)90001-K
http://www.sciencedirect.com/science/article/pii/002250969090001K
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb43
http://dx.doi.org/10.1016/j.engfracmech.2008.04.013
http://dx.doi.org/10.1016/j.engfracmech.2008.04.013
http://dx.doi.org/10.1016/j.engfracmech.2008.04.013
http://www.sciencedirect.com/science/article/pii/S0013794408001100
http://dx.doi.org/10.1115/1.4023110
https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/64/6/060802/6073587/amr_64_6_060802.pdf
https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/64/6/060802/6073587/amr_64_6_060802.pdf
https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/64/6/060802/6073587/amr_64_6_060802.pdf
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb46
http://dx.doi.org/10.1016/j.finel.2011.05.003
http://www.sciencedirect.com/science/article/pii/S0168874X11000990
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb48
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb48
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb48
http://dx.doi.org/10.1016/S0045-7930(01)00044-5
http://www.sciencedirect.com/science/article/pii/S0045793001000445
http://www.sciencedirect.com/science/article/pii/S0045793001000445
http://www.sciencedirect.com/science/article/pii/S0045793001000445
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000837
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb51
http://dx.doi.org/10.2514/1.J053282
https://doi.org/10.2514/1.J053282
http://dx.doi.org/10.1145/2168773.2168774
http://doi.acm.org/10.1145/2168773.2168774
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb54
http://dx.doi.org/10.1016/j.ijpvp.2015.05.006
http://www.sciencedirect.com/science/article/pii/S0308016115000587
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb56
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb56
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb56
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb57
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb58
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb58
http://refhub.elsevier.com/S0013-7944(21)00102-8/sb58

	A complex-variable cohesive finite element subroutine to enable efficient determination of interfacial cohesive material parameters
	Introduction
	Background and methodology
	Cohesive zone modeling
	Complex-variable finite element method, ZFEM
	Complex-variable finite element implementation
	ZPPR element Abaqus implementation
	Formulation of the User Element Subroutine (UEL)
	Input file generation

	Numerical examples
	Mode-I patch test
	Inverse determination of cohesive material properties for an adhesively bonded double cantilever beam

	Discussion
	Conclusions
	Declaration of competing interest
	Acknowledgment
	Appendix
	References

