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ABSTRACT A two-stage machine learning-based approach for creating synthetic phasor measurement unit
(PMU) data is proposed in this article. This approach leverages generative adversarial networks (GAN) in
data generation and incorporates neural ordinary differential equation (Neural ODE) to guarantee underlying
physical meaning. We utilize this approach to synthetically create massive eventful PMU data, which would
otherwise be difficult to obtain from the real world due to the critical energy infrastructure information (CEII)
protection. To illustrate the utility of such synthetic data for subsequent data-driven methods, we specifically
demonstrate the application of using synthetic PMU data for event classification by scaling up the real data
set. The addition of the synthetic PMU data to a small set of real PMU data is shown to have improved the
event classification accuracy by 2 to 5 percent.

INDEX TERMS Event classification, phasor measurement unit, generative adversarial network, neural
ODE.

I. INTRODUCTION

PHASORMeasurement Units (PMU) have been deployed
in the bulk transmission grid at an accelerated pace after

the 2003 U.S. Blackout [1]. Similarly, a number of other
high-resolution and time-synchronized measurement devices
such as frequency disturbance recorders (FDRs) have been
pilot-tested and deployed into the power grid. Collectively,
these measurement devices enable improved monitoring and
control of power system dynamics at a higher resolution.

As an important application for improving the situational
awareness, the event classification is usually triggered upon
the detection of an event. A timely and accurate event clas-
sification result can further serve as the basis for remedial,
preventive and proactive controls. Based on the current litera-
ture, there are two categories of approaches for event classifi-
cation: model-based approaches and data-driven approaches.
Several model-based approaches are briefly summarized in
[2] and its references, which will not be discussed in detail
here. It should be noted that all model-based event classifi-
cation approaches would encounter certain difficulties when
there is a significant gap between the available system model
and the physical reality [3], [4]. In this case, data-driven

approaches seem to be more suitable, since they are directly
based on the measurement data reflecting the actual status
of electrical quantities in power grids. Machine learning-
based event classification has been proposed and developed
in the past two decades exhibiting promising results [2], [5]–
[7]. Even regardless of data quality issues, a major hurdle
to apply these machine-learning based classifiers is usually
a lack of a sufficient data set for training. It is well-known
that more eventful data usually lead to a better classification
accuracy [5], [6]. However, it is extremely difficult, if not
infeasible, to acquire enough eventful data in practice [5]. It is
also worth mentioning that simulated data based on system
model is always preferred in training as long as the system
model is available and accurate. However, as discussed above,
an accurate system model in reality is currently not available
for most bulk power systems, while this situation will most
likely remain unchanged in the foreseeable future [3], [4].

To this end, this article aims at improving the classifi-
cation accuracy of machine learning-based event classifiers
by scaling up the limited available eventful PMU data set.
The key idea is to create massive realistic synthetic eventful
data from the given limited real data using the proposed
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two-stage method that leverages GAN and Neural ODEs.
Then, given arbitrary common machine learning-based event
classification method, the training data set enriched by the
synthetic data can contribute to improving the classification
accuracy. The key to the success of the proposed idea is
to make sure that the synthetic data are realistic and diverse
rather than a simple clone of the real data, which is achieved
by the proposed two-stage PMU data creation algorithm.

Main contributions of this article are summarized as fol-
lows:

1) Networked PMU Data Generation: The proposed two-
stage networked eventful PMU data creation method
can create multiple realistic-looking networked PMU
streams that respect the physical constraints and incor-
porate the ordinary differential equation (ODE) format.

2) High Computational Efficiency: Leveraging the
insights of the temporal and spatial correlations among
PMU streams, the number of synthetic PMUs is deter-
mined as the number of generators under the adopted
modeling, which is a significant reduction. The two-
stage design of the networked PMU data generation
algorithm reduces the size of machine learning models
and mitigates the computational burden.

3) Event Classification Improvement: We show that the
created synthetic data can be used to enrich the train-
ing data set, thereby improving the event classifica-
tion accuracy of four popular machine-learning based
approaches, especially when the size of the training
data set is very limited as is always true in the real
practice.

The rest of the paper is structured as follows: Section II
introduces the problem of machine-learning based synthetic
PMU data creation. Section III briefly reviews the basic ideas
of the GAN and Neural ODE models to be adopted in this
article. Section IV proposes a two-stage networked eventful
PMU data creation algorithm and the associated synthetic
data quality check method, and introduces its application on
the event classification. Section V presents the case study on
the IEEE 39-bus system. Section VI draws conclusions and
envisions future works.

II. SYNTHETIC PMU DATA CREATION
To address the shortage of eventful PMU data without relying
too heavily on an accurate system dynamic model, we exploit
the limited real eventful PMU data by the proposed two-
stage GAN-based data creation method to create massive
synthetic data. This section introduces the problem statement
of machine learning-based synthetic PMU data creation, its
associated challenges, and the simplification of the problem
by leveraging power system dynamic analysis.

A. PROBLEM STATEMENT
Consider a set of labeled historical PMU measurement
obtained covering pre-event, during event and post-event
periods, where the label refers to the event type. For PMU

i, we denote historical phasor domain voltage and current
data by Vi and Ii, which are collected by a time window
of T with a time step 1T . Define one entire sample of an
event as S = [V1, I1, . . . ,VNPMU , INPMU], where NPMU is the
total number of PMUs. The data creation problem tackled
by this article is to develop a data creation algorithm to
create synthetic eventful PMU data S̃ of certain event type
using the corresponding labeled historical samples {Si}

NS
i=1 as

the training data, where NS is the number of the historical
samples, in such a way that the created synthetic data exhibit
relevant properties possessed by the historical data.

B. CHALLENGES
There are two key challenges for creating synthetic eventful
PMU data using any machine-learning based approach: (i)
How to make sure that the created PMU data are meaningful,
e.g. complying circuit laws for the network and respecting
underlying dynamic behavior of dynamic elements? (ii) How
to train the neural network in a computationally tractable
way? These two challenges are briefly discussed below and
will be tackled in the next subsection and two following
sections.

1) FIDELITY
Fidelity is a major criteria of the synthetic data quality and
also the key for the success of improving event classification.
The synthetic PMU data should be physically meaningful,
i.e. complying the spatial and temporal correlation in the real
data. Here, the spatial correlation is dominated by the Kirch-
hoff’s voltage and current laws which have to be satisfied at
each snapshot definitely, and the temporal correlation mainly
stems from dynamic elements which are commonly mod-
eled by ODEs. We will show how the spacial and temporal
correlations are respected respectively in Section II-C and
Section IV-A.

2) COMPUTATIONAL EFFICIENCY
Different from the most popular application field such as
image generation, the size of GANmodel for time series data
is influenced by two key factors: the length of time window
and the number of channels. In the context of our problem,
both factors are obviously non-trivial, which may lead to an
extremely large neural network model and hence render the
training process intractable. We will introduce a two-stage
GAN-based algorithm in Section IV-A as the solution.

C. PROBLEM SIMPLIFICATION
We first give a brief description about the power systems
dynamics. The intuition from this domain knowledge is then
used to precisely characterize the spatial and temporal corre-
lation, which are then exploited in developing the GAN-based
networked eventful PMU data creation method.

Consider a power system with Nb buses and Nbr branches
(including lines and transformers). We denote the actual volt-
age at bus i by Vi, i = 1, . . . ,Nb. We assume all key dynamic
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elements in power systems are equipped with PMUs, because
an NERC Reliability Guideline [8] recommends to place
PMUs near significant generating plants, large load buses and
grid control devices. For simplicity, this article only considers
generators as dynamic elements and also treats all loads as
constant impedance.

The dynamic model of a power system contains two parts:
differential equations and algebraic equations [9]. Differen-
tial equations characterize the temporal dependence through
the the dynamics of inner states of generators, while the alge-
braic equations characterize the spatial dependence though
the Kirchhoff’s laws. Assume there are Ng generator buses
in the system and all loads are represented by constant
impedance. Let xi denote the state vector of generator i,
usually including rotor angle δi, angular speed ωi and other
state variables. The dynamics of ith generator are dominated
by

ẋi = fi(xi,Vi, Idqi) (1)

where Idqi is the dq-axis currents.
The algebraic equations have two parts, stator algebraic

equation and network algebraic equation. The stator algebraic
equation of the ith generator is given by

0 = |Vi|ejθi + (Rsi + jX ′di)(Idi + jIqi)e
j(δi−π/2)

− [E ′di + (X ′qi − X
′
di)Iqi + jE

′
qi]e

j(δi−π/2) (2)

where R′si, X
′
di and X

′
qi are constant resistance and impedance

parameters; |Vi| and θi are the magnitude and angle of the ter-
minal voltage Vi; E ′di and E

′
qi are inner voltage state variables

included in xi. This equation can be succinctly written as

Idqi = hi(xi,Vi). (3)

Equations (1) and (3) indicate the temporal correlation
among generator buses, echoing the challenges mentioned in
Section II-B.

Under the constant impedance load assumption, all loads
can be included in the admittancematrix Y . Then, the network
equation is given by

I inj1
. . .

I injNg

0
. . .

0


Nb×1

=
[
Y
]
Nb×Nb

 V1
. . .

VNb


Nb×1

(4)

where Y is the admittance matrix containing impedance load
and I inji is the current injection from generator i.
One can show that, using Kron reduction [9], the net-

work with Nb buses can be reduced to a system with only
Ng generator internal buses. Note that although this article
only considers generators as dynamic elements for simplicity,
Kron reduction can be extended to reduce the network to
a smaller system only containing the buses connected to
dynamic elements, e.g. generators, dynamic loads and static
VAR compensators.

FIGURE 1. The architecture of vanilla GAN [10].

Define S ′ = [Vn1 , In1 , . . . ,VnNg , InNg ], where ni is the
PMU number of the generator bus i. The target problem
can be simplified and becomes to develop a data creation
algorithm to create synthetic eventful PMU data S̃ ′ of certain
event type using the corresponding labeled historical samples
{S ′i }

NS
i=1 as the training data in such a way that the created

synthetic data exhibit relevant properties possessed by the
historical data.

Wewill achieve it by the GAN-based networked PMU data
creation method to be introduced in Section IV-A.

III. REVIEW OF GAN AND NEURAL ODE
This section reviews the basic ideas of the GAN and Neural
ODEmodels that will be adopted in this article to establish the
two-stage GAN-based eventful PMU data creation algorithm.

A. GAN
GAN was proposed in [10] which has now arguably became
one of the most popular and successful deep generative mod-
els. Fig. 1 shows the architecture of vanilla GAN [10].

Both generative model (generator) G and discriminate
model (discriminator) D are implemented by neural net-
works, which are trained by optimizing the following objec-
tive function J :

min
G

max
D

J = E
x
log(D(x))+ E

z
log(1− D(G(z))) (5)

The interpretation is following: (i) The model G is trained to
be a function that outputs synthetic data given random noise
as its input. Given a batch of noise data as input, a well-trained
model G should generate a batch of diverse realistic-looking
data. (ii) The model D takes input data sampled from either
the real data set or the synthetic data set. Its output, a scalar
ranging from 0 to 1, indicates the likelihood that the input
data belongs to the real data set. The goal of discriminate
model D is to correctly distinguish the real PMU data from
the synthetic ones by maximizing the difference between the
output scalars of real and synthetic data..

Because of its simple but powerful idea, GAN has achieved
a great success in computer vision and a few other fields,
of which the representatives are domain transferring of
images [11], discrete and continuous time series data creation
[12], time series and mixed-type data modeling [13] and etc.
There are also a few efforts applying GAN to power systems,
including but not limited to renewable scenario generation
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[14], local marginal price prediction [15], PMU data creation
[16], dynamic security assessment [17] and etc.

However, considering the challenge of temporal correla-
tion, our problem formulation as described in Section II is
significantly different from the standard application of GAN
for computer vision or renewable energy data creation in
power systems [14], where the data can be appropriately
characterized by statistical properties. The straightforward
application of GAN for generating PMU data independently
at each bus [16] obviously cannot yield realistic network-level
synthetic PMU data due to the neglect of temporal and spatial
correlations. To this end, we will propose a two-stage GAN-
based networked eventful PMU data creation algorithm in
Section IV-A, which effectively addresses these challenges.

B. NEURAL ODE
Neural ODE [18] was proposed as a new family of deep
neural network models in 2018. This model contains two key
components: a neural network and an ODE solver. Instead of
specifying a discrete sequence of hidden layers, this model
parameterizes the derivative of the state, i.e. a function of
state, time and parameters, using a neural network f :

ds(t)
dt
= f (s(t), t, θf ) (6)

where θf is the parameters of the neural network and s(t)
is the state at time t . Given an initial state s(0), the ODE
solver can numerically integrate f and generate the system
trajectory. Such a featuremakes theNeural ODEmodel inher-
ently suitable for the continuous time series modelling. In the
power system literature, a Neural ODE-based approach was
proposed for demand forecasting within power grid digital
twin framework [19].

In the context of our problem, with the voltage measure-
ments at all generator buses as the state, the corresponding f
function of the post-event time series is time-invariant accord-
ing to the analysis in Section II. In other words, given an
initial state, the entire trajectory is uniquely defined. There-
fore, we intuitively use the Neural ODE to implement the
post-event time series modelling by supervised learning. The
Neural ODE model will be another core of the proposed two-
stage networked eventful PMU data creation algorithm.

IV. IMPROVEMENT OF MACHINE-LEARNING BASED
EVENT CLASSIFICATION BY SYNTHETIC PMU DATA
A. GAN-BASED NETWORKED EVENTFUL PMU DATA
CREATION
The temporal and spatial correlations of the real PMU data
make our data creation problem fundamentally different from
any standard applications of GAN for image generation
[10] or for renewable energy data creation in power sys-
tems [14]. Although the reduced model in Section II-C can
effectively addresses the spatial correlation problem, there are
still two problems left unsolved: (i) The temporal correlation
that is dominated by ODEs may not be precisely captured
by the regular GAN models. (ii) Regular GAN models may

induce extremely high computation burden and result in an
intractable training process when applied to generating net-
worked eventful PMU data.

To address the aforementioned challenges, a novel two-
stage GAN-based algorithm is proposed as shown in Fig. 2,
where GAN creates synthetic data including PMU data dur-
ing the events and initial state of post-event time series, while
Neural ODE creates the post-fault time series given the initial
state. In the training process, we train the GAN and Neural
ODE models separately with the limited real PMU data. In
the data creation process, we combine the well-trained G and
f models to generate the PMU data of an entire event, where
the G model feeds part of its output to the Neural ODE as its
initial state.

The above idea is inspired by the work [13]. The difference
is that we train the generative models of the discrete and con-
tinuous data separately. Specifically, in the training process,
we train the GAN model with the objective function in Equa-
tion (5) to generate the measurements from t+b to t−e and at t+e ,
where tb and te respectively refer to the beginning and end of
the event period,1 and−/+ represents the instant before/after
the corresponding time. Therefore, the PMUmeasurements at
t+e are the first data point of the post-event time series, which
are used as the initial state of the Neural ODE model. On the
other hand, the Neural ODE model is trained independently
by a supervised learning to minimize the scalar-valued loss
function in (7).

min L(s) =
1

t1 − t0

t1∑
t=t0

||s̄(t)− s(t)||2 (7)

where s̄(t) =
∫ t
x=t0

fθf (x)dx|s̄(t0)=s(t0), s(t) is the post-event
measurement at time t , and the function f is a neural network
parameterized by θf . Note that since we assume the post-
event power system model is a time-invariant dynamic sys-
tem, we can randomly sample arbitrary PMU data segments
in the post-event period as the training data of theNeural ODE
model.

After the GAN and Neural ODE models are well-trained,
they are combined as shown in Fig. 2 as a complete networked
PMUdata creationmodel, where theGmodel generates PMU
measurements during the events and initial state of the post-
fault time series while the model f generates the whole post-
fault time series given the synthetic initial state by G.

The algorithm of detailed training procedures is shown
in Algorithm 1, where θD, θG and θf are respectively the
parameters of the G, D and Neural ODE f models, NGAN
and NODE are the pre-specified numbers of training epochs
respectively for GAN and Neural ODE models, mb is the
minibatch size, 1T is the time step of real PMU data and
p1T is the user-defined time window.

1Note that identifying tb and te could be a challenging task when handling
real eventful PMU data. However, in this article, it is not our focus to
precisely identify these moments. In all tested cases in this article, we assume
that these moments are known, e.g. from simulation settings, and we leave
the impact study of inaccurate tb and te as our future work.
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FIGURE 2. The proposed two-stage GAN algorithm incorporating the architecture of GAN and Neural ODE models. In the training
process, the G model is trained to generate the PMU measurements during the events while the Neural ODE model aims to
implement the time series modeling of the post-event data. Note that both GAN and Neural ODE are trained with limited real data set.
In the data generation process, we combine the trained G and Neural ODE model f to generate entire synthetic eventful PMU data,
where the G model feeds the Neural ODE with part of its output that is the initial state of the post-event PMU data.

Algorithm 1 GAN-Based Networked Eventful PMU Data
Creation Algorithm
Initialize θD, θG and θf
for i = 1 to NGAN do
for j = 1 to kD do
Sample real data {xk}

mb
k=1

Sample latent variables {zk}
mb
k=1

θD← θD − RMSProp(JD({xk}
mb
k=1, {G(zk )}

mb
k=1))

end for
Sample latent variables {zk}

mb
k=1

θG← θG − RMSProp(JG({G(zk )}
mb
k=1))

end for
for i = 1 to NODE do
Sample real post-event data {[y0k , . . . , y

p1T
k ]}mbk=1

θf ← θf − RMSProp(L({[y0k , . . . , y
p1T
k ]}mbk=1))

end for

The proposed two-stage algorithm has two advantages,
respectively addressing the two challenges mentioned in
Section II-B. On one hand, this two-stage design makes the
GAN model create the PMU measurements at only very few
special time instants, which significantly reduces the size of
the GAN model and improves the computational efficiency.
On the other hand, this algorithm embeds the ODE format by
incorporating the Neural ODE model, which can effectively
learn the temporal correlation of the post-eventmeasurements
from different PMUs.

B. SYNTHETIC QUALITY CHECK
Before incorporating the synthetic data to improving event
classification, we will verify the physical meaning of the
post-event synthetic PMU data. In this article, modal analysis
is used to quantitatively show whether synthetic PMU data
possess realistic dynamic characteristics of power systems,
i.e. modal properties. Specifically, we use Prony analysis
[20], a classical ring-down analysis method, to analyze the
synthetic data and extract important modal properties includ-
ing oscillation frequency and damping.

Since modes are the fingerprint of a given linear system (or
the linearized part of a nonlinear dynamic system), we can
compare the modes of the real data and synthetic data for
validating the fidelity of the synthetic data. Without loss of
generality, here we select the voltage angle measurements for
validation. Details of the validation are summarized below:

1) Modal Property Estimation: Calculate the oscillation
frequency (ωi), damping coefficient (σi), amplitude
(ai), and phase (θi) of all active modes via Prony anal-
ysis for real and synthetic voltage angle profiles.

2) Modes Selection: Only the modes with amplitude
greater than a threshold are selected as active modes.
The threshold is fixed as the 10% of the maximum
value of all mode amplitudes.

3) Validation: For each synthetic profile, modal frequen-
cies and damping ratios of the active modes are com-
pared with those of all real profiles at the same genera-
tor bus. We say that the synthetic profile passes the test
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if all active modes of the tested synthetic profile appear
in the real data. We declare a pair of modes as the same
mode if their relative error is less than 5%.

We will show the results of case study in the Section V-C.

C. IMPROVED EVENT CLASSIFICATION
Without loss of generality, we selected several event clas-
sification methods from the existing literature [21]–[23] to
illustrate the improvement of the event classification accuracy
by the synthetic data. It should be noted that other event
classification methods can also be potentially improved in a
similar way.

Event classification tasks can be separated into two steps:
feature extraction and feature classification. Considering the
possible impacts brought by choosing different approaches,
we select two commonly used methods for each step.

Discrete Wavelet Transform (DWT) [21] and Principle
Component Analysis (PCA) [24] as two traditional pattern
recognition methods are selected to extract the high-level
features. DWT uses themother wavelet, which is a set of basis
functions decomposing the data into several resolution levels.
The coefficients, which carry the detailed and approximate
information of the data, can be used as features for pattern
recognition. PCA projects the data onto the principle sub-
space such that the variance of the data is maximized. The
dynamics of the data can be analyzed by transforming the data
into a combination of principle component.

Traditional classifier models Support Vector Machine
(SVM) [21] and ensemble learning model [25] are used
to complete the classification task. SVM enables mapping
the original feature into a higher dimensional space so
that the decision boundary can be identified. Bagging is
selected as the ensemble learning model, which bags decision
trees on a data set by generating bootstrap replicas of the
data and growing decision trees on the replicas. It obtains
boostrap replicas by randomly sampling the data set with
replacement, and then train the decision tree by the random
forest.

We implement all techniques mentioned above by the
built-in modules in the Matlab toolbox with the default
hyperparameter setting, including pca, modwt, fitcecoc
and fitcensemble. Then, we make pairwise combinations
between feature extraction and classification methods, and
create four event classification algorithms to be used in
Section V-D.

V. CASE STUDY
In this section, we employ the IEEE 39-bus power sys-
tem and first validate the quality of the synthetic data
and then show that the event classification accuracy can
be improved by incorporating the synthetic data. Note that
we only consider the generators in the IEEE 39-bus sys-
tem as dynamic elements. Therefore, we will only generate
the PMU measurements at all generator buses according to
Section II-C.

TABLE 1. Simulation setting of three event types, including bus
fault, line tripping and load shedding. Note that both of bus
fault and line tripping events are triggered by solid three phase
grounding faults.

A. TEST SYSTEM: IEEE 39-BUS SYSTEM
The IEEE 10-machine 39-bus system [26] is simulated to
provide the training and test data sets. Specifically, we focus
on three types of event: bus fault, line tripping and load
shedding.2 Table 1 shows the simulation configuration of
these three types of event. Note that both of bus fault and line
tripping events are triggered by solid three phase grounding
faults, and all simulations start from the same steady state.
We randomly sample the simulation parameters according to
the settings shown in Table 1 and get the simulated eventful
data from PowerWorld, which include voltage magnitude and
angle profiles at all generator buses covering the pre-event,
during event and post-event periods. We randomly collect
20 samples for each event type as the input of training the
two-stage GAN-based data creation method, and respectively
collect 400 and 800 samples for each event type for the
purpose of training and testing the machine learning-based
event classifiers.

B. MODEL CONFIGURATION AND TRAINING PROCESS
The hyperparameters in Algorithm 1 take the following
values according to our prior experience: For the GAN
model, we set the maximum training epochs NGAN as 10000,
the minibatch size mb as 8, and kD as 1. For the Neural ODE
model, we set the number of training epochs NODE as 5000,
the time step 1T as 1/60s and the time window p1T as
2s. Table 2 shows the detailed neural network configuration
of both GAN and Neural ODE models. The number of the
input layers represents the input dimension. Each cell for
the following layers includes the information of layer type,
output dimension and activation function. Both GAN and
Neural ODE models are trained by RMSProp with a learning
rate 10−3.
In the training process, we train GAN and Neural ODE

models for each event type successively, given only 20 real
samples. The loss values of G,D and f models during the

2The proposed two-stage data creation method can handle the generator
tripping events. However, the case study does not include it because we
cannot generate enough data in the IEEE 39-bus system for test purpose.
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TABLE 2. Configuration of GAN and neural ODE models.

FIGURE 3. Loss curves of G, D and Neural ODE models during
the training process. Here we illustrate the loss curves of bus
fault. In the top subfigure, the blue curve represents the loss of
D model while the red one represents that of G model.

training process are illustrated in Fig. 3, which shows the
success of the training process.

C. QUALITY CHECK OF SYNTHETIC PMU DATA
In this subsection, we will show the fidelity of the synthetic
networked eventful PMU data from the perspectives of visual
comparison and modal analysis.

1) VISUAL COMPARISON
Fig. 4 illustrates the real (top row) and synthetic (bottom row)
eventful voltage angle profiles at all generator buses in a 5s
time window which includes the pre-event, during event and
post-event periods. Note that we randomly select the synthetic
sample for each event type and then determine the real sample
by looking for the one that is closest to the synthetic sam-
ple. It is observed from the visual comparison that: (i) real
and synthetic profiles have similar settling patterns; (ii) the
ranges of real and synthetic profiles are nearly the same.
These observations imply that the proposed two-stage GAN-
based model can generate transient PMU data that capture the
inherent temporal correlation.

2) MODAL ANALYSIS
According to the synthetic data quality check method in
Section IV-B, we separately test the synthetic data of all

TABLE 3. Modal analysis test.

event types, with the training and test data sets generated in
Section V-A being the benchmark. The modal analysis test
result of bus fault, line tripping and load shedding are shown
in Table 3. From this table, we can observe that:

• Fidelity: High success rate indicates that the synthetic
data approximately capture the dynamic characteristics
of the real data;

• Diversity: The difference of the success rate between
training and test benchmark indicates that the GAN
model does not simply memorize the training data but
also it creates new and meaningful modes that exist in
the test data set.

D. EVENT CLASSIFICATION ACCURACY WITH/WITHout
SYNTHETIC DATA
This subsection will firstly show that the number of samples
in the training data set has a significant impact on the event
classification accuracy, and then show the improvement of the
event classification accuracy by incorporating the synthetic
PMU data.

From the simulation in Section V-A, we have a training
data pool and a test data set for the event classifiers that
respectively have 400 and 800 samples for each event type.
We will randomly sample a number of training data from the
training data pool and test the trained event classifiers on the
whole test data set.

Firstly we show the impact of the number of samples
in the training data set on the event classification accuracy
in Table 4. The first row of the table represents the number
of samples in the training data set for each event type. The
notation in the first column means the classification methods.
For example, PCA-SVM refers to a classification method
that extracts the features by PCA and classifies the features
by SVM. We randomly pick the given number of samples
in the training data set, and then train all four event clas-
sification methods. To mitigate the randomness, we repeat
this procedure 10 times and calculate the mean and standard
deviation of the event classification accuracy as shown in
each cell of Table 4. The following can be observed from this
table: although these four classificationmethods have distinct
performances, the increasing number of training data always
benefits their classification accuracy in the sense of mean
value and the standard deviation. Given the fact that there
are always only a limited number of real events, the accuracy
of these classification methods is expected to be low in the
practical application. It also shows the need for more data to
improve the event classification accuracy.

Next we show the improvement of the event classification
accuracy by incorporating the synthetic PMU data as shown
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FIGURE 4. Visual comparison between real and synthetic eventful voltage angle profiles at generator buses. The examples of bus
fault, line tripping and load shedding are respectively shown in the subfigure (a), (b) and (c). In each subfigure, the top and
bottom rows respectively show the real and synthetic voltage angle profiles at all generator buses in a 5s time window which
includes the pre-event, during event and post-event periods. Note that we randomly select the synthetic sample for each event
type and then determine the real sample by looking for the one that is closest to the synthetic sample.

TABLE 4. Impacts of the number of training data on the event
classification accuracy.

in Table 5. Note that the GAN and Neural ODE models
used to generate the synthetic data are trained by only 20
real samples for each event type (as described in Section V-
A). Since the proposed two-stage GAN-based data creation
method has the ability to generate massive synthetic data,
we also randomly sample a given number of synthetic data
samples and mix them with the real samples for training the
event classifiers. Then, we use the created hybrid training data
set to train all four event classification methods. To mitigate
the randomness, we repeat this procedure 10 times as well
and calculate the mean and the standard deviation of the
event classification accuracy as shown in Table 5. Comparing
Table 5 and 4, we have the following observations:

• Incorporating the synthetic data can effectively and con-
sistently improve the event classification accuracy by 2
to 5 percent, compared to the results based on only 20
real training data for each event type in Table 4.

• When the number of the real data increases from 20
to 100 (shown in Table 4), it always leads to a better
classification accuracy than the cases with synthetic
PMU data, meaning the synthetic data can aid in the

TABLE 5. Improvement of event classification accuracy by
incorporating synthetic data.

classification accuracy due to the lack of training data
but cannot replace the real ones.

• When the synthetic data overwhelms the real train-
ing data, the classification accuracy is not negatively
affected, implying that the synthetic data are of good
quality.

VI. CONCLUDING REMARKS
We propose to create synthetic PMU data via a two-stage
GAN method. This approach can scale up the otherwise
limited real-world PMU data as follows. First, it leverages
the capability of GAN to guarantee the diversity of massive
synthetic data. Second, it leverages Neural ODEs to provide
meaningful post-fault time-series data. Such synthetic data
set can then be fed into subsequent monitoring and decision
making processes. As an example, we show that the syn-
thetically created PMU data improves the performance of
data-driven event classification. We validate the fidelity of
the synthetic data via visual comparison and modal analysis
approaches. We also verify that the synthetic data can effec-
tively improve the accuracy of four selected event classifica-
tion methods.
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While the development of GAN and its application in
power systems is still at its infancy, this article sheds lights
on some great potential in the future. As our ongoing and
future works, we will (i) investigate the sensitivity of the
two-stage GAN method with respect to the sample window
size; (ii) explore other subsequent value-added applications
enabled by a massive amount of synthetic PMU data; and
(iii) validate and test the proposed idea in real-world-scale
systems.
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