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Abstract: This study aims to evaluate the performance of the Soil and Water Assessment Tool
(SWAT), a simple Auto-Regressive with eXogenous input (ARX) model, and a gene expression
programming (GEP)-based model in one-day-ahead discharge prediction for the upper Kentucky
River Basin. Calibration of the models were carried out for the period of 2002-2005 using daily
flow at a stream gauging station unaffected by the flow regulation. Validation of the calibrated
models were executed for the period of 2008-2010 at the same gauging station along with another
station 88 km downstream. GEP provided the best calibration (coefficient of determination (R)
value 0.94 and Nash-Sutcliffe Efficiency (NSE) value of 0.88) and validation (R values of 0.93 and
0.93, NSE values of 0.87 and 0.87, respectively) results at the two gauging stations. While SWAT
performed reasonably well in calibration (R value 0.85 and NSE value 0.72), its performance somewhat
degraded in validation (R values of 0.85 and 0.82, NSE values of 0.65 and 0.65, for the two stations).
ARX performed very well in calibration (R value 0.92, NSE value 0.82) and reasonably well in
validation (R values of 0.88 and 0.92, NSE values of 0.76 and 0.85) at the two stations. Research
results suggest that sophisticated hydrological models could be outperformed by simple data-driven
models and GEP has the advantage to generate functional relationships that allows investigation of
the complex nonlinear interrelationships among the input variables.

Keywords: Kentucky River Basin; SWAT; ARX; GEP; discharge simulation

1. Introduction

The availability of water at the watershed or basin scales in addition to the spatial and
temporal distribution of water are largely affected by climatic and topographic factors [1].
Soil, land cover, and land use characteristics are also considered when studying the move-
ment and exchange of water [2]. The recent development of robust hydrologic models and
significant advancement in the processing power of computers [3] allow modelers to take
these factors into account when trying to solve the complexity of hydrological processes.
These models, often embedded within decision support tools, are especially necessary
when complete information and observed data on discharge, inflow, climate, soil moisture,
or other related factors of a basin are limited [4]. Changes in water budget and fluxes within
a watershed can be studied based on the estimation and simulation of the models. Several
popular conceptual and physically based watershed models have been used for discharge
and water quality modeling in the last three decades including CREAMS (Chemical Runoff
and Erosion from Agricultural Management Systems) [5], PRMS (Precipitation Runoff
Modeling System) [6], HSPF (Hydrologic Simulation Program—~Fortran) [7], SWAT (Soil
and Water Assessment Tool) [8], and SWBM (Spatial Water Budget Model) [9]. These mod-
els are computationally effective and require relatively small time steps to produce outputs
through simulations [10]. Among these models, SWAT can analyze how the changes in
land use and land cover impact the runoff and water quality in addition to its ability to
quantify the hydrological responses to the variation of hydrometeorological conditions,
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making it reliable and popular. Models equipped with data-driven techniques, on the other
hand, have been found to be highly efficient to analyze the nonlinear and non-stationary
relationship of rainfall and runoff [11]. For example, models which used Genetic Pro-
gramming (GP) and Artificial Neural Network (ANN) in analyzing the evapotranspiration
process outperformed the Penman-Monteith (PM) method [12]. Linear genetic program-
ming (LGP) model equipped with ensemble empirical mode decomposition (EEMD) and
self-organizing map (SOM) outperformed the ANN model in analyzing the rainfall-runoff
relationship in Kentucky River [13]. Another study used GEP to model streamflow and the
performances of GEP and feed forward back propagation ANNs were similar [14].

In this study, SWAT, Auto-Regressive with eXogenous input (ARX), and GEP models
were selected to predict the daily river discharge of the upper Kentucky River. The Kentucky
River supplies water for daily uses of the citizens living in the basin and plays an important
role in improving the socio-economic condition of Kentucky State. However, the water
quantity and quality of Kentucky River were adversely impacted by droughts and flooding
caused by mountaintop removal and mining [15]. A system of 14 locks and dams were built,
operated, and maintained in the last two centuries to ensure water supply sustainability
and mitigate drought impacts [16]. Profound grasp of the hydrological regime of Kentucky
River can support long-term water resources management. A comprehensive physically-
based model like SWAT or data-driven models such as ARX or GEP could be helpful to
forecast the runoff and the river discharge with acceptable accuracy and could be used
to support long-term water resources management. The main objective of this study is
to test the performances and suitability of SWAT, ARX, and GEP models in forecasting
the daily discharge of the upper Kentucky River for a 3-year period (hindcasting) by
calibrating the models and then spatially and temporally validating the performances of
the calibrated models.

2. Simulation Methodology
2.1. Study Area

The Kentucky River Basin covers 42 counties of the state of Kentucky, with a total area
of about 18,000 km?2. The major tributaries of Kentucky River include Red River, Eagle
Creek, North Fork Kentucky River, Elkhorn Creek, Middle Fork Kentucky River, Dix River,
and the South Fork Kentucky River (Figure 1). The length of the main stem of Kentucky
River is 418 km with a dense network of tributaries and streams that feed the river with
a total length of approximately 25,700 km. The elevation of Kentucky River Basin ranges
from 243 m to 305 m above the mean sea level with an average slope 0.13 m/km. The mean
annual rainfall within the basin is approximately 1168 mm [17]. Climate in the basin is
moist-continental and the average annual temperature is 13 °C. The basin experiences the
minimum daily temperature in January and February (about —4 °C) while July and August
bring the maximum daily temperature (about 31 °C) [18]. A system consisting of 14 locks
and dams (LDs) was built on Kentucky River from downstream to upstream during the
periods of 1836-1842 (LD 1-5), 1888-1891 (LD 6), 1896-1897 (LD 7), 1898-1900 (LD 8),
1901-1903 (LD 9), 1902-1905 (LD 10), 1904-1906 (LD 11), 1907-1910 (LD 12), 1909-1915
(LD 13), and 1911-1917 (LD 14) [19]. The older LDs (built in 19th century) were primarily
built as timber crib and stone masonry structures and the relatively newer LDs (built in
20th century) were primarily built out of concrete. While most of the LDs (LD 5-14) are out
of operation at present and have been sealed with concrete barriers, four LDs (LD 1-4) are
still in operation (located within 65 river miles above mouth) and have been rebuilt and
repaired over time [20].
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Figure 1. The Kentucky River Basin with its 14 locks and dams [21].

To avoid the impact of the LDs on the natural flow of Kentucky River, a point that
drains the North Fork Kentucky watershed, the Middle Fork Kentucky watershed, and
the South Fork Kentucky watershed where none of the LDs is present is selected for
calibration of the hydrologic model. This point drains about 6888 km? and has its discharge
recorded daily by USGS 03282000 stream gauge, which is located just upstream of LD 14 at
Heidelberg, Kentucky. However, in addition to the natural flow sub-basin, the validation
of the hydrologic model and other models was also performed on upper Kentucky River
Basin (Figure 1). The outlet of upper Kentucky River is located just upstream from LD 10,
near Winchester, Kentucky at the USGS 03284000 stream gauge. With the presence of four
dams LD 11-14 within the upper Kentucky River, the outlet discharge is affected, to some
extent, by operation of the LDs.

2.2. Models
2.2.1. The SWAT Model

SWAT is a semi-distributed, physically based eco-hydrologic model that is based on
dividing the basin being modeled into smaller sub-basins, each of which can be divided
into smaller hydrologic response units (HRUs) incorporating unique combinations of soil
type, ground slope, and land use [22,23]. The SWAT is being widely used in hydrologic
and ecologic simulations over basins of different scales in the US and other regions of a
wide range of climatic and geologic conditions [24-26]. SWAT simulates the following
water balance equation in its hydrologic simulation:
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t
SWt =SW + Y (Ri — Qi — ETi — Pi — QRi) 1)
i=1
where SW represents soil water content minus the 15-bar pressure water content; f repre-
sents the time in days; R represents the amount of precipitation on day i (mm); Q represents
the daily runoff (mm); ET represents the daily evapotranspiration on day i (mm); P rep-
resents the percolation on day i (mm); and QR represents the return flow on day i (mm).
The SWAT model can select from a variety of methods in the calculation of surface runoff,
channel flow, evapotranspiration, and other watershed dynamics before running a simu-
lation. The model thus incorporates a myriad of parameters. Arnold and Srinivasan [22]
described all the parameters of the water balance equation and its components in detail.

2.2.2. The ARX Model

The ARX (Auto-Regressive with eXogenous input) is a computationally and conceptu-
ally simple linear regression-based representation of a random process output variable that
linearly depends on its own previous values, the previous values of another external (exoge-
nous) variable, and on a stochastic term. ARX has been widely used to model the dynamic
response of a system to exogenous factors in different fields including hydrology, agri-
culture, chemical engineering, medicine, biological science, and energy economics [27,28].
An autoregressive model has a physical hydrologic basis in baseflow recession theory
because the lag-1 serial correlation coefficient of the model is equivalent to the widely
used hydrograph recession constant [29,30]. The objective in this study is to develop and
implement an ARX model at LD10 and LD14 of Kentucky River Basin that can forecast the
discharge one-step ahead. The following equation represents the ARX model:

yt)=—a1yt—1) — ... —any(t —na)+bjut — 1 —ng) +... +bpult —n, —ng) +et) (2)

where e(t) refers to the noise (assumed to be Gaussian); an, and by, represents the model
parameters; the order of the polynomials of the output A(q) and the input B(q) are repre-
sented by n, and ny,, respectively; and the time delay between y(t) and u(t) is represented
by ny. Equation (2) can be expressed as follows:

A(Q)y(t) = B(q)u(t — nk) +e(t) )
where A(q) and B(q) are given by:
A(Q=1+a;q '+... +apq ™ 4)

B(q) =biq ' ™+ ... +byq Pk (5)

where q~! represents the delay operator and least-squares identification is used in the
estimation of A(q) and B(q) [31,32].

2.2.3. The GEP Model

Gene expression programming (GEP) belongs to the ‘Evolutionary Algorithms’ group
and, similar to other evolutionary algorithms, uses populations of individual solutions,
selects and reproduces (breeds) some of them in accordance with fitness, and introduces
genetic variation using mutation or recombination as prerequisites for evolution to oc-
cur [33]. A Genetic Algorithm (GA) and Genetic Programming (GP), on the other hand,
are simple replicator systems with GP being more complex than GA. The fundamental
difference among GA, GP, and GEP is in the nature of their individuals. The individuals
are linear strings of fixed length (chromosomes) in the case of GA whereas GP consists
of individuals that are of different sizes and shapes. The advantages of GP and GA are
retained in GEP, making it capable of solving the coding explosion problem observed in
GP while keeping the genetic operations simple similar to GA [34]. Attributes from both
GA and GP are carried to GEP, and the individuals of GEP are encoded as linear strings
of fixed length. These individuals are expressed in GEP as nonlinear entities afterwards
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having different sizes and shapes [35]. The function of Expression Trees (ETs) is to hold
the genetic information. GEP follows simplistic genetic code of one-on-one relationship
between symbols of the genes and the nodes of the ETs. ETs can be further divided into
sub-ETs. Figure 2 shows the working principle of GEP in a brief flowchart. The model
randomly generates chromosomes of initial population, expresses each individual chromo-
some, evaluates them based on a fitness function, and modifies the best fitted ones [36].
Evolved individuals of the new generation possess developed expressions of the genomes
and evolving processes are repeated until a predefined best-fitting value is achieved or for
a predefined number of generations [37].

Create Chromosomes of Initial Population

<

> Express Chromosomes

2

Execute Each Program

24

Evaluate Fitness

O Terminate

v

End

O Iterate

Yes
Best of Generation? : 5

O No

Selection

<

Reproduction

<

New Chromosomes of Next Generation —

Figure 2. Simple Algorithm of Gene Expression Programming.

2.3. Models Setup
2.3.1. The SWAT Model
Physiographic Data

The USGS digital elevation model (DEM) data for the upper Kentucky River Basin
were obtained from http:/ /seamless.usgs.gov (accessed on 11 September 2021) (30 m x 30 m
spatial resolution). The basin and watersheds were automatically delineated in the ArcGIS
extension and graphical user input interface for SWAT (ArcSWAT). The elevation of the
upper Kentucky River Basin ranges from 177 m to 971 m with an average elevation of
374 m above mean sea level (Figure 3). Land use data of the upper Kentucky River Basin
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were extracted from USGS GIRAS (Geographic Information Retrieval and Analysis System)
LULC (Land Use Land Cover) files. Data gaps and overlaps were removed through manual
adjustment and the final land use map was re-classified by land use groups. Deciduous
forest (FRSD) is predominant in the basin (covering 84.1% of total area) while pasture
(PAST) and barren (BARR) cover 11.2% and 1.9% of the area, respectively (Figure 4).

Value

e High : 971

= Low 177

Elevation (m)

West Vigne A

Viging

North Carcine

Figure 3. Digital Elevation Model of Upper Kentucky River Basin (Geographic Location of Upper Kentucky River Basin in

the Inset).

SSURGO (Soil Survey Geographic Database) soil data of the NRCS (Natural Resources
Conservation Service) for the upper Kentucky River Basin were obtained from the Soil
Data Mart (http:/ /soildatamart.nrcs.usda.gov (accessed on 23 June 2021)). SSURGO soil
maps allow users to link with SSURGO soil database in ArcSWAT through the MUKEY
attribute. The dominant soil group in the upper Kentucky River Basin is ultisols, also
known as red clay soil, covering 90% of the basin’s total area. Inceptisols and alfisols are
found in scattered areas across the basin with a total area of less the 10% of the basin’s
area. Figure 5 suggests that the dominant soil hydraulic group in the upper Kentucky
River Basin is Group B (45%; silt loam /loam, moderately well to well drained, moderate
infiltration, and runoff rate) followed by Group C (25%; sandy clay loam, low infiltration
rate) and Group A (23%; sand/loamy sand/sandy loam, well drained, low runoff, high
infiltration rate).
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Figure 5. Map of Hydraulic Soil Group in the Upper Kentucky River Basin.



Water 2021, 13, 2560

8 0of 20

Meteorological Data

SWAT simulation requires meteorological data inputs including daily precipitation,
maximum and minimum air temperature, solar radiation, humidity, and wind speed.
Global Historical Climatology Network-Daily (GHCN-Daily) product from the National
Climatic Data Center (NCDC) was used as the rainfall product. The product is based
on observations by rain gauges within or near the basin at a daily time scale. Data
were obtained from the Hydrologic Information System of the Consortium of Univer-
sities for the Advancement of Hydrologic Sciences (CUAHSI-HIS, cuahsi.org (accessed
on 23 June 2021)). The CUAHSI HydroDesktop application allows users to query a spe-
cific type of data for a time-period for a specific area. Queried precipitation data for the
two periods, 2002-2005 and 2008-2010, were downloaded at daily time step for 21 rain
gauges. Temperature, humidity, and wind speed data were obtained from the National
Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration
(NOAA) (http:/ /gis.ncdc.noaa.gov/map/cdo/ (accessed on 23 June 2021)). These data
were recorded at an hourly time-step for the study period and were averaged to daily
values. Solar radiation data used in this study are satellite-based products that are esti-
mated from NOAA Geostationary Operational Environmental Satellites (GOES) visible
satellite images and were available to download at https:/ /solaranywhere.com/ (accessed
on 23 June 2021).

2.3.2. The ARX Model

The ARX model only requires daily discharge and precipitation data as input with
precipitation as the exogenous variable. The ARX model uses the same precipitation time
series data that have been used in the SWAT model. The selection of number of lagged
days of precipitation and discharge used in the model affects the result and the optimum
combination varies with the size, shape, and characteristics of the watershed [38]. The ARX
models were explored with different combination of lagged days and the model with the
best performance is the one with three lagged days of precipitation and discharge. The
following equation was used to calculate the simulated discharge:

Q) =Q(t—1)x X1+ Q(t—2)x X2+ Q(t—3) x X3+P(t—1) x X4+ P(t —2) x X5+ P(t —3) x X6 +C  (6)

where Q(t) is the simulated discharge; Q(t — 1), Q(t — 2), and Q(¢ — 3) are lagged discharges;
P(t — 1), P(t — 2), and P(t — 3) are lagged precipitations; X1-X6 are coefficients obtained
through regression; and C is the intercept.

2.3.3. The GEP Model

One of the main advantages of data-driven models is the simplicity of data and
elimination of complexities of physically-based models [39]. The solution model is typically
an easy-to-track linear or non-linear formula that relates the dependent and independent
variables, and the user can control the complexity of the solution model. This study used
the commercial software GeneXproTools 5.0 for GEP modelling in which appropriate
dataset(s) are fed as input and the software can analyze the input dataset(s) and gives the
best model(s) to fit the observed output. Discharge data alone or discharge data along
with precipitation data can be used as input data for the models with the output being
the one-day-ahead discharge. Selection of mathematical functions (e.g., Sqrt, Exp, Ln,
Log, x*t Sine, Cosine, average, among many more) for the model can either be performed
manually or the software can select the most appropriate functions. The best performing
model is selected from numerous generated models and the expression tree (ET) of the
selected model includes nine sub-ETs. The sub-ET 7 and the sub-ET 9 of the selected model
(Figure 6) are expressed by the algebraic formulas in Equations (7) and (8):

A+B

[2} + tan"![C x D] 7)
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where A =d0; B=1— C:c8+d1J2rd1><d0;D:c7.

do .
[ dO;rc9 ] 27

W=

tan~'[d1 x (E+ F)] x [1 - (G — H)]3 8)

[SSIE

where E = (8 —3)%; F=1— (%); G = (d0 x d1) +c3; H = (d0)3.

Figure 6. Sub ET-7 (left) and Sub ET-9 (right) of selected model.

Here, A, B, C, D, E, F, G, and H are simplified forms to express mathematical formulas
with less complexity. d0 is precipitation of the day in which discharge is to be predicted
and d1 is discharge of the previous day of prediction day. c0, c1, c2, ¢3, c4, c5, c6, 7, 8,
and ¢9 are numerical constants for each gene. The selected model contains total nine genes
and the values of c0 to ¢9 varies for each gene. These sub-ETs are considered as phenotypes
while the genotypes are as follows:

Genotype for sub-ET 9:

* Atan 3Rt * NOT d1 + — X2 NOT + 3Rt - Avg2 * ¢3 d0 c8 c3 ¢4 d1 d0 d1 )

Genotype for sub-ET 7:
+ Avg2 Atan d0 NOT */+ c¢7 d0 X2 ¢8 * Avg2 Avg2 d0 d0 c9 d1 d1 (10)

2.4. Observed Discharge Data

Daily discharge data recorded at two stream gauges, USGS 03282000 at Heidelberg,
Kentucky and USGS 03284000 near Winchester, Kentucky were used in this study. USGS
03282000 stream gauge measures discharge at the confluence of North Fork Kentucky
River, Middle Fork Kentucky River, and the South Fork Kentucky River and represents
the natural flow of the upper Kentucky River as it is located upstream of all the locks and
dams. Meanwhile, USGS 03284000 stream gauge measures the outlet of the whole upper
Kentucky River. Located downstream of four locks and dams (LD 11, 12, 13, and 14) on the
main stem of upper Kentucky River, discharge at USGS 03284000 stream gauge is affected
by the operation of the four LDs.

In general, discharge recorded at the downstream station, USGS 03284000, is higher
than that measured at USGS 03282000 station because the river gains more water from
downstream tributaries. Figure 7 shows time series of daily flows recorded at the two
stations during the calibration and validation periods. On average, discharge at the
downstream station is 26% and 23% higher for the calibration and validation periods,
respectively. However, the flow at the downstream station is sometimes lower than
that at the upstream stream. For instance, the peak flows during the rainfall events in
January and May 2002 or in April, June, and September 2003 present are lower discharge
at USGS 03284000 at the downstream station. That is mainly due to the flow regulation
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by the dams between the two stations. However, on average, measured discharge at
USGS 03284000 gauge is about 30% lower than value at above measuring location in
those periods.

—— USGS 03284000 = == USGS 03282000
]
]
1 January 2003 | January 2004 | January 2005
—— USGS 03284000 - - - USGS 03282000

1 January 2009 1 January 2010

Figure 7. Daily observed discharge at USGS 03284000 and USGS 03282000 stream gauges during the 2002-2005 and

2008-2010 periods.

2.5. Model Performance Evaluation

Three standard statistical measures were used in the model performance evaluation:
correlation coefficient (R), Nash-Sutcliffe Efficiency (NSE), and Error in runoff volume
(Bias). These measures are defined as follows:

(TN, (Qs(t) — Qs) (Qo(t) — Qo))°
SN (Qs(t) — 0s)* XN (Qo(t) — Qo)

& i1 (Qs(t) — Qo(t))
~ Lty Qo(t)
L1 (Qo(t) — Os(1))*
—\2

YL (Qo(t) — Qo)
where Qo(t) and Qs(t) represents the observed and the simulated discharge (on day t),
respectively; Qo and Qs represents the average of the observed and the simulated discharge,
respectively; and N represents the total number of records.

The degree of linear correlation (between the simulated and the observed discharge

time series) can be evaluated using the R? statistical measure (value of 1 indicates the
perfect match between the simulated and the observed discharge [40]. The NSE indicates

the ability of the model to reproduce observed discharge and holds values smaller or equal
to 1 [41]. Larger NSE values imply high ability of in reproducing the observed data. E_peak

Correlation =  /(

3)

x 100%

Bias (%) =

NSE =1 —
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and E_runoff measure the percentage differences between simulated and observed peak
flow runoff volume, respectively. Table 1 represents the performance ratings of NSE, R?,
and PBIAS:

Table 1. Performance rating of NSE, R?, and PBIAS values for river discharge [42—44].

Performance Rating NSE R? PBIAS
Very good 0.75 < NSE < 1.00 07<R2<1 PBIAS < £10
Good 0.65 < NSE < 0.75 0.6 <R?><07 +10 < PBIAS < 15
Satisfactory 0.50 < NSE < 0.65 05<R%2<06 +15 < PBIAS < £25
Unsatisfactory NSE < 0.50 R?<0.5 PBIAS > +25

2.6. Model Calibration and Validation

For all three models, the natural flow of the upper Kentucky River for the period
of 2002-2005 as observed by USGS 03282000 stream gauge above LD 14 was used for
calibration. When necessary, manual calibration was performed by modifying values
of model parameters individually to reach the best fit between simulated and observed
discharge. For the SWAT model, the calibration involved adjusting the values of several
parameters. SWAT outputs were more sensitive to CH_N2 (Manning’s N value for stream
channels), CN2 (Soil Conservation Service (SCS) curve numbers), SOL_K (soil hydraulic
conductivity), and SOL_AWC (available water capacity of the soil). Other parameters
with less impact on model outputs, such as ALPHA_BF (base flow alpha factor), ESCO
(soil evaporation compensation factor), and GW_REVAP (groundwater “revap” coefficient)
were also included in the calibration. In case of the ARX model, several combinations
were tried out with different numbers of lagged days of precipitation and discharge to
obtain the combination with the best agreement between the ARX-predicted and observed
one-day-ahead discharge was identified. For the GEP model, the number of chromosomes
and genes, the head size, and the linking functions were controlled manually with several
iterations to obtain the best model combination.

For validation, the calibrated models were used to predict daily discharge at the
calibration stream gauge and for the entire upper Kentucky River Basin with the outlet near
USGS 03284000 stream gauge for the 2008-2010 period. Validation at the downstream sta-
tion assesses the effect of regulation on the discharge predictability and how the calibrated
model can simulate the basin response beyond the calibration area.

3. Results and Discussion
3.1. Calibration Results

The 4-year calibration period included numerous rainfall events with an average
annual precipitation of 1360 mm (16% above average). Initially, the SWAT model was run
using the default values of model parameters and the result from the un-calibrated model
overestimated both the base-flows and the peaks of Kentucky River discharge. The model
was then calibrated manually with the objective of obtaining the best values of the statistical
measures described above. Table 2 presents the calibrated values of the major SWAT model
parameters. The SWAT model was able to adequately reproduce the daily discharge
(Figures 8 and 9) with good R? and NSE values of 0.72 and 0.71, respectively (Table 3).
The errors in peak discharge and runoff volume were 10.1% and 16.9%, respectively.

Data-driven models require no input parameters for calibration. In this study, only
lagged-day discharge and precipitation data were used, and the best prediction statistical
measures were obtained with three previous time steps of rainfall and one previous time
step of streamflow observations as inputs for both models (ARX and GEP). For the ARX
model, the R, NSE, and bias for the calibration are 0.85, 0.85, and —0.02%, respectively
(Table 3). The same measures for the GEP model are 0.88, 0.88, and —0.17%, respectively
(Table 3). These measures indicate that the GEP and ARX models clearly outperform the
SWAT model with the GEP model producing the best calibration results.
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SWAT model performance generally improved in the last 2 years of the calibration
period because such a physically based model needs a spin-up time for the effects of errors
in assumed initial conditions estimates to diminish. ARX and GEP, on the other hand,
are data-driven models and do not require any warm-up period. Their performances in
individual years appear to be random and no specific trend was observed.

Table 2. Model parameters used to calibrate discharge of Kentucky River at LD14. Ranges of calibrated parameters reflect
values for different land use/cover and soil types.

Calibrated Model Parameters

Calibrated Values
Parameters Definitions (Unit) Lower and Upper Bound
CH_N2 Manning’s N value for stream channels 0-0.3 0.07
CH K2 Effective hydraulic conductivity in main 0-150 50
channel (mm/h)
CN2 SCS curve number 30-100 36.0-96.9
SOL_K Soil hydraulic conductivity (mm/h) >0 0.756-331.2
Available water capacity of the soil
SOL_AWC (mm H,O/mm Soil) 0-1 0.01-0.48
ALPHA_BF Base flow alpha factor (days) 0-1 0.15
GW_REVAP Groundwater “revap” coefficient 0.02-0.2 0.2
GW_DELAY Groundwater delay (days) 0-100 31
Threshold depth of water in the shallow
GWQMN aquifer for return flow to occur (mm H,O) 0-5000 0.0
REVAPMN Thre.shold d“epth of,water in the shallow 0-500 1.0
aquifer for “revap” to occur (mm H,O)
ESCO Soil evaporation compensation factor 0-1 0.01
Table 3. Performance evaluation statistics of SWAT, ARX, and GEP model calibration (LD14).
Calibration at Correlation Bias (%) NSE
LD14 SWAT ARX GEP SWAT ARX GEP SWAT ARX GEP
2002-2005 period 0.85 0.92 0.94 16.86 —0.02 —-0.17 0.71 0.85 0.88
2002 0.86 0.92 0.94 7.32 2.68 —0.70 0.58 0.84 0.88
2003 0.83 0.95 0.94 5.54 -3.19 —0.55 0.52 091 0.89
2004 0.86 0.89 0.96 34.21 —1.04 —0.40 0.69 0.79 0.84

2005 0.90 0.90 0.95 19.75 494 -0.17 0.75 0.83 0.91
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Figure 8. Daily discharge calibration for SWAT (top), ARX (middle), and GEP (bottom) at LD14 for time-period 2002-2005.
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Figure 9. Scatter plot of daily simulated and observed discharge for SWAT (left), ARX (middle), and GEP (right)
during calibration.

3.2. Validation Results

The three models were validated for the period 2008-2010, which had an average
annual precipitation of about 10% lower than the calibration period. As mentioned earlier,
validation was performed at LD14 where models were calibrated and at LD10, which
is located approximately 88 km downstream. The comparison between observed and
simulated daily discharge at LD14 and LD10 during validation period of 2008-2010 is
represented in Figures 10 and 11. The statistical performance measures are summarized
in Table 4.

Table 4. Performance evaluation statistics of SWAT, ARX, and GEP model for validation at LD14 and LD10.

Correlation Bias (%) NSE
Validation at LD14
SWAT ARX GEP SWAT ARX GEP SWAT ARX GEP
2008-2010 0.85 0.88 0.93 19.92 6.99 1.47 0.65 0.76 0.87
2008 0.75 0.86 0.94 20.33 18.04 3.61 0.52 0.84 0.9
2009 0.82 0.89 0.91 14.22 1.11 0.08 0.64 0.91 0.84
2010 0.87 0.85 0.96 28.62 8.95 2.3 0.69 0.79 0.91
Correlation Bias (%) NSE
Validation at LD10
SWAT ARX GEP SWAT ARX GEP SWAT ARX GEP
2008-2010 0.82 0.92 0.93 16.83 —2.38 —3.11 0.65 0.85 0.86
2008 0.67 0.9 0.96 0.64 3.01 —0.26 0.1 0.83 0.94
2009 0.82 0.93 0.9 20.15 —5.54 —4.74 0.62 0.86 0.81

2010 0.87 0.92 0.94 23.76 -1.67 —2.81 0.61 0.85 0.88
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Figure 11. Daily discharge validation for SWAT (top), ARX (middle), and GEP (bottom) at LD10 for time period 2008-2010.

Figures 12 and 13 and Table 4 indicate that GEP model has the best performance
at both locations with very good performance rating which is consistent with prior
studies [14,36,45]. As in the calibration results, GEP model outperformed the other two
models with R? values of 0.86 and 0.87 and NSE values of 0.86 and 0.87 for validation
at LD10 and LD14, respectively. However, the ARX model and the GEP model pro-
vided similar performance at LD10. The performance of the ARX model is similar to the
previous studies (good/very good performance rating) in one-day-ahead discharge predic-
tion [46,47]. The SWAT model displayed moderate performance with NSE of about 0.65
and an R? value of about 0.64. This observation is in agreement with the previous studies
which concluded performance rating of SWAT model was satisfactory or good [48-50]. It is
very clear that both GEP and ARX perform better than SWAT during low-flow periods.
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Figure 12. Scatter plot of daily simulated and observed discharge for SWAT (left), ARX (middle), and GEP (right) during
the validation period (2008-2010) at LD14.
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Figure 13. Scatter plot of daily simulated and observed discharge for SWAT (left), ARX (middle), and GEP (right) during
the validation period (2008-2010) at LD10.

Statistical analysis of SWAT results indicates that the model performed better during
the second and the third year of validation period. This once more suggests that the
model performance significantly improved after a warm-up period. ARX and GEP do not
have this problem. Moreover, ARX and GEP are much less affected by the length of the
calibration period compared to SWAT. For example, using only 1 year in calibrating the
models reduced by SWAT validation NSE values by more than 25% while NSE in the ARX
model deteriorated by about 5% and GEP performance remained virtually unaffected. It is
well known in hydrology that the spatio-temporal and spatial heterogeneity of precipitation
and watershed characteristics and the myriad of processes involved in runoff and discharge
generation make the rainfall-runoff relationships highly nonlinear, complex, and hard to
accurately simulate. The SWAT model was run at daily time step in this study due to the
resolution of precipitation data, which could have affected its performance. Moreover, the
output of SWAT depends on the accuracy of the input data, which can never be guaranteed.
Additionally, more vigorous calibration of SWAT model could have improved the accuracy
of its predictions. Nonetheless, the SWAT results reported in this study are not inferior to
those reported in similar studies.

4. Conclusions

Streamflow forecasting is of enormous importance for water budget planning and
numerous operational water resources application. The study demonstrates that machine
learning (ML) techniques can be useful in the prediction of hydrologic variables, such as
streamflow, particularly when the underlying processes have complex nonlinear interre-
lationships. However, many ML techniques, unlike GEP, do not produce solutions that
provide insight into the explicit relationship between input and output variable. These char-
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acteristics are illustrated using a simple, though very widely used, autoregressive model
and a classic hydrologic prediction problem. The Kentucky River case study demonstrates
the superiority of GEP and its ability to provide fast, relatively accurate, and computa-
tionally inexpensive estimation of the underlying physical/functional processes that are
employable beyond forecast applications. This study used SWAT, ARX, and GEP models
to simulate daily river discharge of the Upper Kentucky River to examine the capability of
the three models to reproduce river discharge using four evaluation metrics.

The two data-driven models outperformed the physically based SWAT model, which
produced less accurate but still acceptable results. The performance metrics indicate that
the GEP model provided the best performance with the ARX model being not far off. The
SWAT model overestimated runoff and underestimated peak discharge while the ARX
and GEP models underestimated the peak discharge. Runoff is mostly underestimated
by GEP and ARX except for a few exceptions. The percentage of error in predicting peak
discharge and runoff was higher for the hydrologic model than data-driven models most
of the time. Research results also suggest that a warm-up period (1 or 2 years) is necessary
for SWAT to achieve improved and reliable performance. Performance of data-driven
models, however, exhibits no specific trend with time and largely dependent on selection
of modelling datasets and adaptation of methods. Overall, statistical measures for model
calibration and validation suggest that the data-driven models, specially the GEP model,
provided outstanding performance to reproduce daily discharge in alternative locations of
the Upper Kentucky River under changing climatic variables.

A major advantage of GEP, unlike many other data-based models, is that it can provide
an analytical form of the relationship between input and output variables. This will allow
modelers to gain insight into this relationship and perform modifications if necessary. This
study used the GEP model in its simplest form. Modelers also have the flexibility to im-
prove the prediction capability of the GEP model by judiciously including additional input
variables that can affect the basin response, e.g., temperature. GEP models can be further
improved by preprocessing the input data, e.g., by applying wavelet-de-noising or model-
ing low- and high-flow periods separately [51]. The flexibility of GEP suggests immense
potential applications in hydrometeorology such as estimation of precipitation, evapotran-
spiration, and soil moisture based on direct and indirect measurements. In general, GEP
will allow progressive model identification when new data become available by adapting
the functional relationship for the former and modifying the parameters of the latter in
addition to the recursive model updating that allows to track temporal changes. Lastly,
unlike the SWAT model, GEP and ARX model do not require a spin-up period as they are
less sensitive to the extent of the calibration time series.
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