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Abstract: Motivated by recent developments in the experimental study of ultracold atoms in
graphene-like honeycomb optical lattices, we investigate superconductivity of the attractive
Kane-Mele-Habbard (KMH) model with the next-nearest-neighbor (NNN) hoping at half filling.
The mean-field approximation is used to study the phase diagram which interpolates the trivial and
the non-trivial topological states. It is shown that: (a) when the NNN hoping is taken into account,
one has to introduce two mean-field gap equations for the two sublattices, instead of a single gap
when the NNN hopping is neglected, and (b) in the non-trivial topological region the phase diagram
with the NNN hopping is significantly different compared to the phase diagram calculated previously,
but without the NNN term. We also discuss the superconducting instability of the attractive KMH
model that is driven by condensation of Cooperons.
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1. Introduction

The present-day experiments with ultracold atoms in optical lattices allow for us to simulate both
the Haldane’s model [1] and the situation [2,3] considered by Kane and Mele (KM). The Haldane’s
model [4,5] is a tight-binding representation of electron motion on a honeycomb lattice in the presence
of a magnetic field, where vector potential has the full symmetry of the lattice and generates a magnetic
field with zero total flux through the unit cell. It was pointed out by Haldane that in two-dimensional
(2D) honeycomb lattice the topological ordering requires time reversal symmetry breaking. Because of
the zero magnetic flux through each unit cell, the phase accumulated through a nearest neighbor
hopping vanishes, whereas the phase accumulated through NNN hopping is nonzero. This extra
phase breaks the time-reversal symmetry. The Haldane model has been experimentally realized with
ultracold atoms [6,7]. However, the electron spin is not included in the Haldane’s model.

It is known that the spin-orbit coupling preserves the time-reversal symmetry, but the spin-orbit
effects can be used to obtain topological insulators. The first example was the KM Hamiltonian for the
electrons in a graphene [8,9], which consists of two copies of the Haldane’s model, one for spin-up
electrons and one for spin-down electrons. In the KM model, each spin component breaks time-reversal
symmetry, but the time reversal symmetry is restored when taking two copies with different signs for
the spin together.

The KM Hamiltonian can be generalized by including: (a) the Rashba interaction [10–13];
(b) on-site Hubbard interaction [14–17]; and, (c) both the Rashba and the Hubbard interactions [18,19].
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In a recent paper [20], the phase diagram of the attractive Kane–Mele–Hubbard (KMH) model
at half filling has been obtained as a function of a tuning parameter x = 3

√
3λ/(mAB + 3

√
3λ).

Here, λ is the strength of intrinsic spin-orbit (ISO) coupling and mAB is sublattice potential. However,
the NNN hopping term has been neglected, although it is several orders of magnitude stronger than
the ISO coupling.

In this paper, we have presented the phase diagram of the attractive KMH model with NNN
hoping at half filling as a function of a tuning parameter x = 3

√
3λ/(3

√
3λ + 3t′ + mAB), where t′

is the NNN hoping amplitude. It is shown that, in the mean-field approximation, we have two gap
equations for ∆A and ∆B, instead of a single gap ∆ when NNN hopping is neglected.

We shall discuss the case of Fermi (spin-1/2) atoms loaded into honeycomb optical lattice,
but the results are also valid for the tight-binding description of electrons in a graphene as well.
Our tight-binding Hamiltonian H = HKM + HNNN + HU includes the KM terms, as well as the NNN
hopping and the onsite attractive Hubbard interaction, where

HKM = −t ∑
<i,j>

[
Ψ†

i+jΨi + H.c.
]
+

HISO −mAB ∑
i

(
Ψ†

iA
ΨiA −Ψ†

iB
ΨiB

)
.

(1)

The first term in (1) takes into account the possibility for nearest-neighbor hopping.
HISO represents the ISO interaction, which originates from the hybridization of the higher angular
momentum orbit and exerts opposite magnetic fields upon electrons with opposite spin polarizations.
The third term in (1) describes the possible energy offset between sites of A and B sublattices. t is
the nearest-neighbor hopping amplitudes, mAB is the energy offset parameter, and Ψ†

i = (ψ†
i,↑, ψ†

i,↓) is
the creation operator for spin-up and spin-down fermions at site i. Throughout this paper, we have
assumed the lattice constant a = 1. The hopping to the nearest neighbor sites the vectors j are:
δ1 = (1/2,

√
3/2), δ2 = (1/2,−

√
3/2), δ3 = (−1, 0) (see Figure 1a). The NNN hopping term is

HNNN = −t′ ∑<<i,j′>>

[
Ψ†

i+j′Ψi + H.c.
]
. For hopping to the next nearest neighbor sites the vectors

j′ are d1,2 = ±(3/2,
√

3/2), d3,4 = ±(3/2,−
√

3/2), and d5,6 = ±(0,
√

3). The attractive Hubbard
interaction is described by HU = −U ∑i n̂i,↑n̂i,↓, where U > 0.

Figure 1. Honeycomb lattice (a) and its Brillouin zone (b).
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The KM Hamiltonian along with the NNN hopping term are represented by the following
4 × 4 matrix in the momentum space on the basis of the four-component wave function
Ψ† = (ψ†

A,k,↑, ψ†
A,k,↓, ψ†

B,k,↑, ψ†
B,k,↓):

Ĥ(k) =


Z(k) + h1(k)−mAB 0 h(k) 0

0 −Z(k) + h1(k)−mAB 0 h(k)
h∗(k) 0 −Z(k) + h1(k) + mAB 0

0 h∗(k) 0 Z(k) + h1(k) + mAB

 , (2)

where h(k) = −t
[

cos(kx) + 2 cos
(

kx
2

)
cos

(√
3ky
2

)]
+ ıt

[
sin(kx)− 2 sin

(
kx
2

)
cos

(√
3ky
2

)]
, h1(k) =

−2t′
[
cos(
√

3ky) + 2 cos( 3
2 kx) cos(

√
3

2 ky)
]
, Z(k) = −2λ

[
sin(
√

3ky)− 2 cos
(

3kx
2

)
sin
(√

3ky
2

)]
, and λ

is the strength of the ISO interaction. The eigenvalues of the Hamiltonian (2) are Ω1,2(k) = h1(k)±√
[mAB − Z(k)]2 + |h(k)|2, and Ω3,4(k) = h1(k)±

√
[mAB + Z(k)]2 + |h(k)|2.

The authors of Ref. [20] pointed out that, depending on the value of the parameter 0 ≤ x ≤ 1,
the system can be taken across the topological phase transition. For x < 1/2, we have a topological
trivial insulator, while, for x > 1/2, the system is in topological non-trivial insulator state. The phase
diagram of the KMH model, as reported in Ref. [20], was calculated within the self-consistent
Bogoliubov- de Gennes theory while using a supercell with six sites. The corresponding system
parameters are Λ = (1− x)Eg, 3

√
3λ = xEg, and Eg = t/2.

In what follows, we apply the mean-field approximation to obtain the matrix elements of
the single-particle Green’s functions of the KMH model with NNN hopping term at half filling.
The above-mentioned supercell approach is more complicated than the mean-field approximation,
but, as can be seen from Figure 2a, in this paper, our approach reproduces the corresponding phase
diagram (Figure 2a in Ref. [20]). If the NNN term is taken into account, then the matrix elements of the
mean-field single-particle Green’s function in the momentum space, proportional to < ΨAk↓ΨA−k↑ >

and < ΨBk↓ΨB−k↑ >, are different ands, therefore, we have to introduce two gaps, ∆A, and ∆B. If the
NNN hopping is neglected, we have ∆A = ∆B = ∆. When the NNN hopping is included, we have
mAB = −3t′ + (1− x)Eg, and 3

√
3λ = xEg. At 3t′ + mAB = 3

√
3λ the the single-particle gap does

close at K =
(

2π
3a , 2π

3
√

3a

)
, while the mass of the other bands at K′ =

(
2π
3a ,− 2π

3
√

3a

)
remains constant

throughout the transition for all values of x, and viceversa. As in Ref. [20], the ground state of the KM
Hamiltonian with NNN hopping is topological nontrivial (or topological trivial), when the parameter
x = 3

√
3λ/(3

√
3λ + 3t′ + mAB) is x > 1/2 (or x < 1/2).
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Figure 2. Phase diagrams of the attractive Kane–Mele–Hubbard model as functions of the tuning
parameter x = 3

√
3λ/(3

√
3λ + 3t′ + mAB). Solid lines mark topological phase transitions between

the topological non-trivial and trivial insulating states, and the s-wave spin-singlet superfluid state:
(a) without the NNN term (t′ = 0), and (b) with (t′ = −0.15t).

2. Single-Particle Dispersion in the Mean-Field Approximation

In the presence of an onsite attractive interaction between the fermions, the fermion atoms form
bound (Cooper) pairs. As a result, the system becomes unstable against the formation of a s-wave
spin-singlet superfluid ground state. At low energies, the system admits an effective description in
terms of massless Dirac fermions; therefore, in a honeycomb optical lattice we have a possibility to
observe a superfluidity of Fermi atoms with the Dirac spectrum. We restricted our calculations to
half-filling (the chemical potential µ = 0), where the particle-hole symmetry takes place. We further
assume that the BCS mean-field order parameters ∆A(B) = U < ψA(B),−k,↓ψA(B),k,↑ > are real constants.
When the attractive Hubbard interaction is taken into account, the KM basis of the four-component
wave function Ψ† = (ψ†

A,k,↑, ψ†
A,k,↓, ψ†

B,k,↑, ψ†
B,k,↓) becomes a basis of the eight-component wave

function Ψ† = (ψ†
A,k,↑, ψ†

B,k,↑, ψB,−k,↓, ψA,−k,↓, ψ†
A,k,↓, ψ†

B,k,↓, ψB,−k,↑, ψA,−k,↑). Thus, the generalized
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Hamiltonian H = HKM + HNNN + HU in the mean-field approximation in the momentum space on the
basis of the eight-component wave function is represented by the following 8× 8 block-diagonal matrix

ĤMF(k) =

(
Ĥ1(k) 0

0 Ĥ2(k)

)
, (3)

where the corresponding 4× 4 blocks are defined in the Appendix A.
We define the Matsubara single-particle Green’s functions:

Ĝ(k, ıωm) =
(

ıωm1̂− ĤMF(k)
)−1

=

(
G(1)(k, ıωm) 0

0 G(2)(k, ıωm)

)
.

Here, the Matsubara fermion energies are ωm = (2π/β)(m + 1/2), m = 0, 1, 2, . . . , β = 1/(kBT),
and kB is the Boltzmann constant (throughout this paper we have assumed h̄ = kB = 1).
The single-particle excitations ωi(k), i = 1, 2, 3, 4 in the mean-field approximation are defined in the
Appendix A. They manifest themselves as poles of the Green’s function Ĝ(k, ıωm). The corresponding
zero-temperature Green’s function Ĝ(k, ω) is an 8× 8 matrix with elements G(1,2)

n1,n2(k, ω) {n1, n2} =
1, 2, . . . , 8 written in the following forms:

G(1)
n1,n2(k, ω) =

A(1)
n1,n2(k)

ω−ω1(k) + ı0+
+

B(1)
n1,n2(k)

ω + ω2(k)− ı0+
+

C(1)
n1,n2(k)

ω−ω2(k) + ı0+
+

D(1)
n1,n2(k)

ω + ω2(k) + ı0+
,

G(2)
n1,n2(k, ω) =

A(2)
n1,n2(k)

ω−ω3(k) + ı0+
+

B(2)
n1,n2(k)

ω + ω3(k)− ı0+
+

C(3)
n1,n2(k)

ω−ω4(k) + ı0+
+

D(2)
n1,n2(k)

ω + ω4(k) + ı0+
.

(4)

The functions A(1,2)
n1,n2(k), B(1,2)

n1,n2(k), C(1,2)
n1,n2(k), and D(1,2)

n1,n2(k) can be numerically calculated by

inverting the matrix
(

ıωm1̂− ĤMF(k)
)

.
The momentum distribution for the spin components n↑(↓)(k) can be evaluated using the

corresponding elements of the 8× 8 Green’s function matrix:

n↑(k) =< ψ†
A,k,↑ψA,k,↑ > + < ψ†

B,k,↑ψB,k,↑ >= β−1 ∑
ıωm

[G11(k, ıωm) + G22(k, ıωm)] ,

n↓(k) =< ψ†
A,k,↓ψA,k,↓ > + < ψ†

B,k,↓ψB,k,↓ >= β−1 ∑
ıωm

[G55(k, ıωm) + G66(k, ıωm)] .

Very similarly, one can derive a set of two gap equations ∆A = U < ψA,−k,↓ψA,k,↑ >=

Uβ−1 ∑ıωm G(2)
58 (k, ıωm), ∆B = U < ψB,−k,↓ψB,k,↑ >= Uβ−1 ∑ıωm G(2)

67 (k, ıωm), which at a zero
temperature assume the form:

∆A = U ∑
k∈BZ

[
B(2)

58 (k) + D(2)
58 (k)

]
, ∆B = U ∑

k∈BZ

[
B(2)

67 (k) + D(2)
67 (k)

]
. (5)

Our next step is to solve the gap Equations (5) assuming t′ = −0.15t (the same value has
been used previously in [21]). At x = 1/2, i.e., 3t′ + mAB = 3

√
3λ, the band structure is

at a topological phase transition, because the Dirac bands at points K = (2π/(3a), 2π/(3
√

3a)
or K′ = (2π/(3a),−2π/(3

√
3a)) being massless (at x = 1/2, we have ω4(kK) = 0 and ω2(kK′) = 0.

Let us assume that ∆B = α∆A, so we use Equations (5) to obtain an equation, α = f (α, ∆A), for α and
∆A with
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f (α, ∆A) =
∑k∈BZ

[
B(2)

67 (k) + D(2)
67 (k)

]
∑k∈BZ

[
B(2)

58 (k) + D(2)
58 (k)

] (6)

Next, we fixed the value of ∆A, and solve iteratively our equation for α. Having α and ∆A,
we used Equation (5) to obtain the corresponding value of U. The results of our numerical calculations
for x = 1/2 are presented in Figure 3. The minimum value of the Hubbard interaction that creates
non-zero superfluid gaps is almost the same with and without the NNN hopping term, as can be
seen. The difference between the two gaps becomes important for higher values of U. The fact that
the minimum value Uc ≈ 2.6 that can produce non-zero gap (or a Cooperon bound state, particularly
in the vicinity of the Gamma point at which the dispersion has its minimum) has been observed
previously in Ref. [22]. Our numerical results that Uc does not change significantly with and without
NNN hopping term tells us that on-site attractive interaction, rather than the NNN term, boosts the
formation of the a Cooperon bound state.
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Figure 3. The Hubbard attractive interaction U vs. the s-wave gap (gaps) calculated for x = 1/2:
(a) t′ = 0, (b) t′ = −0.15t.
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3. Discussion

To summarize, we use the mean-field approximation to numerically calculate the phase diagram
of the attractive KMH model with NNN hoping at half filling, which interpolates the trivial and the
non-trivial topological states. It is shown that, as soon as the NNN hoping is included, we have to
solve two mean-field gap equations for ∆A and ∆B, instead of a single gap equation for ∆ in the case
when NNN hopping is neglected.

Recently, the possibility to have superconducting instability in the attractive KMH model has
been analyzed within the T-matrix approximation [22]. The question that naturally arises here is about
the contributions due to the bubble diagrams, which are included in the Bethe–Salpeter (BS) equation,
but neglected by the T-matrix approximation. In Ref. [23], we apply the BS formalism to calculate the
slope of the Goldstone mode and the corresponding sound velocity. We found 8% difference between
the values of the sound velocity provided by the T-matrix approximation and the BS equation.

It is known that the Gaussian approximation also neglects the bubble diagrams, but, in a square
lattice, the difference between the speeds of the sound calculated in the Gaussian and in the BS
approximations is about 25% (see Figure 10 in Ref. [24]). To explain the difference of 8% in our
numerical calculations, we refer to the system parameters: x = 1, λ = 0.1t, U = 2.69t, and ∆ = 0.151t.
From the value of λ follows that Eg ≈ 0.52t, and, therefore, the phase diagram is very close to that
presented in Figure 2. From another point of view, the value of U = 2.69t tells us that the system is
very close to the topological phase transition line at x = 1. The fact that close to the phase transition
boundary the speed of sound calculated with in the Gaussian and the BS approaches is essentially the
same as has been previously found in a square lattice [25]. Thus, it is natural to expect that away from
the phase transition boundary contributions due to the bubble diagrams will be more important.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Single-Particle Excitations in the Mean-Field Approximation

The 4× 4 blocks Ĥ1,2(k) of the mean-field KMH Hamiltonian are defined as:

Ĥ1(k) =


h1(k) + Z(k)−mAB h(k) 0 ∆A

h∗(k) h1(k)− Z(k) + mAB ∆B 0
0 ∆B −h1(k) + Z(k)−mAB −h∗(k)

∆A 0 −h(k) −h1(k)− Z(k) + mAB

 .

The block Ĥ2(k) follows from Ĥ1(k) replacing Z(k) and ∆A,B by −Z(k) and −∆A,B.
The eigenvalues of the 8× 8 Hamiltonian are as follows:

ω1(k) =
√

Ω2
−(k) + ω2

−(k), ω2(k) =
√

Ω2
−(k)−ω2

−(k), ω5(k) = −ω1(k), ω6(k) = −ω2(k),

ω3(k) =
√

Ω2
+(k) + ω2

+(k), ω4(k) =
√

Ω2
+(k)−ω2

+(k), ω7(k) = −ω3(k), ω8(k) = −ω4(k),

Ω±(k) =
√
(∆2 + δ2)/4 + h2

1(k) + |h(k)|2 + (mAB ± Z(k))2, ∆ = ∆A + ∆B, δ = ∆A − ∆B,

ω2
±(k) =

√
4h2

1(k) [|h(k)|2 + (mAB ± Z(k))2] + δ2 [∆2/4 + |h(k)|2]− 2δ∆h1(k)(mAB ± Z(k)).
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