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ABSTRACT 

The software design of current CNC systems is of limited suitability for real parallel execution on multicore 
systems. Even though CNC systems are rudimentarily designed in a modular way, a good load balancing and 
therefore an efficient use of multiple processor cores is not satisfactorily to be accomplished, as the modularization 
is not sophisticated enough. A parallelization of CNC functions and algorithms would remedy this deficit. This 
paper presents an analysis on which parts of a CNC system show the capability for parallelization. Furthermore an 
approach is presented on how the parallelization of a specific function, namely the look-ahead function, can be 
accomplished. 

1. INTRODUCTION 

Computer Numerical Controls (CNC) are used in the area of machine tools and machining centers. Their main task 
is the trajectory generation to realize a relative movement between tool and workpiece for the manufacturing process. 
There are several requirements a CNC has to fulfill regarding this task: 

First of all, the trajectory generation has to show a deterministic time behavior as the machine tool’s drives that 
realize the tool path, demand new setpoints in real-time and within a defined cycle time. That implicates that the data 
throughput within the CNC has to be maintained by all means to provide each cycle new setpoints to the drives avoiding 
violations of the real-time constraints. In ordinary manufacturing processes this requirement does not constitute a 
problem. However, in manufacturing processes that are realized at high feedrate (HSC – High Speed Cutting) and with 
short path segment lengths (e.g. when manufacturing freeform surfaces) the data throughput and the real-time 
requirement represents a challenge [1]. 

Furthermore, the trajectory generation is heavily responsible for the quality and the productivity of the 
manufacturing process. Quality and productivity are increasing when smooth-curvature trajectories are generated that 
are executable at high feedrate without exceeding the machine tool’s dynamic ability. These characteristics lead to 
short production cycles, high surface quality and low machine strain [2]. 

Last but not least the trajectory generation has to be capable to generate the setpoints for different levels of machine 
kinematic complexity. CNCs are used to control machines beginning at ordinary three axes kinematics up to machining 
centers with multiple spindles and a huge amount of axes. 

All these requirements reveal that the trajectory generation is a rather complex issue. Nowadays, the functionality of 
CNC systems is mostly realized in software that is executed on a PC-based system platform. That can be an embedded 
PC, a particular industrial PC or even a standard desktop PC. In either case, the CNC software, respectively the 
complex software functions that realize the trajectory generation, have to be executed on system platforms that provide 
enough processing power to fulfill said requirements. Looking at available system platforms it can be stated that 
multicore system platforms would provide sufficient processing power for CNC systems [3]. However, the change from 
single-core to multicore processors in the area of CNCs and industrial automation systems in general is just at its very 
beginning. That is because the change from single-core to multicore constitutes a challenge especially in the area of 
real-time systems. Due to the hardware architecture and its characteristics in executing software in parallel, it can 
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happen that the theoretically unlimited performance increase provided by multicore systems in praxis turns into the 
opposite and leads to longer cycle times [4]. That is mainly the case when the software is not prepared for real parallel 
execution but appears as monolithic structure that is designed for serial execution. In the area of CNC systems this kind 
of software structure can be discovered. Even though there is some level of modularization within the CNC architecture 
accruing from the beginnings of the CNC era and the multiprocessor control system (MPST) design, the algorithms that 
are responsible for the trajectory generation are not. 

This paper presents an approach on how CNC software can be designed to be parallel executable on multicore 
system platforms. The paper is organized as follows: In section 2 the software architecture of CNC systems is 
described. Thereof derived section 3 describes the parallelization capabilities of dedicated software functions. Section 
4 demonstrates at the example of the look-ahead function the possibilities of software parallelization. The paper closes 
with a summary and an outlook. 

2. CNC SOFTWARE ARCHITECTURE 

As the CNC software architecture is primarily vendor specific, literature depicts different kinds of software design. 
Nevertheless the main components of a CNC system do not seriously differ. A CNC system is first of all composed by 
a user interface, denominated as HMI (Human Machine Interface) or MMI (Man Machine Interface) that allows user 
interaction with the CNC, by a logic control, known as the PLC (Programmable Logic Control) handling all IO 
operations, and by a motion control, known as the numerical control kernel (NCK) that cares about trajectory 
generation [5] [6]. PLC and NCK are responsible for controlling the machine, respectively the drives and actors, and 
for capturing the machine status, respectively all sensors. NCK and PLC are therefore executed in the real-time space of 
the CNC system, whereas the HMI does not have severe requirements concerning deterministic time behavior and can 
be executed in the user space of the CNC system. As the focus of this paper is situated in the motion functionality, PLC 
and HMI are not further considered. 

The architectural design of the NCK differs widely in theory and praxis. From a functional point of view, however, 
the NCK is primarily a composition of the following functions [5]: 

• Interpreter: The interpreter is responsible for decoding the NC-program holding technological and 
geometrical information about the manufacturing process. The interpreter handles data migration from the 
NC-program buffer and decoding of the NC-program in consideration of subprograms and NC cycles. The 
decoded information is stored in some sort of data structure so that it can be passed to the subsequent CNC 
functions caring about trajectory generation. 

• Tool compensation: NC-programs are mostly generated independent from tool radius and length and from 
the workpiece clamping position. The tool compensation accommodates the geometrical data by 
considering offsets and geometrical tool data. It calculates an equidistant tool path. 

• Smoothing: Smoothing is the first part of the velocity planning functionality of a CNC. This function 
adjusts the given tool path in a way that the physical limitations of the machine tool are not exceeded. 
Smooth path segments are used to replace segments that would lead to discontinuities in the first, second 
up to the third derivative, e.g. sharp corners. The smoothing functionality must be explicitly activated. 

• Look-ahead: The look-ahead function is the second part of the velocity planning functionality. It calculates 
an anticipatory feedrate profile representing feedrate limitations. That allows applying the maximum 
permissible feedrate for the pre-calculated path segments considering the path characteristics and yet 
permits an exact stop in appropriate cases, e.g. at sharp corners. 

• Slope: Finally, the slope function is the third and last part of the velocity planning functionality. It is 
responsible for generating smooth velocity profiles avoiding acceleration steps and infinite jerk values. 
The acceleration is increased by using slopes. 

• Interpolation: Within the interpolation axis command values are generated based on a specific algorithm. 
Mostly used is a linear and circular interpolation method, however there are more elevated methods like 
spline interpolation. 

• Transformation: The tool path trajectory planning has been executed without consideration of the machine 
tool’s kinematic so far. The axis based command values are subjected to an appropriate transformation. 

 



Analysis of CNC Software Modules Regarding Parallelization Capability  

 

Regarding the architectural design literature describes different arrangements of the software functions within the 
CNC system. This paper assumes an architecture as described in [5]. The dedicated software functions are grouped in 
respect to their required time behavior in synchronous and asynchronous functions. Synchronous functions are meant to 
be executed once each control cycle whereas asynchronous functions can be interrupted and possibly be executed over 
several control cycles. Interpolation and transformation are part of the synchronous functions, whereas NC code 
interpretation, tool compensation and velocity planning belong to the asynchronous functions. The data exchange 
between the considered software functions is realized by shared memory or when it comes to the data exchange 
between asynchronous and synchronous software functions and as well between the functions of the asynchronous 
function group, by some sort of buffer, e.g. FIFO (Fist In First Out). Figure 1 illustrates the CNC software architecture. 

 

Figure 1. CNC software architecture with focus on the numerical control kernel (NCK). 

The arrangement of the software functions into synchronous and asynchronous functions is more or less the task 
affiliation at the same time, describing on how the operating system executes these functions. Each task is assigned a 
priority that defines the invocation order, and a cycle time that defines the invocation frequency. The execution of the 
NCK as a whole as well as of each task is controlled by some sort of task control. The task control decides on which task 
or within the task on which function has to be executed next to maintain the CNC system operation. 

Considering this kind of CNC system architecture it can be stated that in the best case the NCK consists of two tasks 
that are executable on different cores. Within each task, however, complex operations are executed. Further 
fragmentations of these tasks are desirable to modify the load balancing when it comes to the task assignment to the 
different cores. Many small task portions, executable in parallel, would lead to a high flexibility when it comes to the 
use of multicore systems with different number of cores and the CNC system as a whole would benefit from a multicore 
performance increase. 

3. PARALLELIZATION CAPABILITIES 

Based on the CNC system architectural design there are three levels of distributing the CNC software to multiple 
cores of a system platform: First of all there is the distribution on the main component level, secondly on the task 
(synchronous and asynchronous task) level and finally on an algorithmic level. 

The distribution on the main component level is the most obvious possibility to exploit a multicore system. Some 
CNC systems currently available are already offering that possibility [7]. 

Regarding the NCK component a fragmentation of this component into two tasks corresponding to the distinction 
into synchronous and asynchronous functions is present and constitutes a possibility for distribution on the task level. 
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However, it has to be secured that the data flow between the tasks is maintained as the synchronous task requires a time 
deterministic execution. Any delay in providing data to the synchronous functions must not occur. 

However, the distribution of the CNC software on the first levels is not optimal as computationally intensive 
algorithms of the CNC system are still executed sequentially. A further fragmentation of tasks and functions into 
parallel executable parts could lead to an efficient use of multicore systems. There are already approaches to sort out 
single functionalities, e.g. the interpreter, executing them in a single thread [1]. Beyond that we suggest a parallelization 
on the algorithmic level, as well. Even though the CNC system is first of all a sequential system there is especially in the 
area of the asynchronous functions the possibility to work in parallel at a specific task. This applies on the interpreter, 
tool compensation, smoothing and the look-ahead. The approach is to execute a specific function several times in an 
own thread or any other parallel executable construct. Each of these instances gets a part of the available data from the 
previous function. Each data item is tagged with a unique identifier so that a composition of the output data of each 
instance is possible. In the case that data items cannot be considered isolated an overlapping area is suggested so that 
each instance can access information that lies beyond its area of responsibility. Regarding the execution of the 
parallelized software functions it has to be assured that the priorities of the threads, executing parts of any specific 
function, do not exceed the priority of the superior task. Thereby threads do not restrain other threads, affiliated to tasks 
with higher priorities, from execution. Above all the task control has to make sure that the execution of threads within 
a task is proceeded correctly. 

The following section depicts at the example of the look-ahead function an implementation of a parallel executable 
asynchronous CNC function. 

4. LOOK-AHEAD FUNCTION FOR REAL PARALLEL EXECUTION 

The look-ahead function calculates the maximum permissible feedrate for given interpolation points in advance. 
This allows applying a feedrate that does not exceed the dynamic abilities of the machine tool but stays close at the 
programmed feedrate. Hence results a good surface quality, high productivity and small machine strain for the given 
tool path. The further description of the look-ahead function is based on [6]. 

The look-ahead function works on the data that is provided by the interpreter, maybe already processed by the tool 
compensation. This data represents the decoded motion commands from the NC-program and mainly consists next to 
some auxiliary information that is currently not important for the look-ahead function, of start and end position of each 
path segment and programmed feedrate. The look-ahead function stores depending on its configuration a defined 
number of data elements into its own data buffer. If there are less than the configured data elements available the 
look-ahead function only stores the available data elements, but at least two. Figure 2 gives an overview on important 
elements and definitions relevant for the look-ahead function. 

 

Figure 2. Elements and definitions of the look-ahead function. 

Based on this data selection the maximum permissible feedrate profile is calculated beginning from the last entry up 
to the current entry in the look-ahead buffer. The look-ahead function calculates for each two data elements the feasible 
corner speed V1 based on the angle between the path segments considering the machine tool’s dynamic abilities which 
are the maximum path acceleration and the sampling time for position control. Additionally the look-ahead function 
calculates a path segment’s start velocity V2 that can be achieved by applying the maximum acceleration or 
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deceleration on the whole path segment length. The current segment’s end velocity Vend is assumed as the start velocity 
of the previous, already calculated segment. Finally the look-ahead function calculates for each path segment in the 
look-ahead buffer the maximum possible start velocity Vstart as the minimum of V1, V2 and the programmed feedrate 
VC. There are two special cases to be considered: First of all the end velocity for the last data element in the look-ahead 
buffer, that is the element which is considered first due to the inverse calculation, is assumed as zero. Secondly the end 
velocity of the first data element, considered last in the look-ahead calculation, is calculated based on the maximum 
acceleration on the whole path segment length, limited by the programmed feedrate. Output of the look-ahead function 
is a data structure holding mainly start velocity Vstart and end velocity Vend for each path segment. 

A look-ahead function modified for parallel execution differs thereby that the available data from the interpreter 
buffer is distributed to a configurable number of look-ahead data buffers. This goes along with a fragmentation of the 
look-ahead function in parallel executable threads. To consider the above mentioned special cases the thread needs to 
get the information on which part of the data fragmentation it is working. The distribution of the data has to follow a 
specific logic: The look-ahead function as described above follows a sequential software design. The calculation for the 
maximum permissible velocity for each path segment is based on the velocity of the previous path segment. In a parallel 
design each look-ahead thread is working on an excerpt of the common data buffer and therefore misses appropriate 
information about the velocity at the border of each buffer. For this reason an overlapping area is defined that covers 
that much data elements that the realized path length within these data elements is sufficient for accelerating or 
decelerating the machine up to the maximum permissible feedrate (that is the programmed feedrate). Each thread is 
informed about the number of overlapping data elements so that this area is not considered twice but can be discarded 
in one thread’s output buffer. After the common data buffer fragmentation each look-ahead thread works on its own 
data buffer including the overlapping area. If the overlapping area is not defined big enough due to a configurable 
overlapping limitation the maximum permissible feedrate cannot be reached. As a consequence it comes to a drop in the 
look-ahead velocity profile. That does not imply a drop in the executed velocity profile as the look-ahead velocity 
profile only represents a velocity limitation. After having processed each look-ahead data buffer the overlapping area in 
the output data buffer of each look-ahead thread is discarded based on the area responsibility. The common look-ahead 
buffer is terminated by assembling the common look-ahead output data buffer based on a stored unique block number. 
Figure 3 illustrates the concept of a look-ahead function for parallel execution. 

 

Figure 3. Design of a look-ahead function for parallel execution. 
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5. CASE STUDY 

In the current development state the look-ahead function for parallel execution is implemented in a non-real-time 
environment using Microsoft Windows 7 and OpenMP for distributing the single threads of the look-ahead function, in 
the nomenclature of OpenMP called sections, dynamically to the available cores. The hardware is an Intel Core i5 Quad 
Core processor with 3.2GHz. The look-ahead function is considered isolated and not within a complete NCK software 
distribution. The interpreter data buffer is filled from a NC-program before the look-ahead function starts working on 
the available data. The number of look-ahead data elements was set to 300, the minimum overlapping area to 5, the 
maximum overlapping area to 50 data elements. Both, the number of look-ahead data and the size of the overlapping 
area are freely configurable. The analysis of the look-ahead performance is based on a test workpiece illustrated in 
figure 4. 

 

Figure 4. Test workpiece for the analysis of the parallel executable look-ahead function. 

The performance increase of a real parallel execution of the look-ahead is achieved not before a dedicated time of 
execution or rather a dedicated number of data elements as illustrated in figure 5. That is arising from the multicore 
architecture and its characteristics concerning thread initialization, context changes, cache misses or similar, as well as 
from the necessity to work on some additional tasks like filling each thread’s buffer, working on the overlapping area 
and assembling the common look-ahead buffer. In other words, a parallel execution of CNC functions is only be worth 
it if each thread, working on a part of the function, achieves continuously full capacity utilization. If not, the 
organizational overhead due to parallel processing is proportionally large. Even though it can be assumed that, at least 
regarding the asynchronous functions, this overhead do not have severe consequences on the system reliability a 
strategy has to be developed leading to the ideal level of parallelization. 

 

Figure 5. Comparision of serial and parallel look-ahead efficiency depending on execution time. 

Comparing the results of the sequential and the parallel look-ahead as illustrated in figure 6 it can be proved that the 
look-ahead functionality remains equal as the outputs do not differ, at least if the overlapping area of the parallel 
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look-ahead is sufficiently rated. However, as illustrated in figure 7, the used overlapping area remains in a reasonable 
area. 

 

Figure 6. Comparision of serial and parallel look-ahead feedrate profiles. 

 

Figure 7. Parallel look-ahead overlap buffer size. 

Finally figure 8 illustrates the real parallel execution of the look-ahead buffer. For each task a time stamp was 
recorded on entry and on exit of the task. While the graph on the left hand side in figure 8 illustrates the thread 
execution for the complete interpreter buffer, the graph on the right hand side illustrates the thread execution while the 
last data items in the interpreter buffer are processed. 

 

Figure 8. Real parallel thread execution of the parallel look-ahead function. 
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6. CONCLUSION AND FUTURE WORK 

Current CNC systems do not exploit the available processing power from multicore systems as their software design 
does not meet the requirements of these systems, namely a high grade of modularization that allows scheduling small 
pieces of the CNC application dynamically the available cores. This paper demonstrates that it is possible to benefit 
from the processing power of multicore systems by parallelizing CNC functions up to the algorithmic level. 

At the example of the look-ahead function it was shown how dedicated CNC functions can be executed beneficially 
on such a multicore system platform. However, the presented look-ahead function is analyzed decoupled from the 
system where it has to be applied later on. The objective and future work is, next to parallelizing further functions, to 
embed this approach into the overall context of a CNC system. That allows analyzing additionally effects arising from 
CNC system characteristics and from the fact that multiple processes compete under real-time constraints for the 
available hardware resources. 

ACKNOWLEDGEMENTS 

The work presented in this paper was funded by the German Research Foundation (DFG) in the project “PANAMA”. 

REFERENCES 

[1] H. Hong, D. Yu, X. Zhang and L. Chen: “Research on the Data Hungry Problem in CNC System Based on the Architecture 
of Real-time Multitask”, 3rd International Conference on Computer Research and Development, pp. 103-108, Shanghai, 
2011. 

[2] K. Erkorkmaz and Y. Altintas: “High speed CNC system design. Part I: jerk limited trajectory generation and quantic spline 
interpolation”, International Journal of Machine Tools & Manufacture, Vol. 41, pp. 1323-1345, 2001. 

[3] M. Keinert and A. Verl: “System Platform Requirements for High Performance CNCs”, Proceedings of 22nd International 
Conference on Flexible Automation and Intelligent Manufacturing, Helsinki/Stockholm, 2012. 

[4] P. McKenney: “When Do Real Time Systems Need Multiple CPUs?”, Proceedings of the 12th Real-Time Linux Workshop, 
Nairobi, Kenya, 2010. 

[5] G. Pritschow: “Introduction to control engineering (Einführung in die Steuerungstechnik)”, Carl Hanser Verlag, Munich, 
2006. 

[6] S.-H. Suh, S.-K. Kang, D.-H. Chung and I. Stroud: “Theory and Design of CNC Systems“, Springer, 2008. 

[7] Beckhoff White Paper: “Simplifying Multi-Core Migration in Automation Applications”, Intel Corporation, 2008. 


	Main Menu
	Author Index
	How to Use this CD-ROM
	Search
	Print

	Contents
	CAD/CAM/CIM/FMS AND ROBOTICS
	Making Product Customization More Feasible for Flexible Manufacturing Systems
	Analysis of CNC Software Modules Regarding Parallelization Capability
	Advanced 3D Robot Simulation for Flexible Interactive Manual Robot Guidance—An eRobotics Approach
	Implementation of a Force Controller Based on Fuzzy Rule Emulate Networks for Soft Contact with an Object with Unknown Mechanical Properties
	A Fast and Accurate Recognition System for Flexible Grasping of Electronic Goods
	Technologies Guiding the Future of Robotics in Manufacturing
	Tool Path Generation Considering NC Block-Based Machining Stability
	Communication Architecture for Robotic Applications



