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Convolutional neural networks (CNNs) are notoriously data-intensive, 
requiring significantly large datasets for training accurately in an 
appropriate runtime. Recent approaches aiming to reduce this requirement 
focus on removal of low-quality samples in the data or unimportant filters, 
leaving a vast majority of the training set and model in tact. We propose 
Strategic Freezing, a new training strategy which strategically freezes 
features in order to maintain class retention. Preliminary results of our 
approach are demonstrated on the Imagenette dataset using ResNet34.

● Deep Neural Networks (DNNs) require significant data.
○ Most approaches to reduce training data are vulnerable to 

Catastrophic Forgetting.
○ Approaches to remove filters that aren't unimportant are vulnerable 

to model drift.
● We propose a new training strategy: Strategic Freezing

○ Provides a definitive end to the training process.
○ Leverages freezing on filters and residue to prevent the 

Catastrophic Forgetting problem.

● Max activation to rank filters and/or summation of ranks across a 
dataset does not give desirable accuracy.

● How do we further encourage the network to not catastrophically 
forget?

● Algorithmic or architectural approach to fix model drift?
● Can this method be extended to other types of layers?
● How does Distributed Data Parallel (DDP) impact freezing and/or data 

dropout?
● Activations v.s. gradients v.s. clustering activations to approach filter 

rankings

Figure 1: Visualization of high and low level filters

Figure 2: Visualization of ranked filters and their feature spaces

Baseline Dropout Dropout w/ 
residue

Dropout w/ 
freeze 

Dropout w/ 
freeze and 

residue

Accuracy 0.73 0.33 0.57 0.32 0.39

Runtime
(min/epoch)

0:36 0:36 0:28 0:31 00:55

Total 
Runtime

(min)

18:13 6:53 09:12 09:02 11:16

Table 1: Validation accuracy and runtime on Imagenette dataset


