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ABSTRACT

This article presents a harmonized decision modeling framework for smart grid component allocation. The
harmonized decision modeling process is intended to realize a decision support system for the smart grid system
analysis. The traditional decision modeling processes have mainly stresses the economic feasibility of smart grid
systems. However, the mathematical programming-based decision models for component allocation in smart grid
systems are often designed without the enough consideration on the operational circumstances of component, and
it reduces the utility of the solution. Our framework considers the operational circumstances of the system and the
feasibility in terms of solving process for achieving a practical decision. As a case study, we present a component
allocation of Phasor Measurement Units (PMUs) in smart grid systems. With the obtained results, the advantages
gained from the harmonized decision modeling process are assessed and discussed.

1. INTRODUCTION

Recently, the smart grid has been proposed as an alternative modern power grid system [1, 2]. With various
characteristics of the smart grid, the different perspectives of smart grid functions have been highlighted for extending
the boundaries of the smart grid [3-5]. However, the realization of those functionalities causes complicated questions.
Especially, as a prerequisite for the initiation of the smart grid, the allocation of smart grid components needs to be
properly determined with the consideration of the actual functions of components in the system.

A primary role of the decision models for smart grid systems should be able to maximize the effectiveness of
investment, by minimizing the cost for the optimal resource allocation in a given system. Based on the importance of
the economic feasibility, there have been various topics of decision making for the optimal component allocation in the
smart grid industry; however, there is a limited effort to realize the decision making framework, which can harmonize
the physical and operational aspects of smart grid components. Due to the ruinous complexity of an exhaustive
approach, each model has been designed separately based on its own assumptions without enough reflection of their
functions. Although the functions of the smart grid significantly vary based on the definition of the smart grid systems
and the scope of the investigation, several key functions that have higher priority and importance in the deployment of
smart grid technologies are introduced — refereeing the reports from National Institute of Standard and Technology
(NIST) [6] and Electrical Power Research Institute (EPRI) [7, 8].

This paper presents a harmonized decision modeling process that can be employed to realize a decision support
system for the smart grid system analysis. This work is based on an idea that the component allocation strategy in smart
grid systems should reflect the operational circumstances and should maintain the model hospitable for achieving a
practical decision considering the functionality of smart grid systems. In this research, a PMU allocation case is used to
describe the proposed processes and the IEEE 30 bus network is used to validate the work. In the next section, the
exiting literature related to the decision making for the smart grid is presented. In Section 3, the harmonized decision
modeling process is described. In Section 4, a component allocation is modeled and solved by using the harmonized
decision model.
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2. LITERATURE REVIEW

For this literature review, four key functional areas (i.e., demand response, real-time wide-area situational
awareness, distributed electric units, and distribution grid management) are selected based on the discussion in [6-9].

Demand response is a management strategy, which encourages energy consumption to control energy use in
response to supply condition. This function also enables less expensive management to intelligently influence a load
than the establishment of a new utility facility [10]. Bakker et al. [11] try to design the optimization methodology,
which can incorporate communication between different technologies to reshape the energy demand profile. Due to
much computational power required, their planning and control methodology is organized in a tree structure applying
three steps of optimization levels. Mohsenian-Rad and Leon-Garcia [12] point out problems in utilization of the
potential benefits of real-time pricing tariffs. They propose an optimal and automatic residential energy consumption
scheduling framework for achieving a desired trade-off between minimizing the electricity payment and minimizing the
waiting time for the operation of each appliance in household.

Real-time wide-area situational awareness plays a crucial role in smart grid as a measure for grid protection and
control by providing time-synchronized data of power system operating states [13]. The information that system
operators have influences on how effective a grid system’s reaction will be against the contingencies. Zhu and Abur
[14] describe the need for phasor measurements to overcome the limitation of conventional measurements. Authors
show that by including redundant phasor information, errors in the parameters can be correctly identified. Aminifar et
al. [15] present a model for the optimal placement of phasor measurement units (PMUs) considering contingency
conditions (i.e., line outages and loss of measurements). Their work shows that integer programming can find the global
optimality of PMU allocation problem with reasonable computational complexity.

The emergence of smart grid has stimulated the electric units to be distributed from one centralized spot [16]. This
involves distributed generation unit, electricity storage, electric vehicles, and the qualitative improvement in demand
side management. Bu et al. [17] present a distributed stochastic power generation unit commitment scheme by using
hidden Markov models and a Markov-modulated Poisson process for modeling renewable energy resources and the
power demand load, respectively. The effectiveness of their scheme is evaluated in terms of the cost of energy and
pollutant emission through the simulation. Jia et al. [ 18] introduce the optimization process of the sizing and siting of
electric vehicle charging stations. Their approach defines variables to represent the charging demand, and formulates
the problem with a mixed integer quadratic programming with a graph theory.

Distribution grid management focuses on maximizing performance of electrical components of networked
distribution systems and integrating them with transmission systems and customer operations [6]. Oshiro et al. [19]
aims to perform voltage control in distribution system by the cooperative control between the interfaced inverter with
distributed generation and the existing voltage control devices. In their work, a one-day schedule of voltage references
for the control devices is determined by the optimization calculation. In [20], Soma et al. develop a model of
Information and Communication Technology (ICT) system that considers the position of ICT infrastructure, and then
propose a decision making process for finding the optimal allocation of WiMAX antennas with an active distribution
network planning algorithm. In addition, Galli et al. [21] point that there was not enough efforts to give quantitative
guidelines on how to choose one communication technology over the other in the design of smart grid. They analysed
the role of power-line communications, and conducted electrical and topological analysis of the power distribution
network.

3. HARMONIZED DECISION MODELING PROCESSES FOR SMART GRID COMPONENT ALLOCATION

EPRI initiated a discussion regarding the financial investment needed to create a viable smart grid. Through this
report, expected components and estimated costs for the realization of the smart grid were introduced. It shows that the
installation of components is an imperative tack for the initiation of smart grid [7]. Although there could be various
assumptions and conditions beyond this study that need to be taken into consideration, a basic equation which is
generally used for the various components is formulated as Eq (1). As it shows, there are two main variables in
installation of components, which are the cost per component and the number of components needed. Since the number
of unit can be a variable that a decision maker can adjust based on the given condition (while the cost of component is
assumed as a predetermined factor), the number of unit has been the subject of decision to be made in component
allocation. Since there are thousands of possible types of components to be installed in smart grid systems, knowing
how to deploy those components optimally is a crucial objective to be fulfilled by a smart grid analysis system.
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where, ¢, = cost per component u, u, = number of components %, and u = a component of set {/ which consists of
necessary components for a viable smart grid.

Although Eq (1) explicitly shows that the number of unit is a crucial and controllable factor in resource allocation,
excessive concentration on reducing the number of units to be installed can lead to an impractical decision. Since the
purpose of the traditional decision making has been the minimization of the amount of financial investment while
ensuring the normal and stable operations of a given system, the traditional processes have mainly stressed the aspect of
economic feasibility rather than the considerations on the substantive operational aspects. However, the more suitable
decision model process has to animate the model by incorporating the operational aspect of system. Specifically, the
decision model should include the considerations on the functionality of component for enhancing the utility of solution,
as well as the economic feasibility by minimizing cost. Feasibility of the model needs to be reinforced and confirmed by
a decision maker for embracing the variability in operation of system.

Due to the complexity of smart grid system, it is neither an extemporary nor a simple task to find a generalized
methodology that can define the model structure applied in smart grid context. In this article, we propose a general
decision modeling process for smart grid component allocation as shown in Figure 1.

Function Requirement Problem > Model

Identification [ °| Detection | °| Structuring | Building [ | Evaluation

Figure 1. Harmonized decision modeling process.

When applying this decision modeling process in the smart grid context, a decision maker needs to identify the
functions, which are expected as results of the installation and operation of the component in a given grid system. Since
the complexity in function identification (e.g., an entanglement between functionalities over multiple domains) is
frequently arisen, this step encourages a decision maker to conduct the exhaustive review on the functional effects of
the component.

While the step of function identification is for sketching a rough outline of decision to be made, the requirement
detection process requires the decision maker to study the problem with various angles and depths for defining
important points to be handled through the model. The requirements discovered in this process are the requirements of
system, which is directly related to the realization of elemental operation, and also the decision requirements, which
should involve the circumstantial consideration.

The problem structuring is the next step, and a focused way of thinking [22] for solving the problem given by the
function and the system requirement. Problem structuring can be conducted with identification of several parts of a
problem, such as goals, variables, parameters, constraints, and possible uncertainties [23]. The model building is very
dynamic process interacting with the problem structuring. Particularly, the feasibility of model must be considered in
this process. In contrast with the prior processes that specialize the decision model based on the functions and
requirements discovered, the model building process must accord flexibility to the model, so that it can tolerate the
inherent complexity of the problem and the variability in the operational application. After the solving process
according to the harmonized decision modeling, the results need to be evaluated by the stakeholder.

4. PHASOR MEASUREMENT UNIT ALLOCATION WITH HARMONIZED DECISION MODELING

In the respect of system reliability and security, the operation of stable monitoring system is a fundamental
prerequisite. As an effort for pursuing the sound measurement and estimation of state of electricity delivery, the
technology of Phasor Measurement Unit (PMU) has been developed over the past few decades [24] and now it is a
leading candidate of electrical performance measurement technology [14]. One of the critical issues in utilizing PMUs
has been the optimal PMU allocation. In this section, the PMU allocation is chosen as a representative component
allocation task, and the modeling process complying with the harmonized decision modeling process is applied.

Although there has been a noticeable research works dealing with the PMU allocation [25], those research works
have mainly focuses on the minimization of number of PMUs to be placed in a given system. As a result, PMU
allocation has been apt to simply reduce the number of PMU, rather than to consider the harmonization of model with
the environment of the region where PMUs will function and with the variability of system operation. Based on the
proposed sequence of decision modeling methodology, PMU placement problem can be restructured.

The primary function that a decision maker or stakeholder in a business of PMU operation could anticipate is the
electrical state measurement for determining the health of the electricity grid system. Based on this primary function,
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several derived functions can also be discovered (e.g., prevention of power outage, load control including the load
shedding, and increase in power quality).

Now the requirements for achieving those functions need to be detected in the decision modeling. The configuration
of PMUs should observe buses as many as possible, in order to effectively actualize the primary function, which is to
allow a system operator to determine the health condition of electricity grid system. Since the level of observation,
which indicates how many buses can be observed by the set of PMUs is decided by the configuration of PMUs, a
decision maker needs to understand the observation rule acting in PMU network. The rules used in this paper are listed
below and the first two rules are adapted from [26].

- Rule 1: Installation of a PMU in a given bus makes itself and other buses incident to that bus observable. This
implies that the voltage phasors of these buses are known.

- Rule 2: If only one bus is unobservable among a zero-injection bus and its entire incident buses, it can be
observable using the Kirchhoftf’s current law (KCL) at the zero-injection bus.

In addition, one additional rule (according to [27]) is applied in this paper to minimize the number of PMU by
avoiding the overlap of observability caused by multiple zero-injection buses.

- Rule 3: If a bus is connected to two or more zero-injection buses, there is no need for the bus to be observed by
all of the connected zero-injection buses.

In addition to the primary function, the examination considering the subsidiary functionalities of the component
encourages a decision maker to expand the boundary of idea on requirement detection. As stated above, three concrete
functions can be taken into account, that are prevention of power outage, load control including load shedding, and the
increase in power quality. First, real-time monitoring can detect the fault in the energy grid system, and suppress the
wide spread of power outage. Since the impact of power outage varies depending on the situation where it occurs, it is
important to consider the factor that could affect the significance of impact. The power outage impact can be
determined by considering the population that will be affected by a fault of a certain substation or lines linked to the
substation, the significance of electrical facilities operated by substations, and the presence of interregional area in each
region. For instance, the region that has more population would have greater importance than other regions in terms of
the importance of prevention of power outage. And the region that has a governmental agency highly relies on the
computer systems utilizing critical data would have to receive more significant attention than other regions. If a region
is acting as an interregional gate where connects two different regions, more considerations need to be located on that
region. Also, a load control is a noticeable function that would be performed by the utilization of PMU. When the load
control function is considered, the amount of electricity consumed in a specific region will come into the spotlight due
to the high possibility of the high demand region to be in need of the load control. As the last additional function, the
increase in power quality is expected to be dealt with in the PMU allocation. This function attracts the entity that is
sensitive to the quality of electricity. For example, to manufacturers producing subminiature devices (e.g.,
semiconductor chips), even a minimal change in electrical performance can seriously affect their productivity and the
quality of products. The requirements listed here are particularly meaningful in the demand side aspect, while other
aspects also exist: that are system interconnection, generator and line modeling, renewable integration, and congested
area requiring online monitoring. However, this paper focuses on the five selected requirements preferentially. The
other requirements will be considered in future research.

In the problem structuring, the requirements are entered in the model as objectives. To earn the technical margin of
modeling for further applicable operations, the design of model focuses on efficient solving process. Although the
determination of the significance of each factor through the systematic calculation is required, this calculation is
beyond the scope of this research. Thus, in this paper it is assumed that the valid calculation for each factor of each
region is done by a statistical decision support tool.

As a whole, there are six objectives in this PMU allocation considering smart grid system context: 1) minimization
of the number of PMUs to be installed; 2) maximization of population, which is supplied by substations observed by
PMUs; 3) maximization of significance of facilities in regions, which are supplied by substations observed by PMUs;
4) maximization of level of observation for interregional area; 5) maximization of amount of electricity demand of
regions, which are supplied by substations observed by PMUs; and 6) maximization of the number of facility sensitive
to the quality of electricity in regions observed by PMUs. Based on them, a multi-objective problem having six
objectives can be:

min 7 (x,), max F,(x,), max F,(x,), max F,(x,), max F;(x,), max F(x,), subjecttox, €S (2)
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where S is the set of feasible solutions in which x; = 1, if a PMU is placed at bus i, otherwise x; =0, forall i €{1, 2, ...,
n}, and n is the number of buses in a given system.

Apparently, this is a complex problem, which involves six different objectives, and it would be very hard for these
objectives to harmonize each other. In other words, these multi-objectives would be excessively competitive each other,
which could lead to the invalid solution. It means that the best PMU allocation for the one objective may not be the best
for the other objectives. Also, when it is recalled that the original PMU allocation has been a large-scale combinatorial
optimization problem, which finds the solution of Eq (3) [28], to solve a hexa-objective combinatorial problem having
two factors, number of PMU (Npy) and placement set S(Npy), becomes a formidable task.

min{ max R (N, S(N )} )
As a way to allow the tolerance to the model for solving process, the previous models need to be remodeled. By
remodeling Eq (3) to Eq (4), PMU allocation problem can be solved with deterministic approach.

N N
min (inj+max (Zrlj, subject to 7, >0 4)

i= i=1
where r; is the redundancy of observation of bus i by PMUs.

Now this bi-objective programming is remodeled by involving the considerations on functionality and requirements
of smart grid utilizing PMU. The minimization of number of PMUs to be installed (i.e., min F(x;)) is regarded as a
primary objective of PMU allocation and the other five objectives in Eq (5), which is related to the requirement of
harmonized modeling, are expressed as a function of redundancy. There are two distinctive features in this formulation.
It uses the weighted sum method, which utilizes a priori articulation of preferences, one of the main methods solving
multi-objective optimization, and it integrates all different parameters into the model as a function of redundancy, so
that the model can be used in various applicable circumstances of operation and also can retain the computational
margin in solving process. Egs (6-1) to (6-5) (in Table 1) show a set of model, which is generated from the harmonized
decision modeling process for PMU allocation in smart grid context.

min {ﬁ:x, —{Fz(n)+1’3(n)+F4(n)+Fs(n)+F6(r,~)}}

N N
— min zxi_z WiPili | WaSi; +W3tiri +W4diri 4 WGl

N N N N N
i=1 i=1
Z P Z Si Z l; Z d, Z ¢
i=1 i=1 i=1 i=1 i=1

ul Yl wp,  w,s, wit, wd. we. i > 5
in_z lpl + 21+ 3% + 4 l+ 5%i >SubJeCtt07’}_0 ()

N

= = Zpi ZN:Si ZN:ti ZN:di Zei
i=l i=1 i=1 =]

where, p; = population of regions where bus i supplies electricity, s; = significance of facilities in regions where bus i
supplies electricity, #; = index of interregional area, d; = electrical demand of regions where bus 7 supplies electricity, e;
= level of sensitivity of facilities in regions, where bus 7 supplies electricity, and w;, w,, w;, w, and ws,= weights for p;,
si, t;, d;, and e;, respectively. Each parameter in the objective function of redundancy is normalized by dividing it by sum
of parameters of all buses. Weight function w; implies the level of importance which a decision maker attributes.

(' +17)

=min

As a case study, IEEE 30 bus system is chosen and solved by using a mathematical model devised from harmonized
decision modeling process. An artificially made data set is also utilized in this problem as seen in Table 2. The
population, and electrical demand are randomly generated integral values within p,(people)E[5,000, 500,000], and
d(kWh)=pu where u(kWh)&[25, 50]. The ranges of three integral indices are presupposed as s;&[0, 5], £,€[0, 2], and
e,€[0, 2], respectively.
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Table 1. PMU allocation model generated from the harmonized decision modeling process.

Constraints Description
1, ifi=j N: the total number of buses of a given system
a, =11, if busiand j are connected, I: a set of buses in a given energy grid system
’ . Izy: a set of buses which are zero-injection buses or
0, otherwise (6-1) . . L
which are connected with zero-injection buses
1, if PMU atbusi 1, if busiisobservable . Inziv: a set of buses which are not related with
, = . ,and f, = . , Viel T
0, otherwise 0, otherwise zero-injection buses
For buses in zero-injection network, O: a set of buses which only have overlapped
62) zero-injection buses as incident buses

N N N
Zai/.x/. _(Z%Jff <0, andZaifx/ -f,20, Viel,,.
j=1 j=t =1

For buses not in zero-injection network,
N N N
Za,.jxj— Zaij £, <0, andZaijzl, Viel,,y.
J= J= =l

For overlap prevention,

N N
lea’jfj Zz;a"f —1+ Zgi,j’ Viely,
= =

] jEO/
> g2l VjeO

i€0;
andg, . > f;, VieO, VjeO.

For redundancy calculation,
N

1 _ .
7 —Zai/x,., Viel
=l

N
2 .
7 +Zaijxj21, Viel

J=1

N 1
andZaij—[ a,./](rf—l)so,
=

M=

<
N

O;: a set of incident zero-injection buses of j in O.
For making the formulation preventing the overlap
between zero-injection networks, variable gi; is
(6-3) designed.

Redundancy variable r; is divided into two
subordinate variables which are redundancy from
the rule 1 () and redundancy from the rule 2 ).

(6-1): a;; indicates connectivity between buses, x;
(6-4) variable indicates PMU placement at bus 7, and f; is
an indicator variable representing the observability
of bus i.

(6-2 and 3) corresponds to the observability rule 1
and 2 for buses in zero-injection network (6-2) and
for buses not in zero-injection network (6-3).

(6-4) corresponds to the observability rule 3. If a bus
is overlapped by two zero-injection networks, it is
(6-5) | not required to consider both of zero-injection
networks.

(6-5) calculates total redundancy over a given
system, which is to be maximized.

Table 2. Randomly generated parameters for IEEE 30 bus system.

bus 1 2 3 4 5 6 7 8

9 10 1" 12 13 14 15

o 84 52 | 496 | 124 | 372 | 130 | 203 | 320

329 | 163 | 475 | 53 | 337 | 29 48

s 2 2 4 4 3 5 3 2

4 2 2 0 1 1 3

t 0 2 1 2 1 2 2 1

0 2 2 1 0 1 1

d 24 22 | 218 | 38 | 174 | 61 63 | 144

161 | 54 | 143 | 17 88 13 23

e 0 0 1 1 0 0 1 1

0 0 2 2 0 0 0

bus | 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30

o 498 | 22 | 367 | 431 | 494 9 9 486

226 | 174 | 128 | 89 | 362 | 245 | 492

s 3 0 4 1 1 3 2 4 2 3 2 2 4 4 0
t 2 0 2 0 0 1 1 2 2 1 2 1 0 2 1
d 144 7 184 | 112 | 158 2 3 146 | 61 47 45 40 | 105 | 113 | 187
e 0 2 2 1 2 1 2 1 0 0 0 2 1 0 2

p= 10° people (population), d= 10° Wh (daily energy consumption)

Figure 2 shows the different optimal PMU allocations based on the different angles of modeling approach. In this
study, GAMS (General Algebraic Modeling System) software and a solver, CBC (COIN-OR Branch and Cut), are used
to solve this optimization problem. First diagram indicates the optimal PMU allocation point when this problem is dealt
with as a mere location selection problem based on the network configuration, and bus 2, 4, 10, 12, 15, 18, and 27 are
chosen to have PMUs. Second and third diagrams show the optimal PMU allocation, which are solved by the
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harmonized decision model. The different intention, i.e., weight, of the decision maker, as well as the utilization of
harmonized models could affect the component allocation strategy, 29% and 43% of disparity in allocation,
respectively. This result explicitly describes that the component allocation problem should incorporate the
considerations on the operation condition of component with the perspective of smart grid functioning.

Transmission line ® PMU —0) ACsource

Bus

(1) Original optimal PMU allocation (2) Harmonized optimal PMU allocation (3) Harmonized optimal PMU allocation
(a=0.5, b=0.1, ¢=0.1, d=0.2, e=0.1) (a=0.2, b=0.2, ¢=0.2, d=0.2, e=0.2)

Figure 2. Optimal PMU allocations for IEEE 30 bus system according to different operation circumstances.

When different kinds of solvers solve this model, it is checked that the solutions can vary depending on solvers’
own solving mechanisms. For instance, SCIP (Solving Constraint Integer Programs) gives 2,4,10,12,15,18, and 27 as
an optimal location set of PMUs for the third case (a=b=c=d=e¢=0.2), having 29% of disparity in PMU location
compared to CBC solver. It indicates that this harmonized PMU allocation programming still has complexity remained,
which needs to be alleviated through further research.

5. CONCLUSION

This paper proposed a harmonized decision model process with the aim of involvement of operational condition in
decision modeling. We intended to consider the requirements both of system and decision model for achieving the
functionality of component in the smart grid context. The management tools need to be optimized corresponding to the
system and the smart grid requires a decision, which can incorporate and harmonize the technologies with a given
energy grid circumstance for realizing an intelligent two-way electricity flow. In this study, the modeling methodology
was addressed for efficient solving process for the PMU allocation. For avoiding the ruinous complexity of decision
problem, a hexa-objective optimization problem was converted to a bi-objective problem by expressing the objectives
as a function of a main variable (i.e., redundancy). The results of applying the proposed method to the PMU allocation
showed that harmonized decision modeling approach can provide a decision maker a new strategy of component
allocation. Although the evaluation on validity of factors and weight in calculation was not thoroughly investigated yet,
this work can be a foundational discussion regarding the essential concept of the harmonized decision model process.
As a future work, the distributed renewable generation deserves considerable attention in terms of grid management,
because it causes various types of interconnection between components. Also the quantification and normalization of
dissimilar factors could be a huge range of investigation in itself. We will continue to investigate these aspects with the
harmonized decision model process. Finally, an in-depth study on the novel optimization methodologies, which could
solve the formidable multi-objective problem effectively with smart grid setting, is a promising research area.
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