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Abstract:Animproved interfacial bonding model was proposed from potential function point of 

view to investigate interfacial interactions in polycrystalline materials.It characterizes both 

attractive and repulsive interfacial interactions and can be applied to model different material 

interfaces. The path dependence of work-of-separation study indicates that the transformation of 

separation work is smooth in normal and tangential direction and the proposed modelguarantees 

the consistency of the cohesive constitutive model. The improved interfacial bonding model was 

verified through a simple compression test in a standard hexagonal structure. The error between 

analytical solutions and numerical results from the proposed model is reasonable in linear elastic 

region. Ultimately, we investigated the mechanical behavior of extrafibrillar matrix in bone and 

the simulation results agreed well with experimental observations of bone fracture.  

Keywords:Material interface modeling;Interfacial bonding model; Finite Element 

simulation;Polycrystalline structure;Bone fracture 

1.  Introduction 

The bulk mechanical behavior ofa material is largely determined by its microstructures, e.g. 

grain and grain boundaries in polycrystalline materials, bi-material interface in composite 

materials. For instance, in natural staggered composites such as bone and nacre, the brittle tablets 

are bonded by softer interfaces capable of dissipating a significant amount of energy[1], which 

makes the material remarkably strong and tough.  Therefore, how to characterize and model 

these interfacial zones has been the focus of intense research. A significant amount of research 

efforts are being dedicated to develop interfacial zone models, mainly in the simulation of 

materials failure. The coupled atomistic/continuum interface zone models were developed for the 
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analysis of dynamically propagating crack of interfaces [2-4].Gao and Klein[5] proposed a 

virtual internal bond (VIB) modelwith randomized cohesive interactions between material 

particles. This VIB model incorporates an atomic cohesive force law into the constitutive model 

of materials for modeling deformation and failure in the interfacial region.Additionally, different 

cohesive zone models were developed todescribe interfacial behaviorsfor material failure 

analysis [6-10].  

Amongdifferent cohesive zone models, the exponential cohesive zone model [7] is one of the 

most popular interfacial zone models. The constitutive relationship of cohesive fracture is 

described by a potential in the model, which characterizes the physical debonding behavior. 

Although the exponential cohesive zone model has gained much popularity in material failure 

simulations, it has several limitations. It is often based on the assumption that the normal fracture 

energy equals the shear fracture energy [11-13]. This assumption is often not consistent with the 

experiment proof. In fact, multiple experimental studies indicated that the fracture energies in 

modes I and mode II are different, e.g. Araki et al. [14], Benzeggagh and Kenane[15], Dollhofer 

et al. [16], Pang [17], Warrior et al. [18] and Yang et al. [19]. Furthermore, when the interface is 

under a large normal compression condition, the maximum shear traction 𝑇𝑇𝑡𝑡∗  will become 

negative and this does not appear to be realistic [20]. In addition, with large tangential separation, 

the maximum normal repulsive traction −𝑇𝑇𝑛𝑛∗ will decrease to zero, which might result in surface 

penetration of two contact surfaces under large compressive displacement.  

The original exponential cohesive zone model [7]has been extended and altered by many 

researchers for different applications. An irreversible exponential cohesive zone model that uses 

an effective opening displacement was developed by Ortiz and Pandolfi[21] to consider different 

ratio of tractions along sliding and normal direction under mixed-mode failure. Later, Zhang and 

Paulino[22] extended the original exponential cohesive zone model to functionally graded 

materials(FGMs)modeling, which considers the influence of material gradation on crack 

initiation in mixed-mode fracture problem. Van den Bosch et al. [20] adopted the original 

exponential cohesive zone model as a mixed-mode exponential cohesive zone model with 

different normal and shear fracture energy. Recently, Zeng and Li [23] developed a multiscale 

cohesive zone model, in which the cohesive laws can be obtained from atomic lattice structures.   
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In this paper, animproved interfacialbonding model was proposedto address the aforementioned 

problems and to study the interfacial interactions in biological materials, especially to model the 

organic interface of extrafibrillar matrix in bone. The mechanical responses of bone not only 

depend on its microstructure, but also depend on different loading conditions [24]. Current 

experimental studies on bone fracture are mainly in tension or bending tests because it is easy to 

conduct those tests. Only limited knowledge is available on the mechanical response of bone 

under compressive loading. In fact, bones in life are usually loaded in compression although they 

can fail at any loading direction[25, 26]. A few experiments have been conducted to understand 

the mechanism of bone failure in compression[24, 27, 28]. However, due to the complex 

character of bone failure under compression [24, 25],it is difficult to pinpoint the key 

characteristic of bone failure under compression, e.g. shear damage or slippage interaction 

between collagen and mineral phase causing the irreversible deformation. Therefore, it is 

necessary to develop numerical models to study bone failure mechanisms under compressive 

loading. This model was developed from a potential function andit characterizes different 

potentials/fracture energies, different interfacial strengths and describes attractive and repulsive 

behaviors of interfacial interactions.This improved interfacial bonding model not only preserves 

all essential features of an improved exponential cohesive zone model[20], it is also 

physicallyrealisticwith interface under both tension and compressioncondition. Furthermore, the 

proposed interfacialbonding model was verified through a simple compression test in a standard 

hexagonal structure.Ultimately, theproposed interfacialbonding model wasemployed to study the 

mechanical behavior of the extrafibrillar matrix in bone. 

The paper is organized in sevenSections: in Section 2, the traditional exponential cohesive zone 

model was reviewed; in Section 3, the improved interfacial bonding model was developed; in 

Section 4, path dependence of work-of-separation of the improved interfacial bonding model 

wasstudied; Section 5verified the proposed model by analytical solutions; in Section 6, a fracture 

simulation ofextrafibrillar matrix in bonewas presented; and Section 7concluded the present 

work. 
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2.  Exponential cohesive zone model 

Based on a fit to atomistic calculations, the specific fracture energy 𝜑𝜑 on inter-surfaces between 

bulks in the exponential cohesive zone model is given by [7]: 

𝜑𝜑(∆) = 𝜑𝜑0 + 𝜑𝜑0exp⁡(− ∆𝑛𝑛
𝛿𝛿𝑛𝑛

) ��1 − 𝑟𝑟 + ∆𝑛𝑛
𝛿𝛿𝑛𝑛
� 1−𝑞𝑞
𝑟𝑟−1

− �𝑞𝑞 + �𝑟𝑟−𝑞𝑞
𝑟𝑟−1

� ∆𝑛𝑛
𝛿𝛿𝑛𝑛
� 𝑒𝑒𝑒𝑒𝑒𝑒 �− ∆𝑡𝑡

2

𝛿𝛿𝑡𝑡
2��(1) 

Where 𝛿𝛿𝑛𝑛  and 𝛿𝛿𝑡𝑡  represent normal and shear characteristiclengths related to the debonding 

process, respectively and 𝑟𝑟 is defined as: 

𝑟𝑟 =
∆𝑛𝑛∗

𝛿𝛿𝑛𝑛
 

where,∆𝑛𝑛∗  is the value of ∆𝑛𝑛  after complete shear separation with 𝑇𝑇𝑛𝑛 = 0 

To yieldthe realistic results of mixed-mode condition, it is necessary to set𝑞𝑞 = 1 at potential state. 

Thus, the potential can be written as[20, 29]: 

𝜑𝜑(∆) = 𝜑𝜑0 − 𝜑𝜑0exp⁡(− ∆𝑛𝑛
𝛿𝛿𝑛𝑛

) �1 + ∆𝑛𝑛
𝛿𝛿𝑛𝑛
� 𝑒𝑒𝑒𝑒𝑒𝑒 �− ∆𝑡𝑡

2

𝛿𝛿𝑡𝑡
2� (2) 

Differentiating Eq.(2) with respect to ∆𝑛𝑛  and ∆𝑡𝑡  yields the tractions, respectively, in normal and 

tangential directions as: 

𝑇𝑇𝑛𝑛 = 𝜕𝜕𝜕𝜕(∆)
𝜕𝜕∆𝑛𝑛

= 𝜑𝜑𝑛𝑛∆𝑛𝑛
𝛿𝛿𝑛𝑛2

𝑒𝑒𝑒𝑒𝑒𝑒 �− ∆𝑛𝑛
𝛿𝛿𝑛𝑛
� 𝑒𝑒𝑒𝑒𝑒𝑒 �− ∆𝑡𝑡

2

𝛿𝛿𝑡𝑡
2�(3) 

𝑇𝑇𝑡𝑡 = 𝜕𝜕𝜕𝜕(∆)
𝜕𝜕∆𝑡𝑡

= 2𝜑𝜑𝑡𝑡∆𝑡𝑡
𝛿𝛿𝑡𝑡

2 �1 + ∆𝑛𝑛
𝛿𝛿𝑛𝑛
� 𝑒𝑒𝑒𝑒𝑒𝑒 �− ∆𝑛𝑛

𝛿𝛿𝑛𝑛
� 𝑒𝑒𝑒𝑒𝑒𝑒 �− ∆𝑡𝑡

2

𝛿𝛿𝑡𝑡
2�(4) 

where 𝛿𝛿𝑛𝑛 = 𝜑𝜑𝑛𝑛
𝑒𝑒𝑒𝑒𝑒𝑒 (1)𝜎𝜎𝑐𝑐

, 𝛿𝛿𝑡𝑡 =
𝜑𝜑𝑡𝑡�

2
exp ⁡(1)

𝜏𝜏𝑐𝑐
, 𝜎𝜎𝑐𝑐  is the normal strength, 𝜏𝜏𝑐𝑐  is the shear strength and 

exp(1)=2.71828. The normal traction 𝑇𝑇𝑛𝑛  as a function of ∆𝑛𝑛  across the surface in the condition of 

∆𝑡𝑡= 0 is illustrated in Fig. 1(a). The value of 𝑇𝑇𝑛𝑛  will reach maximum stress 𝜎𝜎𝑐𝑐  when ∆𝑛𝑛= 𝛿𝛿𝑛𝑛  and 

then decrease to zero. Fig. 1(b) displays the shear traction 𝑇𝑇𝑡𝑡  as a function of ∆𝑡𝑡with ∆𝑛𝑛= 0.  
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Fig. 1. (a) Uncoupled normal traction with the maximum traction𝑇𝑇𝑛𝑛∗ at ∆𝑛𝑛
𝛿𝛿𝑛𝑛

= 1; (b) Uncoupled 

shear traction with the maximum traction𝑇𝑇𝑡𝑡∗ at ∆𝑡𝑡
𝛿𝛿𝑡𝑡

= 1
√2

 

 
Fig. 2. (a)The maximum shear traction as a function of normal separation; (b)The maximum 
normal traction as a function of tangential separation. 

The exponential traction-separation model has four independent parameters (𝜑𝜑𝑛𝑛 , 𝜑𝜑𝑡𝑡 , 𝜎𝜎𝑐𝑐/

𝛿𝛿𝑛𝑛  𝑎𝑎𝑎𝑎𝑎𝑎 𝜏𝜏𝑐𝑐/𝛿𝛿𝑡𝑡) and there is a coupling in the normal and tangential directions. The connections 

among those independent parameters will lead to unrealistic results. As shown in Fig. 2(a), the 

evolution of the maximum shear traction 𝑇𝑇𝑡𝑡∗is illustrated as a function of the normal separation. It 

can be seen that the maximum shear traction 𝑇𝑇𝑡𝑡∗will decrease to zero for increasing normal 

separations. However, the maximum shear traction 𝑇𝑇𝑡𝑡∗ starts to decrease and even become 

negative when interface is under a large normal compression condition. This situation may lead 

to unrealistic results for interface under compressioncondition. In addition, when the interface is 

under compression, the maximum normal repulsive traction−𝑇𝑇𝑛𝑛∗ will decrease to zero with the 

increasing of shear separation, see Fig. 2(b), and it might result in surface penetration. 
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3.  The development ofanimproved interfacial bonding model 

A potential function usually has a minimum at the equilibrium position in that the interaction 

force(derivative of the potential) must be attractive when distanceis larger than equilibrium 

position and repulsive when distance is smaller than equilibrium position.To overcome the 

limitations of the original exponential cohesive zone model[7], the following interface potential 

function is proposed with four additional variables 𝑐𝑐1, 𝑐𝑐2, 𝛿𝛿0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄: 

𝜑𝜑(∆) = 𝜑𝜑0 exp �−𝑐𝑐2
∆𝑛𝑛−𝛿𝛿0
𝛿𝛿𝑛𝑛−𝛿𝛿0

� ��1 + ∆𝑛𝑛−𝛿𝛿0
𝛿𝛿𝑛𝑛−𝛿𝛿0

� (𝑄𝑄 − 1) − 𝑄𝑄 �1 + 𝑐𝑐1
∆𝑛𝑛−𝛿𝛿0
𝛿𝛿𝑛𝑛−𝛿𝛿0

� 𝑒𝑒𝑒𝑒𝑒𝑒 �− ∆𝑡𝑡
2

𝛿𝛿𝑡𝑡
2��   (5) 

here𝛿𝛿0 represents the equilibrium position; the control variables𝑐𝑐1, 𝑐𝑐2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 aredetermined by 

the mixed-modedebonding boundary conditions; 𝑐𝑐1, 𝑐𝑐2 are used to overcome the unrealistic 

problem of original exponential cohesive zone model, that is, maximum shear traction 𝑇𝑇𝑡𝑡∗ will 

decrease to zero when interface is under a large normal compression condition; 𝑄𝑄is used to 

prevent surface penetration when interface is in compression; 𝛿𝛿𝑛𝑛  is the normal 

characteristicdebonding distance; 𝛿𝛿𝑡𝑡  is the tangential characteristic sliding distance; ∆𝑛𝑛= 𝐧𝐧 ∙ ∆ 

and ∆𝑡𝑡= 𝐭𝐭 ∙ ∆ ; 𝐧𝐧  and 𝐭𝐭 are the normal and tangential unit vectors on an element surface, 

respectively. 

Differentiating Eq.(5) with respect to ∆𝑛𝑛  and ∆𝑡𝑡  yields the tractions in normal and tangential 

directions as: 

𝑇𝑇𝑛𝑛 = 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑛𝑛

= 𝜑𝜑𝑛𝑛
𝛿𝛿𝑛𝑛−𝛿𝛿0

𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑐𝑐𝑛𝑛2
∆𝑛𝑛−𝛿𝛿0
𝛿𝛿𝑛𝑛−𝛿𝛿0

� �𝑐𝑐𝑛𝑛2(1−𝑄𝑄𝑛𝑛 )(∆𝑛𝑛−𝛿𝛿0)
𝛿𝛿𝑛𝑛−𝛿𝛿0

+ (𝑄𝑄𝑛𝑛 − 1)(1 − 𝑐𝑐𝑛𝑛2) + �(𝑐𝑐𝑛𝑛2−𝑐𝑐𝑛𝑛1)𝑄𝑄𝑛𝑛 +

𝑐𝑐𝑛𝑛1𝑐𝑐𝑛𝑛2𝑄𝑄𝑛𝑛 �
∆𝑛𝑛−𝛿𝛿0
𝛿𝛿𝑛𝑛−𝛿𝛿0

�� 𝑒𝑒𝑒𝑒𝑒𝑒 �− ∆𝑡𝑡
2

𝛿𝛿𝑡𝑡
2��(6) 

𝑇𝑇𝑡𝑡 = 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑡𝑡

= 2𝜑𝜑𝑡𝑡
δ𝑡𝑡
��∆𝑡𝑡

𝛿𝛿𝑡𝑡
� �𝑄𝑄𝑡𝑡 + 𝑐𝑐𝑠𝑠1𝑄𝑄𝑡𝑡

∆𝑛𝑛−𝛿𝛿0
𝛿𝛿𝑛𝑛−𝛿𝛿0

� 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑐𝑐𝑠𝑠2
∆𝑛𝑛−𝛿𝛿0
𝛿𝛿𝑛𝑛−𝛿𝛿0

� 𝑒𝑒𝑒𝑒 𝑝𝑝 �− ∆𝑡𝑡
2

𝛿𝛿𝑡𝑡
2��         (7) 

where𝜑𝜑𝑛𝑛  is the normal fracture energy and 𝜑𝜑𝑡𝑡  is the shear fracture energy, which will be 

calibratedby different materials. The 𝛿𝛿0 in the normal traction-separation law is used to describe 

the interface thickness. So, when deriving the traction-separation laws, 𝑐𝑐1, 𝑐𝑐2, 𝑄𝑄were converted 

into 𝑐𝑐𝑛𝑛1, 𝑐𝑐𝑛𝑛2, 𝑄𝑄𝑛𝑛 in normal traction-separation law and converted into𝑐𝑐𝑠𝑠1, 𝑐𝑐𝑠𝑠2, 𝑄𝑄𝑡𝑡 in shear traction-

separation law.In the proposed interfacial bonding model, the following fracture boundary 

conditions have to be satisfied for mixed-modefracture: 
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• The opening and sliding fracture energy are defined as: 

𝜑𝜑𝑛𝑛 = ∫ 𝑇𝑇𝑛𝑛(∆𝑛𝑛 , 0)𝑑𝑑∆𝑛𝑛
+∞
𝛿𝛿0

, 𝜑𝜑𝑡𝑡 = ∫ 𝑇𝑇𝑡𝑡(𝛿𝛿0, ∆𝑡𝑡)𝑑𝑑∆𝑡𝑡
∞

0                                                            (8) 

• Normal and shear fracture energy are minimum at equilibrium position(𝛿𝛿0, 0) 

� 𝜕𝜕𝜕𝜕
𝜕𝜕Δ𝑛𝑛

�
∆𝑛𝑛=𝛿𝛿0, ∆𝑡𝑡=0

= 0, � 𝜕𝜕𝜕𝜕
𝜕𝜕Δ𝑡𝑡
�
∆𝑛𝑛=𝛿𝛿0,   ∆𝑡𝑡=0

= 0                                                                           (9) 

• Normal traction goes to zero(𝑇𝑇𝑛𝑛 = 0)when normal or tangential separation reaches the 

complete separation 

𝑇𝑇𝑛𝑛(+∞, ∆𝑡𝑡) = 0, 𝑇𝑇𝑛𝑛(+∆𝑛𝑛 ,∞) = 0                             (10) 

• Shear traction goes to zero(𝑇𝑇𝑡𝑡 = 0)when tangential or normal separation reaches the 

complete separation 

𝑇𝑇𝑡𝑡(∆𝑛𝑛 ,∞) = 0, 𝑇𝑇𝑡𝑡(+∞, ∆𝑡𝑡) = 0     (11) 

• Normal and shear traction reach maximum when the separations reach the critical 

opening displacements(𝛿𝛿𝑛𝑛 , √2
2
𝛿𝛿𝑡𝑡) 

� 𝜕𝜕𝑇𝑇𝑛𝑛
𝜕𝜕Δ𝑛𝑛

�
∆𝑛𝑛=𝛿𝛿𝑛𝑛 ,∆𝑡𝑡=0

= 0, �𝜕𝜕𝑇𝑇𝑡𝑡
𝜕𝜕Δ𝑡𝑡
�
∆𝑛𝑛=𝛿𝛿0,∆𝑡𝑡=√2

2 𝛿𝛿𝑡𝑡
= 0(12) 

𝑇𝑇𝑛𝑛(𝛿𝛿𝑛𝑛 , 0) = 𝑇𝑇𝑛𝑛∗, 𝑇𝑇𝑡𝑡 �𝛿𝛿0, √2
2
𝛿𝛿𝑡𝑡� = 𝑇𝑇𝑡𝑡∗(13) 

• Shear traction will keep constant or increase when interface is in compression 
�𝑇𝑇𝑡𝑡(∆𝑛𝑛1, 𝛿𝛿𝑡𝑡)|∆𝑛𝑛1<𝛿𝛿0 ≥ �𝑇𝑇𝑡𝑡(∆𝑛𝑛2, 𝛿𝛿𝑡𝑡)|∆𝑛𝑛2<𝛿𝛿0    𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∆𝑛𝑛1< ∆𝑛𝑛2(14) 

• Repulsive normal traction will not go to zero when two surfaces are still in contact 

|𝑇𝑇𝑛𝑛(∆𝑛𝑛 , ∆𝑡𝑡)|∆𝑛𝑛<𝛿𝛿0, 𝛿𝛿𝑡𝑡<∆𝑡𝑡≪∞ > 0(15) 

From Eqs.(8)-(9), we have the normal energy 𝜑𝜑𝑛𝑛 = 𝑒𝑒𝑒𝑒𝑒𝑒(1) 𝜎𝜎𝑐𝑐(𝛿𝛿𝑛𝑛 − 𝛿𝛿0) , which requires 

𝑐𝑐𝑛𝑛1 = 𝑐𝑐𝑛𝑛2 = 1 , we have the shear energy𝜑𝜑𝑡𝑡 = �exp ⁡(1)
2

𝜏𝜏𝑐𝑐𝛿𝛿𝑡𝑡 , which requires 𝑄𝑄𝑡𝑡 = 1 .The 𝜎𝜎𝑐𝑐  is 

the normal strength, which can be used to define different interfacial strength in normal direction. 

The𝜏𝜏𝑐𝑐  is the shear strength, which can be used to describe different interfacial strength in shear 

direction. To satisfy Eqs.(10)-(11), additional conditions( 𝑐𝑐𝑠𝑠1 = 0 , 𝑐𝑐𝑠𝑠2 > 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄𝑛𝑛 = 1 )are 

required. Then, Eqs.(12)-(13) will be automatically satisfied, which means when the interface is 

in tension, it requires 𝑐𝑐𝑛𝑛1 = 𝑐𝑐𝑛𝑛2 = 1, 𝑐𝑐𝑠𝑠1 = 0 , 𝑐𝑐𝑠𝑠2 > 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄𝑛𝑛 = 1 . When the interface is in 

compression, it requires 𝑐𝑐𝑠𝑠1 = 0  𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑠𝑠2 ≥ 0 to satisfy Eq.(14). In normal direction, it is 

necessary to set0 < 𝑄𝑄𝑛𝑛 < 1to satisfy Eq.(15)to prevent surface penetration.  
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It is worth mentioning that when 𝑐𝑐𝑛𝑛1 = 𝑐𝑐𝑛𝑛2 = 𝑐𝑐𝑠𝑠1 = 𝑐𝑐𝑠𝑠2 =  𝑄𝑄𝑡𝑡 =  𝑄𝑄𝑛𝑛 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿0 = 0 , the 

proposed model can be reduced to the improved exponential cohesive zone model [20]. 

The Fig.3 plots the normal and tangential traction-separation laws from the proposed model. The 

variation of normal traction 𝑇𝑇𝑛𝑛  as a function of ∆𝑛𝑛  across the interface under the condition of 

∆𝑡𝑡= 0 is graphically shown in Fig.3(a). The value of 𝑇𝑇𝑛𝑛  will increase with increasing normal 

separation until reaching maximum normal traction 𝑇𝑇𝑛𝑛∗. After the maximum normal traction 𝑇𝑇𝑛𝑛∗ 

has been reached, the normal traction gradually decreases to zero. Fig.3(b) illustrates the 

variation of shear traction 𝑇𝑇𝑡𝑡  expressed in terms of ∆𝑡𝑡  under the condition ∆𝑛𝑛= 𝛿𝛿0.  

 
Fig.3. Interfacialtraction variation with separation: (a) Uncoupled normal traction; (b)Uncoupled 
shear traction. 

To overcome the unrealistic problem of original exponential cohesive zone model, the control 

variablecs1, cs2  was introduced in the shear traction-separation law. When the interface is in 

tension, by setting 𝑐𝑐𝑠𝑠1 = 0 , 𝑐𝑐𝑠𝑠2 = 1, it can be seen that the maximum normal traction 𝑇𝑇𝑡𝑡∗ will 

decrease to zero as the normal separation increases, as shown in Fig.4 (a) (the red line). When 

the interface is in compression, by setting 𝑐𝑐𝑠𝑠1 = 0 , 𝑐𝑐𝑠𝑠2 = 1, the maximum shear traction 𝑇𝑇𝑡𝑡∗ 

increases as the normal separation decreases (c.f. Fig.4(a) black line),if 𝑐𝑐𝑠𝑠1 = 0 , 𝑐𝑐𝑠𝑠2 = 0, the 

maximum shear traction 𝑇𝑇𝑡𝑡∗will keep constant (c.f. Fig.4(a) blue line). In fact, 𝑐𝑐𝑠𝑠1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑠𝑠2 can be 

tuned to regulate the relation between the maximum shear traction 𝑇𝑇𝑡𝑡∗ and the normal separation 

∆𝑛𝑛  when interface is in compression. 
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Fig.4. Compressive condition: (a) The maximum shear traction 𝑇𝑇𝑡𝑡∗  as a function of normal 
separation in compression; (b) The maximum normal repulsive traction −𝑇𝑇𝑛𝑛∗ as a function of 
tangential separation. 

From Xu and Needleman’s exponential model, when interface is in tension, it is reasonable to 

have the maximum normal traction 𝑇𝑇𝑛𝑛∗diminish as the tangential separation reaches to the limit as 

shown in Fig. 2(a). However, when the interface is in compression, the maximum normal 

traction 𝑇𝑇𝑛𝑛∗ will decrease to zero, thus resulting in the zero resistant to normal deformation and 

subsequently allowing for surface penetrations. To solve this problem, one method is to degrade 

the normal traction-separation law to pure contact condition. In the meanwhile, the compressive 

stiffness was increased by 10 times to prevent surface penetration [30].  The other method is to 

enforce contact algorithm in the contact surface [31]. In our model, we simply set the value ofQn  

in the range of 0 < 𝑄𝑄n < 1 when interface is in compression to fix the penetration problem.As 

illustrated in Fig.4(b), the maximum normal repulsive traction −𝑇𝑇𝑛𝑛∗ will not decrease to zero at 

the condition of large tangential separation.The smaller the value of Qn , the larger the normal 

traction between the two contact surfaces. Through a parametric study, we found out Qn = 0.43 

works very well in our simulation to handle the penetration problem. Thus, the model has the 

capability to sustain compressive deformation without special treatment or enforcing a contact 

algorithm. 

4.Path dependence of work-of-separation 

The amount of energy dissipated strongly depends on separation paths when the normal and 

shear fracture energy in the interfacial zone are different.To evaluate the energy variation with 
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respect to separation path, it is necessary to study the work-of-separation[20]. Many 

experimental data illustrates that the work-of-separation in normal direction is not equal tothe 

work in tangential direction,e.g. Araki et al. [14], Benzeggagh and Kenane[15], Dollhofer et al. 

[16], Pang [17], Warrior et al. [18] and Yang et al. [19]. Therefore, the work-of-separation under 

combined normal and shear loading is analyzed with unequal normal and shear energy to study 

the influence of coupling parameters of the proposed interfacial bonding model.  

4.1. Non-proportional separation 

In the first case, the interfacial zone is loaded in normal direction up to a maximum displacement 

of ∆𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚  with ∆𝑡𝑡= 0 . Then, the normal displacement is kept at this maximum point and 

subsequently the shear loading is applied until completelyseparation in shear direction(∆𝑡𝑡→ ∞). 

The normal work-of-separation, the tangential work-of-separation and the total work is 

calculated as[10, 20]: 

𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑊𝑊𝑛𝑛 + 𝑊𝑊𝑡𝑡 = ∫ 𝑇𝑇𝑛𝑛(∆𝑛𝑛)� ∆𝑡𝑡=0𝑑𝑑∆𝑛𝑛 �
∆𝑛𝑛 ,𝑚𝑚𝑚𝑚𝑚𝑚
𝛿𝛿0

+ ∫ 𝑇𝑇𝑡𝑡(∆𝑡𝑡)� ∆𝑛𝑛=∆𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑∆𝑡𝑡 �
∞

0            (16) 

In the second case, the interfacial zone is loaded in tangential direction up to a maximum 

displacement of ∆𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚  with ∆𝑛𝑛= 𝛿𝛿0 . Subsequently, the shear displacement is kept at this 

maximum point and thenloading in normal direction is applied until completely separation(∆𝑛𝑛→

+∞). The tangential work-of-separation,the normal work-of-separation and the total work is 

calculated as[10, 20]: 

𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑊𝑊𝑡𝑡 + 𝑊𝑊𝑛𝑛 = ∫ 𝑇𝑇𝑡𝑡(∆𝑡𝑡)� ∆𝑛𝑛=𝛿𝛿0𝑑𝑑∆𝑡𝑡 �
∆𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚

0 + ∫ 𝑇𝑇𝑛𝑛(∆𝑛𝑛)� ∆𝑡𝑡=∆𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑∆𝑛𝑛 �
+∞
𝛿𝛿0

        (17) 

As shown in Fig. 5(a) and Fig. 6(a), the total work equals the shear work (𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑊𝑊𝑡𝑡) when 

∆𝑛𝑛,𝑚𝑚𝑚𝑚𝑥𝑥= 𝛿𝛿0  and the total work equals the normal work (𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑊𝑊𝑛𝑛) when ∆𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚 = 0 . 

Furthermore, the total work varies very smoothly from shear work to normal work (Fig. 5(a) and 

Fig. 6(a)) or from normal work to shear work (Fig. 5(b) and Fig. 6(b)). The curves of work-of-

separation clearly illustrate the realistic changes of work under mixed-mode loading. 
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Fig. 5. (𝑐𝑐𝑠𝑠2 = 0 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝜑𝜑𝑛𝑛 = 2.5J/𝑚𝑚2, 𝜑𝜑𝑡𝑡 = 1.25J/𝑚𝑚2):  (a) 
Work-of-separation vs. ∆𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 ;  (b) Work-of-separation vs. ∆𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚  

 
Fig. 6.  (𝑐𝑐𝑠𝑠2 = 1 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝜑𝜑𝑛𝑛 = 2.5J/𝑚𝑚2, 𝜑𝜑𝑡𝑡 = 1.25J/
𝑚𝑚2):(a)Work-of-separation vs. ∆𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 ;(b)Work-of-separation vs. ∆𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚  

4.2. Proportional separation 

The proportional separation path is associated with the separation angle(𝛼𝛼), which is a realistic 

coupling separation in both normal and tangential directions. The work-of-separation of 

proportional separation for the proposed interfacial bonding model is defined as[10]: 

𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑊𝑊𝑛𝑛 + 𝑊𝑊𝑡𝑡 = ∫ 𝑇𝑇𝑛𝑛(∆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, ∆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∆𝑛𝑛
+∞
𝛿𝛿0

+ ∫ 𝑇𝑇𝑡𝑡(∆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, ∆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∆𝑡𝑡
∞

0 (18) 

where∆= �(∆𝑛𝑛 − 𝛿𝛿0)2 + ∆𝑡𝑡2 and 𝛿𝛿 = �(𝛿𝛿𝑛𝑛 − 𝛿𝛿0)2 + 𝛿𝛿𝑡𝑡2. 
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Fig.7. The proportion separation of the proposed interfacial bonding model (𝜑𝜑𝑛𝑛 = 2.50J/
𝑚𝑚2, 𝜑𝜑𝑡𝑡 = 1.25J/𝑚𝑚2) : (a)Work-of-separation in normal direction;  (b) Work-of-separation in 
tangential direction; (c) Total work-of-separation 

When the debonding process is along 90° (normal direction), the work-of-separation is pure 

mode I and it equals normal energy (𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑊𝑊𝑛𝑛 ). The work-of-separation is pure mode II during 

the debonding process when 𝛼𝛼 = 0° and it equals shear energy (𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑊𝑊𝑡𝑡). One would expect 

that the work-of-separation is in mixed-mode decohesive process when the debonding angle is 

between 0° 𝑎𝑎𝑎𝑎𝑎𝑎 90°. The work-of-separation for proportional separation is illustrated in Fig.7. 

From Fig.7(a), it can be seen that the work-of-separation in normal direction is decreasing when 

the debonding angle is decreasing. The work-of-separation in shear direction is increasing as the 

decohesive angle 𝛼𝛼 decreasing, as shown in Fig.7(b). The Fig.7(c) illustrates the total work-of-

separation (𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑊𝑊𝑛𝑛 + 𝑊𝑊𝑡𝑡) during mixed-mode decohesion. 
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5. Model Verification 

5.1. Analytical analysis 

The proposed interfacial bonding model was verified through analytical solutionwhen the 

interface is inlinear elastic deformation. Theanalytical solution of stress-strain relation is derived 

based on a simple compression test in a standard hexagonal structure, as shown in Fig. 

8.Thehexagonal plates will slide each other along the interface duringcompressive loading 

process. The red springs between bulks in Fig. 8(a) represent the interface traction.  

 
Fig. 8. Compression test:(a)Original configuration;(b)Deformed configuration 

From the deformed configuration in Fig. 8(b) and Fig. 9, the force equilibrium and compatibility 

equations can be obtained. In Fig. 9 (b), the black dash line denotes the original hexagonal 

surface and red solid line represents the current hexagonal surface. The parameters used in the 

derivation of the analytical solution are defined in Fig. 9(b)-(c).  

According to Fig. 9, the stress(𝜎𝜎𝑏𝑏 )-strain(𝜀𝜀𝑏𝑏) relation can be obtained as (c.f. Appendix A): 

𝜎𝜎𝑏𝑏 = 𝐸𝐸𝑛𝑛 �
ℎ0𝜀𝜀𝑏𝑏
𝑡𝑡0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

−
�4t0

2−2√3t0(𝑡𝑡0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −ℎ0𝜀𝜀𝑏𝑏)−t0

√3t0
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� + 𝐺𝐺𝑠𝑠

�4t0
2−2√3t0(𝑡𝑡0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −ℎ0𝜀𝜀𝑏𝑏)−t0

√3t0
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡        (19) 

Where 𝜎𝜎𝑏𝑏  is the bulk stress; 𝜀𝜀𝑏𝑏 is applied strain; 𝐸𝐸𝑛𝑛  represents the modulus of interface in normal 

direction;𝐺𝐺𝑠𝑠  is the shear modulus of interface;t0  is the original interface thickness;  𝜃𝜃  is the 

geometry angle of hexagon; h0  is the original height of the hexagonal structure. Detailed 

derivation of analytical solution for the stress-strain relation can be found in Appendix A.  
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Fig. 9. Analytical model:(a) Force equilibrium; (b)Compatibility relationship (zoom in view 
from Fig. 8(b) dash elliptical region); (c-d) Details ofparameters used in analytical solution. 

5.2.Finite Element Implementation 

Following standard procedures and neglecting the body force, a Galerkin weak formulation can 

be expressed as following: 

∫ 𝐏𝐏: 𝛿𝛿𝐅𝐅𝑑𝑑ΩΩ − ∫ 𝐓𝐓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝛿𝛿∆𝑑𝑑𝑑𝑑𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
= ∫ 𝐓𝐓�𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒

∙ 𝛿𝛿𝐮𝐮𝑑𝑑𝑑𝑑 − ∫ 𝜌𝜌𝐮̈𝐮 ∙ 𝛿𝛿𝐮𝐮𝑑𝑑ΩΩ        (20) 

whereP is the first Piola-Kirchhoff stress tensor;F is the deformation gradient;∆ denotes the 

interface displacement jump across the interfaces; Ω , 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒  are the volume, internal 

interface boundary and external traction boundary of element in the reference 

configuration;𝜌𝜌 represents the material density in the reference configuration, 𝐓𝐓� denotes the 

external traction vector and 𝐓𝐓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the interfacialbonding traction vector. The explicit time 

integration scheme is applied, which is based on the Newmark𝛽𝛽 method with 𝛽𝛽 = 0 and 𝛾𝛾 =

0.5[32].  

5.3.Simulation Results vs. Analytical Solutions 
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Numerical simulations have been carried out for the same specimen as in the analytical analysis. 

The exact problem statement is shown in Fig. 10, and the length of hexagon edge is 15𝑛𝑛𝑛𝑛. Thus, 

the specimen width is 𝐿𝐿𝑥𝑥 = 25.98𝑛𝑛𝑛𝑛, and length is 𝐿𝐿𝑦𝑦 = 39.232𝑛𝑛𝑛𝑛. The specimen is under 

compressive loading along y direction and the bottom is set as roller boundary condition as 

shown in Fig. 10. 

 
Fig. 10. Simulation specimen and problem setup for a simple case 

In the simulation, the material properties for the bulk constituents were chosen as:  Young’s 

modulus 𝐸𝐸 = 100GPa, Poisson’s ratio 𝑣𝑣 = 0.28 [33], mass density 𝜌𝜌 = 3190𝑘𝑘𝑘𝑘/𝑚𝑚3 [34] and 

the interfacial zone properties are 𝜎𝜎𝑐𝑐 = 𝜏𝜏𝑐𝑐 = 55MPa  and  𝜑𝜑𝑛𝑛 = 0.052𝐽𝐽/𝑚𝑚2, 𝜑𝜑𝑡𝑡 = 0.032𝐽𝐽/

𝑚𝑚2[35]. The initial interfacial zone thickness is 𝑡𝑡0 = 𝛿𝛿0 = 2𝑛𝑛𝑛𝑛. In this case, when the interface 

is in tension, the parameters are taken as𝑐𝑐𝑛𝑛1 = 𝑐𝑐𝑛𝑛2 = 𝑐𝑐𝑠𝑠2 =  𝑄𝑄𝑡𝑡 =  𝑄𝑄𝑛𝑛 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑠𝑠1 = 0 , and 

when the interface is in compression, we set 𝑄𝑄𝑛𝑛 = 0.43 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑠𝑠1 = 𝑐𝑐𝑠𝑠2 = 0. The deformation and 

stress distribution of the specimen is shown in Fig. 11 at different loading strain 𝜀𝜀𝑏𝑏 . 

Based on the interface geometry parameters and material properties used in our numerical 

simulation, we can easily obtain the stress-strain relation from the analytical solution (Eq.19). 

The stress-strain relation of simulation results and analytical solutions was illustrated in Fig. 12.  
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Fig. 11. Snapshot of stress distribution(𝜎𝜎22) at different loading strain: (a)𝜀𝜀𝑏𝑏 = 0%; (b)𝜀𝜀𝑏𝑏 =
0.8%; (c)𝜀𝜀𝑏𝑏 = 1.3%; (d)𝜀𝜀𝑏𝑏 = 1.5%; (e)𝜀𝜀𝑏𝑏 = 1.6%; (f)𝜀𝜀𝑏𝑏 = 1.8% 

 
Fig. 12. Comparison between the analytical solutions and the numerical simulation results(𝜎𝜎𝑏𝑏 −
𝜀𝜀𝑏𝑏):(a) the whole region; (b) linear elastic region 
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Due to the small-angle approximation in analytical solution derivation, we only compared the 

simulation results and analytical solution within 0.3% strain in this case. As strain increases, the 

accumulation error will increase as shown in Fig. 12. The major reason for the differences 

between the numerical results and analytical solution is that the linear elastic small deformation 

is assumed in the derivation of the analytical solution; however the exponential traction-

separation law is used to govern the interfacial interaction in numerical simulation. It can be seen 

that the stress-strain curve of simulation results was consistent with the curve of analytical 

solutions in small linear elastic deformation region. Nonetheless, we should say that the model 

developed in this work is not only for fracture simulation, it canbe also usedto model cell-

cell/substrate interactions.Soit is meaningful to compare with analytical solution for linear elastic 

deformation at the interface. In addition, we have compared our model with experimental data 

for bone fracture simulation in Section 6, which is inelastic. 

6. Numerical simulationof extrafibrillar matrix in bone 

Studying the fracture mechanism in bone is attracting the attention of engineering researchers, 

due to its highly hierarchical structure and the exceptional mechanical and load-bearing 

properties, e.g. Rho et al. [36],Weiner and Wagner [37] and Weiner et al.[38]. Bone poses 

various levels of hierarchical structural organization from macroscale to nanoscale[36, 39]. The 

mechanism of bone failure has been extensively studied, however, the underlying mechanism of 

plastic deformation in bone is still a debating issue. The possible pathways for plastic flow in 

bone are most likely due to the sliding between mineral crystals[40], between mineral and 

collagen phases[40], or between the mineralized collagen fibrils[41-43].  

 
Fig.13. Schematic representation of ultrastructure of extrafibrillar matrix:(a) extrafibrillar 
matrix;(b)HA crystals in extrafibrillar matrix; (c) Organic interface between HA crystals. 
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At ultrascale level, the extrafibrillar matrix in bone consists of hydroxyapatite (HA) polycrystals 

bounded through an organic interface (grain boundary), as shown in Fig.13. This organic 

interface consists of a group of non-collagenous proteins, such as osteocalcin, osteopontin and 

proteoglycans [44]. To explore the bulk mechanical properties of bone materials, it is important 

to understand the mechanical response of its microstructure. 

For simplicity while ensuring reasonable accuracy, a 2D plane strain model of granular HA 

crystals bounded through a thin interface was proposed to mimic the microstructure of 

extrafibrillar matrix in bone. The geometry of the specimen was generated by Voronoi 

tessellation method, e.g.Du et al. [45] and Lin et al. [46]. The exact problem statement is shown 

in Fig. 14, in which a 2D plate with dimension (𝐿𝐿𝑥𝑥 × 𝐿𝐿𝑦𝑦 = 322𝑛𝑛𝑛𝑛 × 322𝑛𝑛𝑛𝑛)  is under 

compressive loading in 𝑦𝑦 axis. In this simulation, there are 144 grain cells and the average grain 

size is around 25𝑛𝑛𝑛𝑛[47-49].The thickness of organic interface was set to be t0 = δ0 = 2nm 

throughout the model, which was estimated based on the volume ratio of organic interface (~ 10% 

by volume) and the average grain size (~25nm) in the extrafibrillar matrix[50, 51]. 

 
Fig. 14. Simulation problem set up of extrafibirllar matrixstructure 

The organic-inorganic interface in extrafibrillar matrix may contain different chemical bonds and 

the environments are truly complicated. A direct experimental measurement of interface 

properties and behaviors for extrafibrillar matrix is very challenging. In the current work, the 

thickness of organic interface is assumed to be around 2nm and comprised of a monolayer of 

molecules. Under this assumption, the interface would behave like an interfacial molecular bond 

between the hydroxyapatite grains, thus making the proposed cohesive zone law suitable for this 
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case. The interfacial interaction was assumed as intermediate type of interfacial bonds (hydrogen 

bonds).The material properties for the bulk constituents were chosen as:  Young’s modulus 

𝐸𝐸 = 100GPa , Poisson’s ratio 𝑣𝑣 = 0.28 [33], mass density 𝜌𝜌 = 3190𝑘𝑘𝑘𝑘/𝑚𝑚3 [34] and the 

proposed interfacial zone properties wereset as 𝜎𝜎𝑐𝑐 = 𝜏𝜏𝑐𝑐 = 55MPa and  𝜑𝜑𝑛𝑛 = 0.052𝐽𝐽/𝑚𝑚2, 𝜑𝜑𝑡𝑡 =

0.032𝐽𝐽/𝑚𝑚2[35]. In this case, when the interface was under tension, the parameters were taken as 

𝑐𝑐𝑛𝑛1 = 𝑐𝑐𝑛𝑛2 = 𝑐𝑐𝑠𝑠2 =  𝑄𝑄𝑡𝑡 =  𝑄𝑄𝑛𝑛 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑠𝑠1 = 0, and when the interface was under compression, 

we set 𝑄𝑄𝑛𝑛 = 0.43 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑠𝑠1 = 𝑐𝑐𝑠𝑠2 = 0.  

In this work, all simulations were implemented using a custom-developed finite element package 

[23, 52-55].We first performed the mesh refinement studies and found out that the maximum 

stress in the specimen was decreasing as mesh number increasing (mesh size decreasing) and the 

stress would reach a convergent value when the mesh size is below 7.5nm as shown in Fig. 15.  

 
Fig. 15. Mesh convergence test  

 
After the mesh convergence test, we have run six simulation cases with random polycrystalline 

grain distribution. The deformation process from one of the simulation cases was shown in Fig. 

16. The stress distribution along loading direction was captured from the simulation. From this 

study, we measured the averaged crack path and it was along an inclined angle(≈ 33°), which 

was very similar to the angle of cross-hatch cracks observed in bone compression test [56]. 

Furthermore, as shown in Fig. 17, the elastic modulus estimated from the simulation was around 

15𝐺𝐺𝐺𝐺𝐺𝐺, which was in the range of nanoindentation modulus of bone reported in the literature [57, 

58]. In addition, the estimated maximum value of the average mineral strain(~0.24 ± 0.03%) 

was consistent with the experimental studies(0.27 ± 0.03%)[59, 60]. In Fig. 17, the error bars 

are the standard deviation. The simulation results indicated that this improved interfacial bonding 
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model could capture the sliding process along the interface between the HA crystals and the 

overall failure behavior of the extrafibrillar matrix in bone (see Fig. 16).  

 

 
Fig. 16. Snapshot of 
stressdistribution(𝜎𝜎22):(a)𝜀𝜀𝑏𝑏=0.30%;(b)𝜀𝜀𝑏𝑏=1.28%;(c)𝜀𝜀𝑏𝑏=1.52%;(d)𝜀𝜀𝑏𝑏=1.58%;(e)𝜀𝜀𝑏𝑏=1.64%;(f)𝜀𝜀𝑏𝑏
=1.95% 

 
Fig. 17.(a)Average mineral strain vs.applied strain (𝜀𝜀𝑏𝑏); (b)Bulk stress(𝜎𝜎𝑏𝑏) vs.applied strain(𝜀𝜀𝑏𝑏) 
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7. Conclusions 

In this work, we have reported animproved interfacialbonding model. The proposed model 

wasexamined in mixed-mode loading and the physically realistic coupling behavior was obtained. 

The work-of-separation analysis implies that the proposed interfacial bonding model can capture 

the work-of-separation in mixed mode, which is a realistic process for work transformation from 

normal to shear or from shear to normal. The proposed improved interfacial bonding model has 

the following properties: 

(1) By introducing the equilibrium distance 𝛿𝛿0 , our model characterizes both attractive and 

repulsive interfacial interactions and can be applied to model material interfaces under both 

tension and compression, while the traditional cohesive zone model may need anadditional 

treatment in the interface to avoid surface penetration when the interface surfaces are in 

compression. 

(2) By assigning propervalues to the control variables(𝑐𝑐1, 𝑐𝑐2𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄)in the normal and tangential 

traction-separation laws, the proposed interfacial zone model satisfied all fracture boundary 

conditions for mixed-mode fracture as indicated in Section 3. 

(3) The proposed interfacial zone model does not require equal fracture energy in the normal and 

shear direction. The assumption that the normal fracture energy (𝜑𝜑𝑛𝑛)equals the shear fracture 

energy (𝜑𝜑𝑡𝑡)is often not consistent with experiment measurements. 

(4) When interface is undercompression(∆𝑛𝑛< 𝛿𝛿0), the maximum shear traction (𝑇𝑇𝑡𝑡∗)could either 

increase or keep constant as ∆𝑛𝑛  decreasing, which appears to be realistic[61]. 

(5) The proposed interfacial zone model can be reduced to an improved exponential cohesive 

zone model [20] by assigning proper values to the control varablesand thus the proposed model 

preserves all essential features of an improved exponential cohesive zone model. 

The proposed interfacial bonding model wasverified by analytical solution when the interface is 

in linear elastic deformation. The stress-strain (𝜎𝜎𝑏𝑏 − 𝜀𝜀𝑏𝑏) curve obtained from numerical 

simulation and analytical solution agreed well in linear elastic region as illustrated inFig. 12.By 

employing the generalized interfacial bonding model to theorganic interface modeling of 

extrafibrillar matrix in bone, the simulation results successfully captured the HA crystal sliding 

along the organic interface to form a damage zonein extrafibrillar matrix(c.f. Fig. 16). In addition, 

the inclined crack angle, elastic modulus and average maximum mineral strain obtained from 
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simulation (c.f. Fig. 17) wereconsistentwith experimental observations. Hence, through the 

interfacial modeling, the current research provides a numerical simulation tool to study the 

interface interactions in biological materials. Nonetheless, there are several limitations associated 

with the current study of extrafibrillar matrix behavior in bone. Firstly, crystal shape/size are 

estimated from the experimental observations[41, 49], so the Voronoi generated grains are 

appropriate representations of the extrafibrillar mineral crystals. However, the crystal size, 

orientation and aspect ratio effects were not studied in the current study and need further 

investigation since these factors may also play roles in dictating the extrafibrillar matrix 

mechanical properties. Secondly, the organic interface properties are simply estimated based on 

the experimental observations and related information reported in the literatures, which do not 

consider complex chemical bonding and environment of organic-inorganic interface and may be 

used only for qualitative analysis.  
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Appendix A.Analytical solution derivation of stress-strain relation 

In the analytical model shown inFig. 9 (a), the forces in 𝑦𝑦 direction are in equilibrium: 

∑𝐹𝐹𝑦𝑦 = 0                                                                                                                                     (A.1) 

From the force balance in y axis, we have:  

𝐹𝐹𝑏𝑏 = 2(𝐹𝐹𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)                                                                                                          (A.2) 

where𝐹𝐹𝑏𝑏  is applied force;𝐹𝐹𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝑡𝑡  are normal and shear force of interface, respectively; 𝜃𝜃 is the 

geometry angle of hexagon. 

Substitute  𝐹𝐹𝑏𝑏 = 𝜎𝜎𝑏𝑏𝐴𝐴, 𝐹𝐹𝑛𝑛 = 𝜎𝜎𝑛𝑛𝐴𝐴𝑠𝑠,  𝐹𝐹𝑡𝑡 = 𝜏𝜏𝑠𝑠𝐴𝐴𝑠𝑠 ,  𝐴𝐴 = 2𝐴𝐴𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 into Eq.(A.2), we have: 

𝜎𝜎𝑏𝑏 = 𝜎𝜎𝑛𝑛 + 𝜏𝜏𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

                            (A.3) 

where𝜎𝜎𝑏𝑏  is the bulk stress; 𝜎𝜎𝑛𝑛  represents interfacial normal compressive stress; 𝜏𝜏𝑠𝑠  denotes 

interfacial shear stress. 

From Fig. 9(c)-(d), the sliding distance is determined to be: 

𝛿𝛿𝑠𝑠 = 𝛿𝛿𝑠𝑠1 + 𝛿𝛿𝑠𝑠2 = 𝛿𝛿𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                            (A.4) 

where𝑑𝑑1 is the compressed displacement along vertical direction and 𝛿𝛿𝑙𝑙  is opening displacement 

along horizontal direction. 

Thus, from Eq.(A.4), the shear strainis provided as: 

𝛾𝛾𝑠𝑠 = 𝛿𝛿𝑠𝑠
𝑡𝑡0

= (𝛿𝛿𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +𝑑𝑑1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 )
𝑡𝑡0

(A.5) 

where𝑡𝑡0 is the original thickness of interface. 

Additionally, from the deformation geometry in Fig. 9(c), the following compatibility relations 

can be obtained: 
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𝑑𝑑1 + 𝑑𝑑2 = 𝑡𝑡0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                            (A.6)  

𝑑𝑑2 = �𝑡𝑡0
2

+ 𝛿𝛿𝑙𝑙� 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡                            (A.7) 

Based on the standard hexagon structure, from Fig. 9(c), the shear strain also can be described as: 

𝛾𝛾𝑠𝑠 = 𝜋𝜋
2
− 𝜃𝜃 − 𝛼𝛼where𝜃𝜃 = 𝜋𝜋

6
                                                                                                (A.8) 

Substituting Eqs.(A.6)-(A.8) into Eq.(A.5) yields: 

𝛾𝛾𝑠𝑠 =
�� 𝑑𝑑2
𝑡𝑡𝑡𝑡𝑡𝑡 �π3−𝛾𝛾𝑠𝑠�

−𝑡𝑡0
2 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +𝑑𝑑1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑡𝑡0
(A.9) 

According to the trigonometric sum and difference formulas: 

𝑡𝑡𝑡𝑡𝑡𝑡 �π
3
− 𝛾𝛾𝑠𝑠� =

𝑠𝑠𝑠𝑠𝑠𝑠�π3−𝛾𝛾𝑠𝑠�

𝑐𝑐𝑐𝑐𝑐𝑐�π3−𝛾𝛾𝑠𝑠�
=

sin �𝜋𝜋3�𝑐𝑐𝑐𝑐𝑐𝑐𝛾𝛾𝑠𝑠−𝑐𝑐𝑐𝑐𝑐𝑐�
𝜋𝜋
3�𝑠𝑠𝑠𝑠𝑠𝑠𝛾𝛾𝑠𝑠

cos �𝜋𝜋3�𝑐𝑐𝑐𝑐𝑐𝑐𝛾𝛾𝑠𝑠+𝑠𝑠𝑠𝑠𝑠𝑠�𝜋𝜋3�𝑠𝑠𝑠𝑠𝑠𝑠𝛾𝛾𝑠𝑠
                                                                   (A.10) 

Under the small deformation assumption: 

𝑠𝑠𝑠𝑠𝑠𝑠𝛾𝛾𝑠𝑠~𝛾𝛾𝑠𝑠, 𝑐𝑐𝑐𝑐𝑐𝑐𝛾𝛾𝑠𝑠~1 −
𝛾𝛾𝑠𝑠2

2
 

Eq.(A.10) yields the following relation: 

𝑡𝑡𝑡𝑡𝑡𝑡 �π
3
− 𝛾𝛾𝑠𝑠� ≈

√3−√3
2 𝛾𝛾𝑠𝑠

2−𝛾𝛾𝑠𝑠

1+√3𝛾𝛾𝑠𝑠−
𝛾𝛾𝑠𝑠2

2

   (A.11)                            

Substituting Eq.(A.10) into Eq.(A.9), the shear strainis obtainedas: 

𝛾𝛾𝑠𝑠 =
�4t0

2−2√3t0d2−t0

√3t0
          (A.12) 

From Fig. 9(c)-(d) and Eq.(A.5), the deformed interfacial thickness isdeterminedas: 

t = 𝛿𝛿𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑑𝑑2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝛾𝛾𝑠𝑠𝑡𝑡0𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑑𝑑2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

                                                                                     (A.13) 

The compressed distance in normal direction of interfacial surfaceis defined as: 

𝛿𝛿𝑛𝑛𝑛𝑛 = 𝑡𝑡0 − 𝑡𝑡 = 𝑡𝑡0 − 𝛾𝛾𝑠𝑠𝑡𝑡0𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −
𝑑𝑑2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(A.14) 

According to Hooke’s law, the compressive normal stress and shear stress are obtained as: 
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𝜎𝜎𝑛𝑛 = 𝐸𝐸𝑛𝑛𝜀𝜀𝑛𝑛 = 𝐸𝐸𝑛𝑛
𝛿𝛿𝑛𝑛𝑛𝑛
𝑡𝑡0

(A.15) 

𝜏𝜏𝑠𝑠 = 𝐺𝐺𝑠𝑠𝛾𝛾𝑠𝑠 = 𝐺𝐺𝑠𝑠
𝛿𝛿𝑠𝑠
𝑡𝑡0

(A.16) 

where𝐸𝐸𝑛𝑛  represents the normal modulus of interface and 𝐺𝐺𝑠𝑠 is the shear modulus of interface. 

Substitute Eq.(A.14), (A.15) and (A.16) into Eq.(A.1) yields: 

𝜎𝜎𝑏𝑏 = 𝐸𝐸𝑛𝑛
𝑡𝑡0
�𝑡𝑡0 − 𝛾𝛾𝑠𝑠𝑡𝑡0𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −

𝑑𝑑2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� + 𝐺𝐺𝑠𝑠𝛾𝛾𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(A.17) 

From Fig. 9(c), the bulk strain can bewritten as: 

𝜀𝜀𝑏𝑏 = 𝑑𝑑1
ℎ0

whereℎ0 is the original height of specimen                                                      (A.18) 

Thus, from Eq.(A.6), (A.12),(A.17) and (A.18), the stress-strain relation can be easily obtained: 

𝜎𝜎𝑏𝑏 = 𝐸𝐸𝑛𝑛 �
ℎ0𝜀𝜀𝑏𝑏
𝑡𝑡0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

−
�4t0

2−2√3t0(𝑡𝑡0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −ℎ0𝜀𝜀𝑏𝑏)−t0

√3t0
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� + 𝐺𝐺𝑠𝑠

�4t0
2−2√3t0(𝑡𝑡0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −ℎ0𝜀𝜀𝑏𝑏)−t0

√3t0
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(A.19) 
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