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ABSTRACT
Convenience is a strong driver for the evolution of technology. Such
efforts have given rise to the Internet-of-Things (IoT), defined as the
network of everyday devices (i.e., “things”) ranging from light bulbs
to smart speakers, connected to the Internet and each other. IoT
devices frequently transmit data wirelessly which can be passively
collected by an adversary. In this work we present a methodology
with which to perform device classification on encrypted traffic
in a protocol-agnostic manner by applying network flow analysis
to link-level data. Our evaluation demonstrates successful device
classification for 15 device categories with an overall weighted
F1-Score of 95% on a dataset consisting of Wi-Fi, Bluetooth, and
Zigbee traffic. Furthermore, we explore model transferability be-
tween encrypted and decrypted datasets on these three networking
protocols and present our flow generation tool, ProtoFlow.
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1 INTRODUCTION
Our world is becoming increasingly connected. As technology and
society move toward automation and convenience, innovations
in wireless technology continue to contribute to an increasingly
dense Internet of Things (IoT). IoT can be defined as the connection
of a variety of heterogeneous devices including everyday existing
objects to communicate and integrate with each other to collect,
generate, process, and exchange data [1]. These technologies give
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rise to smart homes, which “incorporate common devices that con-
trol features of the home” [23]. With IoT becoming more prevalent,
the attack surface expands to more devices within the home for ex-
ploitation due to weak security, insecure network services, insecure
update mechanisms, and more [21, 28]. One such notable instance is
the Mirai attack in 2016: a wide-scale distributed denial-of-service
(DDoS) attack propagated by the use of default passwords present
in IoT devices [3].

Since IoT devices communicate frequently with one another and
services over the Internet, the risk to private information is high.
Even with encrypted traffic, inference attacks can be performed
through collection and observation of publicly-viewable data. For
example, passive network observation and prior knowledge of hu-
man behavior can be combined to infer home occupant activities [5].
Recent works have shown traffic information, even when encrypted
over TCP, can be classified based on communication patterns, most
of which include traffic flow [9, 10, 13]. However, these approaches
do not include flow creation and classification on the link-level
with various networking protocols, as we do.

Traffic flows represent communications between devices. For
traffic on the link-level whose higher-level information is encrypted,
only MAC-like addresses and quantitative packet data such as sizes
are present. However, the communications between devices are
still visible within packet captures. As such, one can still derive
statistical information from the quantitative packet data, without
network association. We study flows in an agnostic manner (i.e.,
equivalent features) across three networking protocols to extract
information which spans more devices, instead of studying them
separately. We utilize traffic from the link-level on these protocols
to experiment with classification of devices, noting predictable
behaviors from their communications and sizes [25].

Our contributions are as follows:

(1) Flow-based link-level device classification: We describe
a flow-based approach to IoT device classification of en-
crypted traffic which can be generalized to different wireless
communication protocols/standards. The method is evalu-
ated on 15 Zigbee, Wi-Fi and Bluetooth Low Energy device
types on the link-level achieving an overall, weighted F1-
score of 95% for the best model.

(2) Study of interchangeability of encrypted and unen-
crypted traffic for device classification: We demonstrate
that packet sizes between the decrypted and unencrypted
versions of a packet capture remain the same. Then, we
explore the application of machine learning (ML) between
these two versions of a packet capture to classify device
types.
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(3) ProtoFlow: An extensible open-source tool for the gener-
ation protocol-agnostic flow tables from standard packet
captures.

The rest of this paper is organized as follows. Section 2 discusses
the technical background. Section 3 presents closely related work.
Section 4 provides insight to howwe structure and prepare our data,
our tool, and the relationship between encrypted and unencrypted
data. Section 5 describes our experiment design while Section 6
discusses the classification results. Finally, Section 7 presents future
work and conclusions.

2 BACKGROUND
In this section we discuss the wireless technology standards we eval-
uated (Wi-Fi, Bluetooth Low Energy, and Zigbee) and the concept
of intra-device data flows.

2.1 Wireless Networking Protocols
IoT devices communicate through various networking protocols.
These networking protocols have different behaviors depending on
factors such as hardware constraints or locale of operation, which
requires them to be analyzed separately. However, their unifica-
tion would enable their analysis to take place on a macro-level
for the smarthome environment. For our work, we study Wi-Fi,
Bluetooth Low Energy (BTLE), and Zigbee, based on their popular-
ity [8, 16, 26]. The Open Systems Interconnection (OSI) model is
commonly used to describe the standard for network communica-
tion stacks [18]. Here, we operate on the link-level, or layer two.
Data is packaged at the link-level and handles physical transfer
and hardware addressing [18, 27]. Furthermore, most encryption
techniques generally operate on higher levels, leaving link-level
data intact.

Different wireless technologies can be used depending on the
application. Wi-Fi enables wireless connection to the Internet and a
large area for local communication [6]. UsingWi-Fi, IoT devices can
be easily introduced into the home to connect with existing devices
and the Internet to communicate with their cloud-services [16, 29].
BTLE enables data transfer and audio streaming, but is low-power,
uses low data rates, and can support large-scale mesh networks [16].
Zigbee1 is designed for low-power communication. However, it
transmits at a lower data rate than Bluetooth and operates for a
very long time [11]. Furthermore, it also supports a large number of
nodes, easy deployment, interoperability, and self-healing [22, 24].

2.2 Intra-Device Data Flows
A traffic flow can be defined as a series of related attributes in a
communication between two devices. With such information, both
a uni- and bidirectional flow can be represented where unidirec-
tional flow is the series of communications between a source and
its destination, and bidirectional flow is the series of communica-
tions between both the source and destination, and the destination
and source (its inverse) [9, 13, 15]. A collection of flows can be
aggregated into a flow table data structure.

1https://csa-iot.org/all-solutions/zigbee/

Table 1: Flow Entry Features

Flow Entry Features
Source MAC Dest MAC
Source OUI Dest OUI
Bidirectional Total Packets Bidirectional Total Bytes
Source to Dest Total Bytes Dest to Source Total Bytes
Source to Dest Total Packets Dest to Source Total Packets
Source to Dest First Seen Time (ms) Dest to Source First Seen Time (ms)
Source to Dest Last Seen Time (ms) Dest to Source Last Seen Time (ms)
Source to Dest Total Duration (ms) Dest to Source Total Duration (ms)
Bidirectional Total Duration (ms) Source to Dest Min Packet Size
Source to Dest Max Packet Size Source to Dest Mean Packet Size
Source to Dest Stdev Packet Size Dest to Source Min Packet Size
Dest to Source Max Packet Size Dest to Source Mean Packet Size
Dest to Source Stdev Packet Size Bidirectional min Packet Size
Bidirectional Max Packet Size Bidirectional Mean Packet Size
Bidirectional Stdev Packet Size Source to Dest Transmission Rate (ms)
Dest to Source Transmission Rate (ms) Bidirectional Transmission Rate (ms)
Source to Dest Transmission Rate Bytes (ms) Dest to Source Transmission Rate Bytes (ms)
Bidirectional Transmission Rate Bytes (ms)

3 RELATEDWORK
As mentioned in Section 1, existing works explore the classification
of devices using link-level. We discuss some here and highlight the
differences in our contributions.

IoThound [2] classifies device types and performs anomaly de-
tection. Their work considers Bluetooth, Zigbee, and Wi-Fi using
packet information at various levels above, and including, the link
layer. They perform separate evaluations for each protocol, and
achieve above 94% accuracy for Wi-Fi, 97% for Zigbee, and 90%
for Bluetooth. The work focuses on an unsupervised clustering
approach. In contrast, we utilize three supervised machine learn-
ing algorithms, and compare their performance as a whole over
traffic from all protocols. Furthermore, our approach requires only
link-level information.

Kostas et al. propose IoTDevID [17], a system designed to classify
the model and brand of device. Performance of six different models
are evaluated on two widely used Wi-Fi datasets based on their
strong feature selection process. Using feature importance scoring,
followed by a Genetic Algorithm, the resulting features relate to
basic packet flags, sizes, and timings. The best results reach 94%
accuracy and a 93% F1-score. Similarly, Maiti et al. implement a
framework, PrEDeC [20], which performs device type classification
on link-level Wi-Fi traffic. Traffic is collected passively using a
commercial off-the-shelf radio. Classification is performed in real-
time to yield device types for devices in the immediate vicinity.
Due to the focus on Wi-Fi-specific features, both IoTDevID and
PrEDeC are limited to the classification of Wi-Fi devices whereas
our approach is generalizable to BTLE and Zigbee with comparable
results.

To our knowledge, no other work has performed device type
classification on the link-level for various protocols in an agnostic
manner.

4 METHODOLOGY
To achieve protocol-agnostic flow generation for classification pur-
poses, we observe that the captures between networking protocols
share the following information outside of the payload: timestamps,
MAC-like addresses, and packet length. These features are the only
ones available at the link-level. For instance, Wi-Fi traffic generally
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has information such as IP addresses and ports, but not on the
link-level.

Flow generation tools exist to perform the task of traffic flow
creation for Wi-Fi LAN traffic [4, 12]. For link-level traffic, however,
these tools produce incorrect results since they are designed for Wi-
Fi above the link-level. For this reason, we developed ProtoFlow2

as an extensible, open-source solution for generating traffic flows
from link-level (layer two) information, which is not hidden when
the traffic is encrypted at a higher level. The tool is capable of gener-
ating flows for any traffic capture that is recognizable by a standard
packet parsing library. This enables a versatile and customizable
tool that can create flows for any networking protocol, which in
our case includes Wi-Fi, BTLE, and Zigbee.

As input, ProtoFlow takes a packet capture and iterates through
the packets to calculate statistical attributes for each flow. To de-
tect the networking protocol being used, each packet contains the
protocols visible within the frame. PyShark is used to parse the
packets, followed by the use of NumPy to perform the statistical
calculations. As flows are parsed, a table is accumulated with flow
entries which represent device communications and their statistical
attributes (e.g., average packet size, standard deviation, minimum,
maximum, etc.). The tool will output a CSV file which represents
the final flow table for the capture.

4.1 Traffic Capturing
As introduced in Section 2, traffic is captured on layer two of the
OSI model, the link-level. This allows for all traffic to be observable
passively without association using the appropriate sensors for
Wi-Fi, Bluetooth, and Zigbee. Here, we describe how ProtoFlow
handles each.

4.1.1 802.11 Wi-Fi. Traffic can be captured on the link-level by
using network hardware available on most computers by putting
the network card into monitor mode. MAC address 2-tuples are
used to represent a flow. A forward-direction tuple is constructed
as: (𝑆𝑜𝑢𝑟𝑐𝑒_𝑀𝐴𝐶, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑀𝐴𝐶) and a backward-direction
tuple is the inverse. These two tuple types constitute a bidirectional
flow pair, which is identified on the first such encountered pair.

4.1.2 Bluetooth & Bluetooth LE. Bluetooth and BLE link-level traf-
fic can be captured using the Ubertooth One3 which enables one to
sniff and follow active Bluetooth and BLE connections. Differences
exists in how the source and destination are referred, depending on
if the communication is a broadcast or a communication between
two devices:

• Broadcast packet: Source is an advertising address
(FF:FF:FF:FF:FF:FF is still the broadcast destination)

• Source to destination communication packet:The source
address is a scanning address and the destination address is
an advertising address.

To create an entry from these cases, the sources and destinations
are organized as such:

• Broadcast: Source = Scanning Address, Destination =
FF:FF:FF:FF:FF:FF. In other words, an entry is still created
for this pair.

2https://github.com/Gabriel-Morales/ProtoFlow
3https://greatscottgadgets.com/ubertoothone/

Figure 1: Flow to ML Pipeline

• Source-to-Destination: Source = Scanning Address, Desti-
nation = Advertising Address

4.1.3 Zigbee. Zigbee traffic can be sniffed via the APImote4. Source
and destination pairs are typically represented as either two byte
hex value (16 bits), or an eight-byte extended address (64 bits). In the
case of a two-byte or eight-byte address, the (𝑆𝑜𝑢𝑟𝑐𝑒, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)
tuple structure is still used. For example: (0𝑥743𝐹, 0𝑥𝐹𝐹3𝐵).

4.2 Protocol Agnostic Link-level Classification
Any packet capture obtained through means of link-level collection
can be passed to ProtoFlow to output their respective flow tables.
When parsing a packet capture binary file, ProtoFlow inserts an
auxiliary column in the feature list entitled ‘protocol’, denoting the
networking protocol a flow is captured under. The values for this
column are Z for Zigbee, B for BTLE, and W for Wi-Fi.

Figure 1 displays the workflow to capture and create a flow table
CSV file using ProtoFlow. Once the flow table is generated for each
of the protocols individually, an aggregate flow table is created
through a Pandas DataFrame.

The structure of the data is uniform across all networking proto-
cols passed through ProtoFlow. This means that all features, listed
in Table 1, are uniform and ensures that all data can be merged
together seamlessly. Each flow entry is labeled based on its source
device (i.e., the sender). Table 2 includes the 15 device types used
in our experiments and their detail. The category of the device,
networking protocol, and the device are listed.

IoT devices behave differently based on the networking proto-
col. For instance, a BTLE device may only transmit data in short
bursts and go back to sleep, while some Wi-Fi devices may be on
constantly. Due to these factors, the flows for each device can be dif-
ferent across the protocols, posing a challenge to protocol-agnostic
device classification. To address this, we abstract the specific device
classes to a broader category, which spans across these networking
protocols. For example: Bulb_A operates on Wi-Fi, and Bulb_B op-
erates on Zigbee. Instead of labeling each flow as Bulb_A or Bulb_B,
the label is abstracted to Bulb, thus enabling larger label coverage.

4https://apimote.com/
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Table 2: Base link-level Lab Devices Captured

Category Wireless Standard Detail
streaming stick Wi-Fi Amazon Fire TV Stick Streaming Media Player

Google Chromecast
router Wi-Fi Asus Router RT-N12

Asus RT-AC1200GE
router Wi-Fi & Zigbee Tp-Link Kasa Router
smart lock Bluetooth 2x August Smart Lock
ereader Wi-Fi Barnes & Noble Nook

Amazon Kindle
smart speaker Bluetooth & Wi-Fi Bose Home Speaker 300
smart speaker Bluetooth & Wi-Fi Sonose One SL
smart speaker Wi-Fi & Zigbee Amazon Echo with Hub
smart switch Wi-Fi 5x C by GE 3-Wire On/Off Toggle
smart assistant Wi-Fi & Zigbee Amazon Echo with Hub
fitnesss tracker Bluetooth Samsung Galaxy Wear Active

Fitbit Charge 4 Health & Fitness Tracker
smartphone Wi-Fi & Bluetooth Galaxy A21

Google Pixel 4a
smart vacuum Wi-Fi iRobot Roomba
smart pet feeder Wi-Fi PETIKIT Wi-Fi-enabled feeders
smart bridge Zigbee & Wi-Fi Philips Hue Bridge
smart bulb Zigbee x3 Philips Hue Bulb
smart plug Zigbee x10 Generic Smart Plug
smart camera Wi-Fi x2 Blink mini camera

x2 Kasa Spot

4.3 Encryption-Decryption Packet
Transferability

Packet sizes are consistent when comparing encrypted packet cap-
ture data and its respective unencrypted data. We hypothesize that,
since this relationship exists and a majority of the features are sta-
tistical, flows generated from publicly-available unencrypted data
sets could be used to infer device types from encrypted data. Fur-
thermore, this implies that the same flow tables should be produced
by ProtoFlow for the encrypted and unencrypted versions of the
same packet captures.

Figure 2 shows the comparison for an identical packet capture on
Wi-Fi. Figure 2 (a) displays a packet capture that has been decrypted
using the network password, which then reveals details such as
TCP, UDP, IP addresses, etc. Figure 2 (b) is the same packet capture
entirely encrypted on the link-level. Each of the packets shown are
the same sequentially, and are identical in size. When comparing
the encrypted and decrypted versions of a packet capture for both
Zigbee and Bluetooth, the packet sizes are also identical in the same
manner as Wi-Fi.

5 EXPERIMENTAL DESIGN
In this section we describe the process and implementation of col-
lecting our data. Next, we see if it is possible to use both types of
data to perform device classification between each other. Conse-
quently, we state the following research questions (RQs):

• RQ1: Can IoT devices, on various networking protocols,
successfully be identified using machine learning on the
link-layer?

• RQ2: Can statistical flows developed from networked (un-
encrypted) traffic be used to identify device flows developed
from link-layer (encrypted) traffic?

a. LAN Traffic Capture (Unencrypted)

b. 802.11 link-level Traffic Capture (Encrypted)

Figure 2: Wi-Fi encrypted vs decrypted

5.1 Link-Layer Device Classification
A Raspberry Pi (RPI) 400 is set into monitor mode to capture traffic
without being connected to the LAN, Bluetooth traffic is captured
using an Ubertooth One, and Zigbee traffic is captured using an
Apimote. We interact with each lab device to generate more traffic.
All traffic is periodically uploaded to an internal server for a week,
then passed through ProtoFlow to create the CSV flow tables for
each capture. The CSV files are merged into a large flow table, then
labelled by cross-referencing a device database and thier identifiers.
The labels are abstracted using the technique from Section 4.2.

ThreeML algorithms are employed: Random Forest (RF), Support
Vector Machine (SVM), and K-Nearest Neighbors (KNN). As a pre-
processing step, devices not in our database are removed and, to
fix class imbalance, a random sampling of 7,500 routers is removed.
In total, the data distribution is 2,726 samples. All models receive
a train/test split through a series of parameter testing, reaching a
performance peak at 50% split. The RF model has a max depth of
11. The SVM has 1250 max iterations and a regularization of 1.25.
The KNN model retains the default scikit configuration.

5.2 Encryption-Decryption Packet
Relationships and Model Transferability

Two independent datasets are used in order to perform training
and testing separately. This helps measure transferability of the
models not only between different labs, but also if it is possible
to train models on unencrypted traffic, and use them to classify
devices on link-level traffic. The link-level traffic is obtained from
the dataset generated in Section 5.1. The unencrypted traffic used
is the UNSW IoT Device dataset [14], with traffic flows generated
using NFStream [4]. The UNSW dataset is processed the same as
the encrypted traffic flows, with each device type being abstracted.
The abstractions are the categories in Table 2.
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Table 3: Link-level Classification Results

KNN RF SVM
Device Class Precision Recall F1-Score Support Precision Recall F1-Score Support Precision Recall F1-Score Support
ereader 0% 0% 0% 3 0% 0% 0% 2 0% 0% 0% 3
fitness_tracker 0% 0% 0% 2 100% 50% 67% 2 100% 50% 67% 2
router 94% 95% 95% 420 100% 99% 99% 402 94% 99% 96% 403
smart_assistant 27% 50% 35% 14 73% 53% 62% 15 58% 44% 50% 16
smart_bridge 59% 64% 61% 69 88% 94% 91% 71 72% 42% 53% 74
smart_bulb 95% 86% 90% 22 95% 95% 95% 22 0% 0% 0% 22
smart_camera 94% 98% 96% 582 100% 99% 100% 595 80% 100% 89% 594
smart_lock 40% 33% 36% 6 83% 83% 83% 6 75% 86% 80% 7
smart_pet_feeder 43% 20% 27% 15 58% 64% 61% 11 50% 25% 33% 12
smart_plug 84% 98% 91% 94 99% 100% 99% 93 92% 53% 67% 93
smart_speaker 50% 40% 44% 20 91% 45% 61% 22 10% 6% 7% 18
smart_switch 64% 58% 61% 24 92% 82% 87% 28 50% 48% 49% 25
smart_vacuum 0% 0% 0% 1 0% 0% 0% 2 0% 0% 0% 1
smartphone 35% 23% 28% 60 56% 85% 68% 59 68% 31% 42% 62
streaming_stick 25% 6% 10% 31 72% 55% 62% 33 33% 10% 15% 31
Overall 84% 86% 84% 1363 95 94 95 1363 79 82 79 1363

UNSW data is used for training, which contains 946,655 samples.
For testing, we use our link-level dataset, containing 10,227 total
samples in the flow table. Our training set is much larger than
the prior task, which enables us to spend more time training for
each device flow. We will use deep learning which allows learning
and mapping more complex feature sets [7, 19]. We deploy a Long
Short Term Memory (LSTM) model, since flow data is sequential.
Implemented in TensorFlow, the model is trained for 250 epochs
on a batch size of 80, with scaled features.

5.2.1 Zigbee Traffic Capture and Decryption. A TI-CC2531 is used
to capture Zigbee encrypted traffic. The TI-CC2531 displays the
‘handshake’ packets within a capture to decrypt it. We capture
traffic using the Killerbee framework running on a RPI 400 and save
it into a .pcap file. Using Wireshark to read the packet capture, we
input a global Trust Center Key5, to decrypt of the transport key
exchange, which is captured when a new device joins the Zigbee
network. This key is also input into Wireshark thereafter, allowing
for traffic using that transport key to be visible.

5.2.2 Bluetooth Low Energy (BTLE) Traffic Capture and Decryption.
Initially, all Bluetooth traffic was captured using an Ubertooth One.
However, the Ubertooth One frequently hops between the Blue-
tooth channels, yielding incomplete captures, preventing proper
decryption. To solve this, we implement the reverse procedure:
convert the decrypted traffic to encrypted traffic using the same
algorithm as the specification.

Using a Pixel 4a, Bluetooth traffic is captured and stored in the
Host Controller Interface (HCI) logs on the phone. All data on the
HCI logs are decrypted by default. We then extract these logs using
the Android Debug Bridge (adb), and analyze them with Wireshark.
The HCI log file is read and exported to the .pcap file format for
manual parsing using our own scripts. The scripts are written in
Python, with the libraries Scapy and PyCryptodome. Scapy is used
to parse the packet captures and PyCryptodome is used to encrypt
the payload of each packet to export an identical, but encrypted,
version of the packet capture. The encryption mechanism used is

5https://www.hal9k.dk/sniffing-philips-hue-zigbee-traffic-with-wireshark/

Table 4: LSTM Transferability Results

Device Class Precision Recall F1-Score Support
ereader 0% 0% 0% 6
fitness_tracker 0% 0% 0% 6
router 99% 39% 56% 8325
smart_assistant 1% 9% 1% 32
smart_bridge 16% 28% 20% 126
smart_bulb 0% 2% 0% 49
smart_camera 2% 3% 3% 1171
smart_lock 2% 7% 4% 15
smart_pet_feeder 1% 12% 1% 26
smart_plug 0% 2% 1% 181
smart_speaker 1% 8% 2% 36
smart_switch 2% 9% 3% 46
smart_vacuum 0% 0% 0% 3
smartphone 11% 4% 6% 134
streaming_stick 0% 3% 0% 60
Overall 81% 32% 46% 10216

the 128-bit AES in CCM mode, which uses the same encryption
method for securing data6.

6 EXPERIMENTAL RESULTS
This section discusses the results for our research questions ob-
tained from the two classification tasks using various models.

6.1 RQ1: Link-level Device Classification
Table 3 represents the results obtained from performing device
classification on our fully-encrypted dataset on the link-level. RF
obtains a weighted average F1-Score of 95%, with the best indi-
vidual classes being the smart camera at 100% and routers at 99%.
Classes with a smaller amount of support have a lower F1-Score
in general. KNN has the second best weighted average F1-Score at
84%. Unlike the RF, the KNN does not reach an F1-Score of 100%
for any category. However, it remains comparable to the RF with
smart bulb, smart camera, smart plug, and router. The SVM is the
worst with a weighted average F1-Score of 79%. The class for this
model with the highest F1-Score is the router.

6https://www.bluetooth.com/specifications/specs/?types=adopted&keyword=Core&filter=
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6.2 RQ2: Encryption-Decryption Packet
Transferability

Table 4 shows the results for training on UNSW data, and test-
ing on our link-level data. The results are not as good as training
and testing on a local lab level. Five out of the 15 classes obtain
an F1-Score of 0%. There are two possible reasons for this: The
patterns of network data collected and subsequent flows created
are non-deterministic and not necessarily representative between
environments. Second, the support for most of our data is also low.
The overall F1-Score is 46%, which is improved mainly by the router
class (56% F1-Score) and the smart bridge class (20% F1-Score). Aside
from the router and smart bridge, eight out of 15 classes have F1
scores of a non-zero single digit. Based on the high F1-Scores for
some classes, there is a potential for the other scores to be higher if
we obtain more representative data from identical devices, and a
larger breadth of data for both training and testing. This is more
important if we seek to transfer models between environments. We
have a lower distribution of classes in our encrypted dataset, which
can also lower results; however, UNSW has a variety of devices of
the same manufacturer as us, but not necessarily the same device
type. Another way to boost the scores is extended training and
better encrypted-decrypted feature selection.

7 CONCLUSION AND FUTUREWORK
In this paper we present methods with which to classify device
types on fully-encrypted traffic from the link-level across three
networking protocols: Wi-Fi, Zigbee, and Bluetooth. We success-
fully classify devices on these three networking protocols with a
weighted average F1-Score reaching 95% with Random Forest. We
then show that packet lengths remain the same for encrypted and
unencrypted versions of the same data. As such, identical statisti-
cal flows based on packet length can be created. Results for this
task show promise with more training data and potentially deep-
learning techniques. Finally, we release an open-source tool capable
of generating traffic flows for any parseable networking protocol.

For future work, we plan to revisit RQ2 with more represen-
tative data that contains specific device similarity, and identify
additional features that are still derivable from the link-level to
maintain protocol-agnosticism. Following classification success,
we also find potential in novel generative modeling using state-
of-the-art approaches. Such approaches may include variants of
stable-diffusion models to support binary data as opposed to image
generation related tasks. Using these models, rather than a Gener-
ative Adversarial Network or LSTM networks, one may generate
unique traffic with a higher-quality training data distribution.
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