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Abstract: Bernstein polynomial approximation of continuous function has a slower rate of conver-
gence compared to other approximation methods. “The fact seems to have precluded any numerical
application of Bernstein polynomials from having been made. Perhaps they will find application when the
properties of the approximant in the large are of more importance than the closeness of the approximation.”—
remarked P.J. Davis in his 1963 book, Interpolation and Approximation. This paper presents a direct
approximation method for nonlinear optimal control problems with mixed input and state constraints
based on Bernstein polynomial approximation. We provide a rigorous analysis showing that the
proposed method yields consistent approximations of time-continuous optimal control problems and
can be used for costate estimation of the optimal control problems. This result leads to the formulation
of the Covector Mapping Theorem for Bernstein polynomial approximation. Finally, we explore the
numerical and geometric properties of Bernstein polynomials, and illustrate the advantages of the
proposed approximation method through several numerical examples.

Keywords: numerical optimal control; Bernstein polynomials; Bezier curves

1. Introduction

Motion planning plays an important role in enabling robotic systems to accomplish
tasks assigned to them autonomously, safely and reliably. Over the past decades, many ap-
proaches to generating trajectories have been proposed. Examples include bug algorithms,
artificial potential functions, roadmap path planners, cell decomposition methods, and
optimal control-based trajectory generation. The reader is referred to [1–8] and references
therein for detailed discussions and comparisons of these methods. Each technique has
different advantages and disadvantages, and is best suited to certain types of problems.
Motion planning based on optimal control, i.e., optimal motion planning, is particularly
suitable for applications that require the trajectory to optimize some costs while guaran-
teeing satisfaction of a complex set of vehicle and problem constraints. These applications
include multi-robot road search [9], coordinated tracking [10], optimal and constrained
formation control [11], and adversarial swarm defense [12].

Optimal control problems that arise from robotics and motion-planning applications
are, in general, very complex. Finding a closed-form solution to these problems can be
difficult or even impossible, and therefore they must be solved numerically. Numerical
methods include indirect and direct methods [13]. Indirect methods solve the problems
by converting them into boundary value problems. Then, the solutions are found by
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solving systems of differential equations. On the other hand, direct methods are based
on transcribing optimal control problems into nonlinear programming problems (NLPs)
using a discretization scheme [6,13–15]. These NLPs can be solved using ready-to-use NLP
solvers (e.g., MATLAB, SNOPT, etc.) and do not require calculation of costate and adjoint
variables, as indirect methods do.

A wide range of direct methods that use different discretization schemes have been
developed, including direct single shootings, direct multiple shooting and direct collocation
methods [6,13–15]. The software packages that implement some of these methods (e.g.,
PSOPT [16], NLOptControl [17], GPOPS II [18], PROPT [19], DIDO [20] and CasADi [21])
are particularly relevant; some of these have been applied successfully to solve a wide
range of real-world problems [22–28]. Theoretical results in the literature on direct methods
include those related to consistency of approximation theory; see [29], which provides a
framework to assess the convergence properties of Euler and Range–Kutta discretization
schemes. Motivated by the consistency of approximation theory, direct methods that use
different discretization schemes have been developed, including Pseudospectral methods
based on Legendre, Chebyshev and Lagrange polynomials [28]. One drawback of di-
rect methods is that the costate of the original optimal control problem cannot be readily
obtained from the approximated solution. Nevertheless, in several applications—such
as motion planning and control for safety-critical robotic systems—the knowledge of the
costate is important because it allows for the evaluation of the fulfillment of necessary con-
ditions of optimality. This evaluation, in turn, provides important insights into the validity
and optimality of the solution. Therefore, approaches for obtaining estimates of the costate
from direct methods have been proposed in the literature on direct collocation [30–32] and
direct shooting [33].

In [34] we presented a direct method based on Bernstein polynomials. We showed
that the geometric properties of these polynomials allow for the implementation of efficient
algorithms for the computation of state and input constraints, which are particularly useful
for motion planning and trajectory generation applications [35,36]. Additional works
that exploit the properties of Bernstein polynomials for nonlinear optimal control can be
found in [37–41]. Furthermore, in [42] we used the approximation properties of Bernstein
polynomials to derive consistency and convergence results for the proposed direct method.
In the present paper, we propose an approximation scheme for primal and dual optimal
control problems based on Bernstein polynomials. In particular, we propose an approach to
approximate the costate of a general non-linear optimal control problem of Bolza type using
the Lagrange multipliers of the Bernstein polynomial-based discrete approximation. We
derive transformations that relate the Lagrange multipliers of the nonlinear programming
problem to the costate of the original optimal control problem. These transformations
are often referred to as covector mapping in the literature on direct methods for optimal
control [28,29,43]. Finally, we demonstrate uniform convergence properties of the method.

The paper is structured as follows: in Section 2, we present the notation and the
mathematical results, which will be used later in the paper. Section 3 introduces the optimal
control problem of interest and some related assumptions, and presents the approxima-
tion method based on Bernstein approximation that approximates the optimal control
problem into an NLP. In Section 4 we derive the Karush–Kuhn–Tucker (KKT) conditions
associated with the NLP. Section 5 compares these conditions to the first-order optimality
conditions for the original optimal control problem and states the Covector Mapping Theo-
rem for Bernstein approximation. Numerical examples are discussed in Section 6, while
Section 7 highlights the significance of the theoretical findings applied to a specific multi-
robot simulation scenario, namely optimal defense against swarm attacks. The paper ends
with conclusions in Section 8.

2. Notation and Mathematical Background

Vector-valued functions are denoted by bold letters, x(t) = [x1(t) , . . . , xn(t)]>, while
vectors are denoted by bold letters with an upper bar, x̄ = [x1 , . . . , xn]> ∈ Rn. The symbol
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Cr denotes the space of functions with r continuous derivatives. Cr
n denotes the space of

n-vector valued functions in Cr. || · || denotes the Euclidean norm, ||x̄|| =
√

x2
1 + . . . + x2

n.
The Bernstein basis polynomials of degree N are defined as

bj,N(t) =
(

N
j

)
tj(1− t)N−j , t ∈ [0, 1] ,

for j = 0, . . . , N, with (N
j ) =

N!
j!(N−j)! . A Nth-order Bernstein polynomial xN : [0, 1]→ R is

a linear combination of N + 1 Bernstein basis polynomials of order N, i.e.,

xN(t) =
N

∑
j=0

x̄jbj,N(t) , t ∈ [0, 1] ,

where x̄j ∈ R, j = 0, . . . , N, are referred to as Bernstein coefficients. For the sake of
generality, and with a slight abuse of terminology, in this paper, we extend the definition of
a Bernstein polynomial given above to a vector of Nth-order polynomials xN : [0, 1]→ Rn

expressed in the following form

xN(t) =
N

∑
j=0

x̄j,Nbj,N(t) , t ∈ [0, 1] , (1)

where x̄0,N , . . . , x̄N,N ∈ Rn.
In what follows, we provide a review of numerical properties of Bernstein polynomials

that are used throughout this paper. The derivative and integral of a Bernstein polynomial
xN(t) can be easily computed as

ẋN(t) = N
N−1

∑
j=0

(x̄j+1,N − x̄j,N)bj,N−1(t)

and ∫ 1

0
xN(t)dt = w

N

∑
j=0

x̄j,N , w =
1

N + 1
, (2)

respectively.
Bernstein polynomials can be used to approximate smooth functions. Consider a

n-vector valued function x : [0, 1]→ Rn. The Nth order Bernstein approximation of x(t) is a
vector of Bernstein polynomials xN(t) computed as in (1) with x̄j,N = x(tj) and tj =

j
N for

all j = 0, . . . , N. Namely,

x(t) ≈xN(t) =
N

∑
j=0

x(tj)bj,N(t) , tj =
j

N
. (3)

The following results hold for Bernstein approximations.

Lemma 1 (Uniform convergence of Bernstein approximation). Let x(t) ∈ C0
n on [0, 1], and

let xN(t) be computed as in Equation (3). Then, for arbitrary order of approximation N ∈ Z+, the
Bernstein approximation xN(t) satisfies

||xN(t)− x(t)|| ≤ C0Wx(N−
1
2 ) ,

where C0 is a positive constant satisfying C0 < 5n/4, and Wx(·) is the modulus of continuity of
x(t) in [0, 1] [44–46]. Moreover, if x(t) ∈ C1

n, then

‖ẋN(t)− ẋ(t)‖ ≤ C1Wx′(N−
1
2 ) ,

where C1 is a positive constant satisfying C1 < 9n/4 and Wx′(·) is the modulus of continuity of
ẋ(t) in [0, 1] [47].
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Lemma 2 ([48]). Assume x(t) ∈ Cr+2
n , r ≥ 0, and let xN(t) be computed as in Equation (3). Let

x(r)(t) denote the rth derivative of x(t). Then, the following inequalities hold for all t ∈ [0, 1]:

||xN(t)− x(t)|| ≤ C0

N
,

...

||x(r)N (t)− x(r)(t)|| ≤ Cr

N
,

where C0, . . . , Cr are independent of N.

Lemma 3. If x(t) ∈ C0
n on [0, 1], then we have
∥∥∥∥∥
∫ 1

0
x(t)dt− w

N

∑
j=0

x
(

j
N

)∥∥∥∥∥ ≤ CIWx(N−
1
2 ) ,

with w = 1
N+1 , where CI > 0 is independent of N. Moreover, if x(t) ∈ C2

n, then
∥∥∥∥∥
∫ 1

0
x(t)dt− w

N

∑
j=0

x
(

j
N

)∥∥∥∥∥ ≤
CI
N

.

The Lemma above follows directly from Lemmas 1 and 2 and Equation (2).
The following property of Bernstein polynomials is relevant to this paper.

Property 1 (End point values). The Bernstein polynomial given by Equation (1) satisfies
xN(0) = x̄0,N and xN(1) = x̄N,N .

3. Problem Formulation

This paper considers the following optimal control problem:

Problem 1 (Problem P). Determine x : [0, 1]→ Rnx and u : [0, 1]→ Rnu that minimize

I(x(t), u(t)) = E(x(0), x(1)) +
∫ 1

0
F(x(t), u(t))dt , (4)

subject to

ẋ = f (x(t), u(t)) , ∀t ∈ [0, 1], (5)

e(x(0), x(1)) = 0 , (6)

h(x(t), u(t)) ≤ 0 , ∀t ∈ [0, 1] , (7)

where E : Rnx × Rnx → R and F : Rnx × Rnu → R are the terminal and running costs,
respectively, f : Rnx ×Rnu → Rnx describes the system dynamics, e : Rnx ×Rnx → Rne is the
vector of boundary conditions, and h : Rnx ×Rnu → Rnh is the vector of state and input constraints.

Next, we formulate a discretized version of Problem P, here referred to as Problem
PN , where N denotes the order of approximation. This requires that we approximate the
input and state functions, the cost function, the system dynamics and the equality and
inequality constraints in Problem P. First, consider the following Nth-order vectors of
Bernstein polynomials:

xN(t) =
N

∑
j=0

x̄j,Nbj,N(t) , uN(t) =
N

∑
j=0

ūj,Nbj,N(t), (8)
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with xN : [0, 1] → Rnx , uN : [0, 1] → Rnu , x̄j,N ∈ Rnx and ūj,N ∈ Rnu . Let x̄N ∈ Rnx×(N+1)

and ūN ∈ Rnu×(N+1) be defined as

x̄N = [x̄0,N , . . . , x̄N,N ], ūN = [ū0,N , . . . , ūN,N ].

Let 0 = t0 < t1 < . . . < tN = 1 be a set of equidistant time nodes, i.e., tj =
j

N . Then,
Problem PN can be stated as follows:

Problem 2 (Problem PN). Determine x̄N and ūN that minimize

IN(x̄N , ūN) =

E(xN(0), xN(tN)) + w
N

∑
j=0

F(xN(tj), uN(tj)) ,
(9)

subject to ∥∥ẋN(tj)− f (xN(tj), uN(tj))
∥∥ ≤ δN

P , ∀j = 0, . . . , N , (10)

e(xN(0), xN(tN)) = 0 , (11)

h(xN(tj), uN(tj)) ≤ δN
P 1 , ∀j = 0, . . . , N , (12)

where w = 1
N+1 , and δN

P is a small positive number that depends on N and converges uniformly to
0, i.e., limN→∞ δN

P = 0.

Remark 1. Compared to the constraints of Problem P, the dynamic and inequality constraints
given by Equations (10) and (12) are relaxed. Motivated by previous work on consistency of
approximation theory [29], the bound δN

P , referred to as relaxation bound, is introduced to
guarantee that Problem PN has a feasible solution. As will become clear later, the relaxation bound
can be made arbitrarily small by choosing a sufficiently large order of approximation N. Furthermore,
note that when N → ∞, the right-hand sides of Equations (10) and (12) are equal to zero, i.e., the
difference between the constraints imposed by Problems P and PN vanishes.

Remark 2. The outcome of Problem PN is a set of optimal Bernstein coefficients x̄∗N and ū∗N that
determine the vectors of Bernstein polynomials x∗N(t) and u∗N(t), i.e.,

x∗N(t) =
N

∑
j=0

x̄∗j,Nbj,N(t) , u∗N(t) =
N

∑
j=0

ū∗j,Nbj,N(t) . (13)

In our previous work, see [42], we provide theoretical results demonstrating: (i) the existence of a
feasible solution to Problem PN , and (ii) the convergence of the pair (x∗N(t), u∗N(t)) to the optimal
solution of Problem P, given by (x∗(t), u∗(t)). Nevertheless, the present paper focuses on the
existence and convergence of the estimates of the costates of Problem P, which are introduced next.

4. Costate Estimation for Problem PPP
4.1. First-Order Optimality Conditions of Problem P

We start by deriving the first-order necessary conditions for Problem P. Let λ(t) : [0, 1]→
Rnx be the costate trajectory, and let µ(t) : [0, 1] → Rnh and ν ∈ Rne be the multipliers. By
defining the Lagrangian of the Hamiltonian (also known as the D-form [49]) as

L(x(t), u(t), λ(t), µ(t)) =

H(x(t), u(t), λ(t)) + µ>(t)h(x(t), u(t)) ,

where the HamiltonianH is given by

H(x(t), u(t), λ(t)) = F(x(t), u(t)) + λ>(t) f (x(t), u(t)) ,

the dual of Problem P can be formulated as follows [49].
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Problem 3 (Problem Pλ). Determine x(t), u(t), λ(t), µ(t) and ν that for all t ∈ [0, 1] satisfy
Equations (5)–(7) and

µ>(t)h(x(t), u(t)) = 0 , µ(t) ≥ 0 , (14)

λ̇>(t) + Lx(x(t), u(t), λ(t), µ(t)) = 0 , (15)

λ>(0) = −ν>ex(0)(x(0), x(1))− Ex(0)(x(0), x(1)) , (16)

λ>(1) = ν>ex(1)(x(0), x(1)) + Ex(1)(x(0), x(1)) , (17)

Lu(x(t), u(t), λ(t), µ(t)) = 0 . (18)

In the above problem, subscripts are used to denote partial derivatives, e.g.,
Fx(x, u) = ∂

∂x F(x, u).
The following assumptions are imposed onto Problem Pλ.

Assumption 1. E, F, f , e and h are continuously differentiable with respect to their arguments,
and their gradients are Lipschitz continuous over the domain.

Assumption 2. Solutions x∗(t), u∗(t), λ∗(t), µ∗(t) and ν∗ of Problem Pλ exist and satisfy
x∗(t) ∈ C1

nx , u∗(t) ∈ C0
nu , λ∗(t) ∈ C1

nx and µ∗(t) ∈ C0
nh

in [0, 1].

Remark 3. Notice that Problem Pλ implicitly assumes the absence of pure state constraints in
Problem P. If the inequality constraint in Equation (7) is independent of u(t), then the costate λ(t)
must also satisfy the following jump condition [49]:

λ(t−e ) = λ(t+e ) + h>x(te)
η ,

where te is the entry or exit time into a constrained arc in which the inequality constraint is active,
t−e and t+e denote the left-hand side and right-hand side limits of the trajectory, respectively, and
η is a constant covector. For simplicity, the theoretical results that will be presented in Section 5
do not consider the jump conditions above, i.e., the inequality constraints are dependent on u(t).
Nevertheless, numerical examples will be presented in Section 6, showing the applicability of the
discretization method to pure state-constrained problems.

4.2. KKT Conditions of Problem PN

Now, we derive the necessary conditions of Problem PN . Let us introduce the following
Nth-order Bernstein polynomials:

λN(t) =
N

∑
j=0

λ̄j,Nbj,N(t) , µN(t) =
N

∑
j=0

µ̄j,Nbj,N(t), (19)

with λN : [0, 1] → Rnx , µN : [0, 1] → Rnh , λ̄j,N ∈ Rnx and µ̄j,N ∈ Rnh , and the vector
ν̄ ∈ Rne . Finally, let λ̄N ∈ Rnx×(N+1) and µ̄N ∈ Rnu×(N+1) be defined as

λ̄N = [λ̄0,N , . . . , λ̄N,N ], µ̄N = [µ̄0,N , . . . , µ̄N,N ].

With the above notation, the Lagrangian for problem PN can be written as

LN = E(xN(0), xN(tN)) + w
N

∑
j=0

F(xN(tj), uN(tj))

+
N

∑
j=0

λ>N(tj)(−ẋN(tj) + f (xN(tj), uN(tj)))

+
N

∑
j=0

µ>N(tj)h(xN(tj), uN(tj))

+ ν̄>e(xN(0), xN(tN)) .
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Then, the duality of Problem PN can be stated as follows:

Problem 4 (Problem PNλ). Determine x̄N , ūN , λ̄N , µ̄N and ν̄ that satisfy the primal feasibility
conditions, namely Equations (10)–(12), the complementary slackness and dual feasibility conditions

∥∥∥µ>N(tk)h(xN(tk), uN(tk))
∥∥∥ ≤ N−1δN

D ,

µN(tk) ≥ −N−1δN
D 1 , ∀k = 0, . . . , N ,

(20)

and the stationarity conditions
∥∥∥∥

∂LN
∂x̄k,N

∥∥∥∥ ≤ δN
D ,

∥∥∥∥
∂LN
∂ūk,N

∥∥∥∥ ≤ δN
D , ∀k = 0, . . . , N, (21)

where δN
D is a small positive number that depends on N and satisfies limN→∞ δN

D = 0.

At this point, similarly to most results on costate estimation [50–52], we introduce
additional conditions that must be added to Equations (10)–(12), (20) and (21) in order to
obtain consistent approximations of the solutions of Problem Pλ. These conditions, often
referred to as closure conditions in the literature, are given as follows:

∥∥∥λ>N(0)
w

+ ν̄>ex(0)(xN(0), xN(tN)) + Ex(0)(xN(0), xN(tN))
∥∥∥ ≤ δN

D , (22)

∥∥∥λ>N(tN)

w
− ν̄>ex(1)(xN(0), xN(tN))− Ex(1)(xN(0), xN(tN))

∥∥∥ ≤ δN
D . (23)

In other words, the closure conditions are constraints that must be added to Problem
PNλ so that the solution of this problem approximates the solution of Problem Pλ. We
notice that the conditions given above are discrete approximations of the conditions given
by Equations (16) and (17). With this setup, we define the following problem:

Problem 5 (Problem Pclos
Nλ ). Determine x̄N, ūN, λ̄N, µ̄N and ν̄ that satisfy the primal feasibility

conditions, namely Equations (10)–(12), the complementary slackness and dual feasibility conditions (20),
the stationarity conditions (21), and the closure conditions (22) and (23).

The solution of Problem Pclos
Nλ presents a set of optimal Bernstein coefficients x̄∗N , ū∗N ,

λ̄∗N , µ̄∗N (which determine the Bernstein polynomials x∗N(t), u∗N(t), λ∗N(t) and µ∗N(t)) and a
vector ν̄∗.

5. Feasibility and Consistency of Problem Pclos
Nλ

The objective of this section is to investigate the ability of the solutions of Problem Pclos
Nλ

to approximate the solutions of Problem Pλ. In what follows, we first show the existence of
a solution to Problem Pclos

Nλ (feasibility). Second, we investigate the convergence properties
of this solution as N → ∞ (consistency). Third, by combining these two results, we finally
formulate the covector mapping theorem for Bernstein approximations, which provides a map
between the solution of Problem Pclos

Nλ and the solution of Problem Pλ. The main results of
this section are reported in the three theorems below and summarized in Figure 1.

Theorem 1 (Feasibility). Let

δN
D = CD max{Wx′(N−

1
2 ) , Wx(N−

1
2 ) , Wu(N−

1
2 ) , Wλ′(N−

1
2 ) , Wλ(N−

1
2 ) , Wµ(N−

1
2 )} , (24)

δN
P = CP max{Wx′(N−

1
2 ) , Wx(N−

1
2 ) , Wu(N−

1
2 )} , (25)
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where CD and CP are positive constants independent of N, and Wx′(·), Wx(·), Wu(·), Wλ′(·),
Wλ(·) and Wµ(·) are the moduli of continuity of ẋ(t), x(t), u(t), λ̇(t), λ(t) and µ(t), respectively.
Then Problem Pclos

Nλ is feasible for arbitrary order of approximation N ∈ Z+.

Proof. This proof follows by constructing a solution for Problem Pclos
Nλ , with δN

D given by
Equation (24). To this end, let x(t), u(t), λ(t), µ(t) and ν be a solution of Problem Pλ, which
exists by Assumption 2, and define

x̄j,N = x(tj) , ūj,N = u(tj) , (26)

λ̄j,N = wλ(tj) , µ̄j,N = wµ(tj) , ν̄ = ν , (27)

for all j = 0, . . . , N, tj =
j

N , w = 1
N+1 , with corresponding Bernstein polynomials given by

xN(t) =
N

∑
j=0

x̄j,Nbj,N(t) , uN(t) =
N

∑
j=0

ūj,Nbj,N(t) ,

λN(t) =
N

∑
j=0

λ̄j,Nbj,N(t) , µN(t) =
N

∑
j=0

µ̄j,Nbj,N(t).

(28)

The remainder of this proof shows that xN(t), uN(t), λN(t), µN(t) and ν̄ given above
satisfy Equations (20)–(23). The satisfaction of Equations (10)–(12) can be demonstrated
using a proof similar to the one of [42], and is thus omitted. We start by defining the
Bernstein coefficients ˜̄λj,N and ˜̄µj,N as follows

˜̄λj,N =
λ̄j,N

w
, ˜̄µj,N =

µ̄j,N

w
, (29)

with corresponding Bernstein polynomials given by

λ̃N(t) =
N

∑
j=0

˜̄λj,Nbj,N(t) , µ̃N(t) =
N

∑
j=0

˜̄µj,Nbj,N(t).

Notice that

λ̃N(t) =
λN(t)

w
, µ̃N(t) =

µN(t)
w

. (30)

Combining Equations (26), (27) and (29) and using Assumption 2 and Lemma 1, we get

||xN(t)− x(t)|| ≤ CxWx(N−
1
2 ) ,

||uN(t)− u(t)|| ≤ CuWu(N−
1
2 ) ,

||ẋN(t)− ẋ(t)|| ≤ Cx′Wx′(N−
1
2 ) ,

||λ̃N(t)− λ(t)|| ≤ CλWλ(N−
1
2 ) ,

||µ̃N(t)− µ(t)|| ≤ CµWµ(N−
1
2 ) ,

|| ˙̃λN(t)− λ̇(t)|| ≤ Cλ′Wλ′(N−
1
2 ) ,

(31)

where Cλ < 5nx
4 , Cµ < 5nh

4 , Cλ′ <
9nx

4 and Wλ(·), Wµ(·) and Wµ(·) are the moduli of
continuity of λ(t), µ(t) and λ̇(t), respectively.

Now, we show that the bound in Equation (20) is satisfied. Using Equation (30), and
adding and subtracting w(µ>(tk)h(xN(tk), uN(tk)) + µ>(tk)h(x(tk), u(tk))), we get

‖µ>N(tk)h(xN(tk), uN(tk))‖ = ‖wµ̃>N(tk)h(xN(tk), uN(tk))||
≤ w‖(µ̃>N(tk)− µ>(tk))h(xN(tk), uN(tk))‖

+ w‖µ>(tk)h(x(tk), u(tk))‖
+ w‖µ>(tk)(h(xN(tk), uN(tk))− h(x(tk), u(tk))‖
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Using Equation (14), the above inequality reduces to

‖µ>N(tk)h(xN(tk), uN(tk))‖ ≤ w‖(µ̃>N(tk)− µ>(tk))h(xN(tk), uN(tk))‖
+ w‖µ>(tk)(h(xN(tk), uN(tk))− h(x(tk), u(tk))‖

≤ w||h(xN(tk), uN(tk))||CµWµ(N−
1
2 )

+ w‖µ>(tk)‖Lh(CxWx(N−
1
2 ) + CuWu(N−

1
2 )),

where we used the bounds in Equation (31) together with the Lipschitz assumption on h
(see Assumptions 1). Finally, from using Assumptions 1 and 2, it follows that h and µ are
bounded on [0, 1] with bounds hmax and µmax, respectively. Therefore, we get

‖µ>N(tk)h(xN(tk), uN(tk))‖ ≤ w[hmaxCµWµ(N−
1
2 ) + µmaxLh(CxWx(N−

1
2 ) + CuWu(N−

1
2 ))],

which implies that the bound in Equation (20) is satisfied with δN
D given by Equation (24)

and CD > hmaxCµ + µmaxLh(Cx + Cu). Similarly,

µN(tk) = wµ̃N(tk) ≥ wµ(tk)− w‖µ(tk)− µ̃N(tk)‖1− N−1CµWµ(N−
1
2 )1 ,

which proves that Equation (20) holds.
Now, consider the left equation in (21). For k = 0, we have

∥∥∥ ∂LN
∂x̄0,N

∥∥∥ =
∥∥∥Ex(0)(xN(0), xN(tN))

+ w
N

∑
j=0

Fx(xN(tj), uN(tj))b0,N(tj)

+
N

∑
j=0

λ>N(tj)
(

fx(xN(tj), uN(tj))b0,N(tj)− ḃ0,N(tj)
)

+
N

∑
j=0

µ>N(tj)hx(xN(tj), uN(tj))b0,N(tj)

+ ν̄>ex(0)(xN(0), xN(tN))
∥∥∥ .

(32)

Substituting wλ̃N(tj) = λN(tj) and wµ̃N(tj) = µN(tj), the equation above can be
written as

∥∥∥ ∂LN
∂x̄0,N

∥∥∥ =
∥∥∥Ex(0)(xN(0), xN(tN))

+ w
N

∑
j=0

Fx(xN(tj), uN(tj))b0,N(tj)

+ w
N

∑
j=0

λ̃>N(tj)
(

fx(xN(tj), uN(tj))b0,N(tj)− ḃ0,N(tj)
)

+ w
N

∑
j=0

µ̃>N(tj)hx(xN(tj), uN(tj))b0,N(tj)

+ ν̄>ex(0)(xN(0), xN(tN))
∥∥∥ .

(33)

Notice that the following inequalities are satisfied:
∥∥∥w

N

∑
j=0

Fx(xN(tj), uN(tj))b0,N(tj)−
∫ 1

0
Fx(x(t), u(t))b0,N(t)dt

∥∥∥

≤ C̄1(N−
1
2 + Wx(N−

1
2 ) + Wu(N−

1
2 )) ,

(34a)
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∥∥∥∥∥w
N

∑
j=0

λ̃>N(tj)ḃ0,N(tj)−
∫ 1

0
λ>(t)ḃ0,N(t)dt

∥∥∥∥∥ ≤ C̄2(N−
1
2 + Wλ(N−

1
2 )) , (34b)

∥∥∥w
N

∑
j=0

λ̃>N(tj) fx(xN(tj), uN(tj))b0,N(tj)−
∫ 1

0
λ>(t) fx(x(t), u(t))b0,N(t)dt

∥∥∥

≤ C̄3(N−
1
2 + Wλ(N−

1
2 ) + Wx(N−

1
2 ) + Wu(N−

1
2 )) ,

(34c)

∥∥∥w
N

∑
j=0

µ̃>N(tj)hx(xN(tj), uN(tj))b0,N(tj)−
∫ 1

0
µ>(t)hx(x(t), u(t))b0,N(t)dt

∥∥∥

≤ C̄4(N−
1
2 + Wµ(N−

1
2 ) + Wx(N−

1
2 ) + Wu(N−

1
2 )) ,

(34d)

for some positive C̄1, C̄2, C̄3 and C̄4 independent of N. Proof of the above inequalities
is given in Appendix A. Then, the combination of Equations (33) and (34) yields the
following inequality

∥∥∥ ∂LN
∂x̄0,N

∥∥∥ ≤
∥∥∥Ex(0)(x(0), x(1)) +

∫ 1

0
Fx(x(t), u(t))b0,N(t)dt

−
∫ 1

0
λ>(t)ḃ0,N(t)dt

+
∫ 1

0
λ>(t) fx(x(t), u(t))b0,N(t)dt

+
∫ 1

0
µ>(t)hx(x(t), u(t))b0,N(t)dt

+ ν̄>ex(0)(x(0), x(1))
∥∥∥

+ C̄ max{N−
1
2 , Wx(N−

1
2 ), Wu(N−

1
2 ), Wλ(N−

1
2 ), Wµ(N−

1
2 )} ,

(35)

with C̄ ≥ 4 max{C̄1, C̄2, C̄3, C̄4}. Using integration by parts, we have
∫ 1

0 λ>(t)ḃ0,N(t)dt =
−
∫ 1

0 λ̇>(t)b0,N(t)dt + [λ>(t)b0,N(t)]10. Thus, since b0,N(0) = 1, bN,N(0) = 0, the above
inequality becomes

∥∥∥ ∂LN
∂x̄0,N

∥∥∥ ≤
∥∥∥Ex(0)(x(0), x(1)) + λ>(0) + ν>ex(0)(x(0), x(1))

+
∫ 1

0

(
λ̇>(t) + Fx(x(t), u(t)) + λ>(t) fx(x(t), u(t))

+ µ>(t)hx(x(t), u(t))
)

b0,N(t)dt
∥∥∥

+ C̄ max{N−
1
2 , Wx(N−

1
2 ), Wu(N−

1
2 ), Wλ(N−

1
2 ), Wµ(N−

1
2 )} .

(36)

Finally, using Equations (15) and (16), the above inequality reduces to the left condition
in Equation (21) for k = 0, with δN

D given by Equation (24) and CD ≥ C̄. The same
condition for k = 1, . . . , N can be shown to be satisfied using an identical argument. The
stationarity condition in the right of Equation (21) can also be verified similarly, and the
computations are thus omitted. To show that the closure condition (22) is satisfied, we use
the definitions in Equations (26) and (27) together with the end point values property of
Bernstein polynomials, Property 1 in Section 2, which gives

∥∥∥λ>N(0)
w

+ ν̄>ex(0)(xN(0), xN(tN)) + Ex(0)(xN(0), xN(tN))
∥∥∥

≤
∥∥∥λ>(0) + ν>ex(0)(x(0), x(1)) + Ex(0)(x(0), x(1))

∥∥∥ = 0 ,
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where the last equality follows from Equation (16). An identical argument can be used to
show that the closure condition (23) holds, thus completing the proof of Theorem 1.

Corollary 1. If solutions x∗(t), u∗(t), λ∗(t), µ∗(t) and ν∗ of Problem Pλ exist and satisfy
ẋ∗(t) ∈ C2

nx , u∗(t) ∈ C2
nu , λ̇∗(t) ∈ C2

nx , and µ∗(t) ∈ C2
nh

in [0, 1], then Theorem 1 holds with
δN

P = CPN−1 and δN
D = CD N−1 , where CP and CD are positive constants independent of the

order of approximation, N.

Proof. The proof of Corollary 1 follows easily by applying Lemma 2 to the proof of Theorem 1.

Remark 4. We notice that for arbitrarily small scalar εD > 0, there exists N1 such that for all
N ≥ N1, we have δN

D ≤ εD; i.e., the relaxation bound in Problem Pclos
Nλ can be made arbitrarily

small by choosing sufficiently large N.

Theorem 2 (Consistency). Let {(x̄∗N , ū∗u, λ̄∗N , µ̄∗N , ν̄∗)}∞
N=N1

be a sequence of solutions of Problem

Pclos
Nλ . Consider the sequence of transformed solutions {(x̄∗N , ū∗N , ˜̄λ

∗
N , ˜̄µ∗N , ν̄∗)}∞

N=N1
, with

˜̄λ
∗
j,N =

λ̄∗j,N
w

, ˜̄µ∗j,N =
λ̄∗j,N

w
, (37)

and the corresponding polynomial approximation {(x∗N(t), u∗N(t), λ̃∗N(t), µ̃∗N(t), ν̄∗)}∞
N=N1

.
Assume that the latter has a uniform accumulation point, i.e.,

lim
N→∞

(x∗N(t), u∗N(t), λ̃∗N(t), µ̃∗N(t), ν̄∗) = (x∞(t), u∞(t), λ̃∞(t), µ̃∞(t), ν̄∞) , ∀t ∈ [0, 1],

and assume ẋ∞(t), u∞(t), ˙̃λ∞(t) and µ̃∞(t) are continuous on [0, 1]. Then,

(x∞(t), u∞(t), λ̃∞(t), µ̃∞(t), ν̄∞)

is a solution of Problem Pλ.

Proof. The objective is to show that x∞(t), u∞(t), λ̃∞(t), µ̃∞(t) and ν̄∞ satisfy
Equations (5)–(7) and (14)–(18). The satisfaction of Equations (5)–(7) has been demon-
strated in ([42] [Proof of Theorem 2]). We start by showing Equation (14), and we do so
using a proof by contradiction. Assume that x∞(t), u∞(t), µ̃∞(t) do not satisfy Equation (14).
Then, there exists t′ ∈ [0, 1], such that

‖µ̃∞>(t′)h(x∞(t′), u∞(t′))‖ > 0. (38)

Since the nodes {tk}N
k=0 are dense in [0, 1], there exists a sequence of indices {kN}∞

N=0,
such that

lim
N→∞

tkN = t′,

which implies
lim

N→∞
‖µ̃∞(t′)− µ̃∞(tkN )‖ = 0 ,

lim
N→∞

‖x∞(t′)− x∞(tkN )‖ = 0 ,

lim
N→∞

‖u∞(t′)− u∞(tkN )‖ = 0 .
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Then, we have

||µ̃∞>(t′)h(x∞(t′), u∞(t′))|| ≤ lim
N→∞

||(µ̃∗>N (t′)− µ̃∗>N (tkN ))h(x∗N(t
′), u∗N(t

′))||

+ lim
N→∞

||µ̃∗>N (tkN )(h(x∗N(t
′), u∗N(t

′))

− h(x∗N(tkN ), u∗N(tkN )))||
+ lim

N→∞
||µ̃∗>N (tkN )h(x∗N(tkN ), u∗N(tkN ))||

= lim
N→∞

1
w
||µ∗>N (tkN )h(x∗N(tkN ), u∗N(tkN ))|| = 0 ,

where we used Equation (20). This contradicts Equation (38). Similarly, we can show that
µ̃∞(t) ≥ 0, thus proving that x∞(t), u∞(t) and µ̃∞(t) satisfy Equation (14).

Furthermore, we notice that if x∞(t), u∞(t), λ̃∞(t), µ̃∞(t) and ν̄∞ satisfy
Equations (21)–(23), then the following holds for all k = 0, . . . , N:

∥∥∥λ̃∞>(0) + ν̄∞>ex(0)(x∞(0), x∞(1)) + Ex(0)(x∞(0), x∞(1))
∥∥∥ = 0 ,

∥∥∥λ∞>(1)− ν̄∞>ex(1)(x∞(0), x∞(1))− Ex(1)(x∞(0), x∞(1))
∥∥∥ = 0 ,

∥∥∥
∫ 1

0

[
˙̃λ

∞>
(t) + Fx(x∞(t), u∞(t)) + λ̃∞>(t) fx(x∞(t), u∞(t))

+ µ̃∞>(t)hx(x∞(t), u∞(t))
]
bk,N(t)dt

∥∥∥ = 0 ,

∥∥∥
∫ 1

0

[
Fu(x∞(t), u∞(t)) + λ̃∞>(t) fu(x∞(t), u∞(t))

+ µ̃∞>(t)hu(x∞(t), u∞(t))
]
bk,N(t)dt

∥∥∥ = 0 .

Since {bk,N(t)}N
k=0 is a linearly independent basis set, the last two equations above imply

∥∥∥ ˙̃λ
∞>

(t) + Fx(x∞(t), u∞(t)) + λ̃∞>(t) fx(x∞(t), u∞(t)) + µ̃∞>(t)hx(x∞(t), u∞(t))
∥∥∥ = 0 ,

∥∥∥Fu(x∞(t), u∞(t)) + λ̃∞>(t) fu(x∞(t), u∞(t)) + µ̃∞>(t)hu(x∞(t), u∞(t))
∥∥∥ = 0 ,

for all t ∈ [0, 1]. This proves that x∞(t), u∞(t), λ̃∞(t), µ̃∞(t) and ν̄∞(t) satisfy
Equations (15)–(18).

Theorem 3 (Covector Mapping Theorem). Under the same assumptions of Theorems 1 and 2,
when N → ∞, the covector mapping

x∗N(t) 7→ x∗(t) , u∗N(t) 7→ u∗(t) ,

λ∗N(t)
w
7→ λ∗(t) ,

µ∗N(t)
w
7→ µ∗(t) , ν̄∗ 7→ ν∗

(39)

is a bijective mapping between the solution of Problem Pclos
Nλ and the solution of Problem Pλ.

Proof. The above result follows directly from Theorems 1 and 2. In fact, if

{x∗(t), u∗(t), λ∗(t), µ∗(t), ν∗}

is a solution to Problem Pλ, which exists by Assumption 2, then from Theorem 1, it follows
that {x∗(t), u∗(t), wλ∗(t), wµ∗(t), ν∗} is a solution to Problem Pclos

Nλ (see Equations (26)–(28)).
Conversely, by using Equation (37), a solution
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(x∗N(t), u∗N(t), λ∗N(t), µ∗N(t), ν̄∗)

that solves Problem Pclos
Nλ provides a solution

(x∗N(t), u∗N(t),
λ∗N(t)

w
,

µ∗N(t)
w

, ν̄∗) = (x∗N(t), u∗N(t), λ̃∗N(t), µ̃∗N(t), ν̄∗)

that converges to a solution to Problem Pλ (see Theorem 2).

Remark 5. Define the Hamiltonian approximation

HN(t) = F(x∗N(t), u∗N(t)) +
λ∗N(t)

w
f (x∗N(t), u∗N(t)) ,

then, Theorem 3 implies limN→∞HN(t) = H(t).

Problem P Problem PN

Bernstein approximation

Convergence

Problem PNλ

Problem Pclos
NλProblem Pλ

KKT

Closure
Conditions

Minimum
Principle

N → ∞

Covector mapping

Present work

Figure 1. Diagram of the covector mapping principle for Bernstein approximation. The solution to
Problem Pclos

Nλ converges to that of Problem Pλ as N → ∞.

6. Numerical Examples
6.1. Example 1: 1D Minimum Time Problem

The first example we consider is the classical minimum time problem for a double
integrator plant.

min
u

J = t f ,

subject to

ẋ1 = x2 , ẋ2 = u , x1(0) = 1 , x2(0) = −1

x1(t f ) = x2(t f ) = 0,

|u(t)| ≤ 1, ∀t ∈ [0, t f ].

The analytical solution to this problem is well known: the optimal control input is bang-
bang and the Hamiltonian along the optimal trajectories is equal to −1 [53]. Figure 2 includes
plots of the state and control trajectories for this problem for N = 45, as well as a graph of the
analytical solution. It is clear that the Bernstein polynomial solution captures the switching
time precisely and closely approximates the optimal control input solution. Figure 3 includes
the plot of the Hamiltonian approximationHN computed using Covector Mapping Theorem.
As expected, it is equal to −1 with the exception of a small bump around the switching time.
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Figure 2. Example 1: state trajectories x1(t) and x2(t), and control input u(t). The control input
approximates the optimal solution (bang-bang).
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Figure 3. Example 1: the approximated Hamiltonian converges to the Hamiltonian of the problem,
i.e., −1. See Theorem 3 and Remark 5.

6.2. Example 2: 3D Minimum Time Problem

In this example, we consider a minimum-time problem for a simplified 3D model of a
multi-rotor drone. The vehicle is asked to reach the origin in minimum time from a given
initial condition with all the control inputs bounded by ±1. Unlike Example 1, there is no
known analytical solution to this problem. However, we know that the Hamiltonian along
the optimal trajectories is equal to −1 [53].

min
u

J = t f ,

subject to

ẋ1 = x4 , ẋ2 = x5 , ẋ3 = x6 ,

ẋ4 = u1 , ẋ5 = u2 , ẋ6 = −g + u3 ,

x10 = 1 x20 = 2 , x30 = 3 ,

x40 = −1 , x50 = −1 , x60 = −1 ,

x1(t f ) = x2(t f ) = x3(t f ) = 0 ,

x4(t f ) = x5(t f ) = x6(t f ) = 0 ,
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|u1(t)| ≤ 1 , |u2(t)| ≤ 1 , | − g + u3(t)| ≤ 1 , ∀t ∈ [0, t f ] .

Figure 4 shows the 3D plot of the position of the vehicle. The vehicle clearly reaches
the origin from the given initial condition. Figure 5 includes graphs of the control inputs.
They satisfy the ±10 bound imposed in the problem formulation. Finally, Figure 6 shows
the plot of the Hamiltonian approximationHN , N = 45. It is equal to −1, as predicted by
theory, thus indicating that the solution obtained is indeed close to optimal.
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Figure 4. Example 2: 3D position plot, i.e., p = [x1, x2, x3]. The solid line represents the solution
obtained with N = 45, while the dashed line depicts the (near optimal) solution obtained with
N = 250.

sition. The attacking and defending agents are equipped with weapons systems which 203

allow them to inflict damage on each other. The attacking agents inflict damage on the 204

defending agents and try to destroy the HVU. The defending agents inflict damage on the 205

attacking agents and attempt to destroy them or herd them away. 206

Attacking agent i ∈ {1, . . . , NA} has position xi(t) ∈ R3 and defending agent k ∈
{1, . . . , ND} has position sk(t) ∈ R3. The equations of motion for attacker i is

ẍi =
N

∑
j 6=i

f I(xij)∥∥xij
∥∥ xij +

M

∑
k=1

fd(sik)

‖sik‖
sik + K

hi
‖hi‖

− bẋi , (40)

for i = 1 . . . N. There are four terms in this equation, representing: (1) attractive and 207

repulsive forces f I(xij) from other attacking agents j, where xij = xi − xj is the distance 208

between attackers i and j; (2) a constant “virtual leader” force with magnitude K pulling 209

them toward the HVU’s position, where hi = h − xi and h is the position of the HVU; (3) 210

purely repulsive forces fd(sik) due to defending agents, where sik = xi − sk is the distance 211

between attacker i and defender k; and (4) a damping force proportional to the ẋi. 212

For the mathematical forms of f I and fd, we have chosen the Leonard model [54], i.e., 213

f I and fd can be written as gradients of a scalar potential functions that depends only on 214

xij and sik. The force f I is repulsive when
∥∥xij

∥∥ ≤ d0, attractive when d0 <
∥∥xij

∥∥ ≤ d1, and 215

zero when
∥∥xij

∥∥ > d1. For fd, we only keep the repulsive term (since attackers should not 216

be attracted to defenders), i.e., fd is repulsive when ‖sik‖ ≤ s0 and zero when ‖sik‖ > s0. 217

Defending agent i’s dynamics are given by

s̈i = ui, i = 1 . . . ND , si(t), ui(t) ∈ R3 , (41)

where the absolute value of each element of ui, (|uij|, j = 1, 2, 3) is bounded by umax = 1. 218

Mutual attrition model: for hostile swarm engagements, agents are equipped with
some weapons systems. The likelihood of destruction of an agent depends on its posi-
tion (how close it has come to enemies) as well as the positions of those enemy agents,
since each agent’s ability to inflict damage is contingent on its own survival. To model
this mutual attrition, we use a damage function to track the probability that defender k
is destroyed by a shot from attacker i, and vice versa. We choose a cumulative normal
distribution function, Φ, to model the damage function [55]. Next, we define (i) the attri-

Figure 4. Example 2: 3D position plot, i.e., p = [x1, x2, x3]. The solid line represents the solution obtained
with N = 45, while the dashed line depicts the (near optimal) solution obtained with N = 250.
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Figure 5. Example 2: Control inputs, i.e., vehicle’s acceleration along the three axis. The solid
lines represent the solution obtained with N = 45, while the dashed lines depict the (near optimal)
solution obtained with N = 250.
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Figure 6. Example 2: the approximated Hamiltonian converges to the Hamiltonian of the problem,
i.e., −1. See Theorem 3 and Remark 5.

tion rate at which attacker i is destroyed due to defender k, datt
ik , (ii) the attrition rate of

defender k due to attacker i, ddef
ki , and (iii) the attrition rate of the HVU, dhvu

i , as follows:

datt
ik = λdΦ

(‖sik‖2

σd

)
, ddef

ki = λaΦ
(‖sik‖2

σa

)
, dhvu

i = λaΦ
(‖hi‖2

σa

)
. (42)

In the above equation σd is a defender Poisson parameter that corresponds to the range
of the defenders’ weapons, λd is a defender Poisson parameter that corresponds to the
defenders’ rate of fire, σa is an attacker Poisson parameter that corresponds to the attack-
ers’ range, and λa is an attacker Poisson parameter that corresponds to the attackers’ rate
of fire. The probability of defender k destroying attacker i during a time interval of du-
ration ∆t is weighted by the current survival probability of defender k, Pd

k (t). Thus, the
probability that defender k will destroy attacker i during a given time interval [t, t + ∆t] is
Pd

k (t)d
att
ik ∆t. Assuming independence (i.e. defenders do not coordinate their fire), the ex-

pression
M
∏
k
(1 −

[
datt

ik Pd
k (t)

]
∆t) represents the probability that ith attacker would survive

Figure 5. Example 2: Control inputs, i.e., vehicle’s acceleration along the three axis. The solid lines
represent the solution obtained with N = 45, while the dashed lines depict the (near optimal) solution
obtained with N = 250.
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Figure 6. Example 2: the approximated Hamiltonian converges to the Hamiltonian of the problem,
i.e., −1. See Theorem 3 and Remark 5.
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7. Defense against a Swarm Attack

The numerical analysis presented here involves a scenario in which an enemy swarm
is attempting to destroy an high-value unit (HVU). The HVU is defended by a number
of defending agents whose trajectories are optimized to maximize the probability of the
HVU survival. The attacking agents dynamics are defined using Leonard swarm dynamics
model [54]. A virtual leader is guiding the attacking swarm towards the HVU’s position.
The attacking and defending agents are equipped with weapons systems which allow them
to inflict damage on each other. The attacking agents inflict damage on the defending
agents and try to destroy the HVU. The defending agents inflict damage on the attacking
agents and attempt to destroy them or herd them away.

Attacking agent i ∈ {1, . . . , NA} has position xi(t) ∈ R3 and defending agent
k ∈ {1, . . . , ND} has position sk(t) ∈ R3. The equations of motion for attacker i is

ẍi =
N

∑
j 6=i

f I(xij)∥∥xij
∥∥ xij +

M

∑
k=1

fd(sik)

‖sik‖
sik + K

hi
‖hi‖

− bẋi , (40)

for i = 1 . . . N. There are four terms in this equation, representing: (1) attractive and
repulsive forces f I(xij) from other attacking agents j, where xij = xi − xj is the distance
between attackers i and j; (2) a constant “virtual leader” force with magnitude K pulling
them toward the HVU’s position, where hi = h − xi and h is the position of the HVU;
(3) purely repulsive forces fd(sik) due to defending agents, where sik = xi − sk is the
distance between attacker i and defender k; and (4) a damping force proportional to the ẋi.

For the mathematical forms of f I and fd, we have chosen the Leonard model [54], i.e.,
f I and fd can be written as gradients of a scalar potential functions that depends only on
xij and sik. The force f I is repulsive when

∥∥xij
∥∥ ≤ d0, attractive when d0 <

∥∥xij
∥∥ ≤ d1 and

zero when
∥∥xij

∥∥ > d1. For fd, we only keep the repulsive term (since attackers should not
be attracted to defenders), i.e., fd is repulsive when ‖sik‖ ≤ s0 and zero when ‖sik‖ > s0.

Defending agent i’s dynamics are given by

s̈i = ui, i = 1 . . . ND , si(t), ui(t) ∈ R3 , (41)

where the absolute value of each element of ui, (|uij|, j = 1, 2, 3) is bounded by umax = 1.
Mutual attrition model: for hostile swarm engagements, agents are equipped with

some weapons systems. The likelihood of destruction of an agent depends on its position
(how close it has come to enemies) as well as the positions of those enemy agents, since each
agent’s ability to inflict damage is contingent on its own survival. To model this mutual
attrition, we use a damage function to track the probability that defender k is destroyed by
a shot from attacker i, and vice versa. We choose a cumulative normal distribution function,
Φ, to model the damage function [55]. Next, we define (i) the attrition rate at which attacker
i is destroyed due to defender k, datt

ik , (ii) the attrition rate of defender k due to attacker i,
ddef

ki , and (iii) the attrition rate of the HVU, dhvu
i , as follows:

datt
ik = λdΦ

(‖sik‖2

σd

)
, ddef

ki = λaΦ
(‖sik‖2

σa

)
, dhvu

i = λaΦ
(‖hi‖2

σa

)
. (42)

In the above equation σd is a defender Poisson parameter that corresponds to the
range of the defenders’ weapons, λd is a defender Poisson parameter that corresponds
to the defenders’ rate of fire, σa is an attacker Poisson parameter that corresponds to the
attackers’ range and λa is an attacker Poisson parameter that corresponds to the attackers’
rate of fire. The probability of defender k destroying attacker i during a time interval of
duration ∆t is weighted by the current survival probability of defender k, Pd

k (t). Thus, the
probability that defender k will destroy attacker i during a given time interval [t, t + ∆t]
is Pd

k (t)d
att
ik ∆t. Assuming independence (i.e., defenders do not coordinate their fire), the

expression
M
∏
k
(1−

[
datt

ik Pd
k (t)

]
∆t) represents the probability that ith attacker would survive
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during a time interval [t, t + ∆t] due to attrition from all defenders. Therefore, the survival
probability Qi(t + ∆t) of attacker i is governed by

Qi(t + ∆t) = Qi(t)
ND

∏
k
(1−

[
datt

ik Pd
k (t)

]
∆t), (43)

where we assumed that probabilities of attacker i survival Qi(t1), Qi(t2) are independent
for any t1, t2. Similarly, the survival probability Pd

k (t) of defender k and the survival
probability P(t) of the HVU are governed by

Pd
k (t + ∆t) = Pd

k (t)
NA

∏
i
(1−

[
ddef

ki Qi(t)
]
∆t),

P(t + ∆t) = P(t)
NA

∏
k
(1−

[
dhvu

k Qk(t)
]
∆t).

(44)

Initial conditions are set to Qi(0) = P(0) = Pd
k (0) = 1 for all agents and the HVU.

Further rearranging Equations (43) and (44) and letting ∆t → 0, as derived in [56]
we obtain:

Q̇i(t) = −Qi(t)
ND

∑
k
(1−

[
datt

ik Pd
k (t)

]
),

Ṗd
k (t) = −Pd

k (t)
NA

∑
i
(1−

[
ddef

ki Qi(t)
]
),

(45)

Ṗ(t) = −P(t)
NA

∑
k
(1−

[
dhvu

k Qk(t)
]
). (46)

The optimal control problem at hand can be expressed as Problem P by properly
rescaling the time variable, i.e., τ = t/t f ; see Equations (4)–(7). In particular, we seek to
maximize the probability of HVU survival at the terminal time t = t f (τ = 1), i.e., minimize
I = 1− P(t f ). The system’s state x(t) includes the attacker and the defender positions and
velocities, as well as probabilities of the attacker and defender survivals and the probability
of the HVU survival:

x =
[

xT
1 , . . . , xT

NA
, (vx

1)
T , . . . , (vx

NA
)T , sT

1 , . . . sT
ND

,

(vs
1)

T , . . . , (vs
ND

)T , Q1, . . . , QNA , Pd
1 , . . . , Pd

ND
, P
]T

, (47)

where vx
i is the velocity of the i-th attacker and vs

k is the velocity of the k-th defender. The control

input vector is defined by stacking accelerations of each defender u =
[
uT

1 , . . . , uT
ND

]T
. Using

definitions of the system’s state and control inputs the system dynamics function f (., .) is
given by concatenation of Equations (40), (41), (45), and (46). Finally, the function h(., .) in
our case becomes a function of defender control inputs only and includes ±umax.

Figure 7 shows results for an optimization with one defender protecting an HVU
against a swarm of five attackers for N = 45. The HVU is at the origin and the defender
trajectory is color purple. The defender has a 50% larger weapons range (σd/σa = 1.5),
as well as double the fire rate with respect to the attackers (λd/λa = 2). The defender
initially herds the attackers on his right away from HVU than approaches the HVU and
similarly herds the attackers to his left away from the HVU. Figure 8 illustrates the control
inputs that drive the motion of the defender. Unlike minimum time problems, e.g., the
previous example, in this case, the inequality constraints on the control input are never
active. Figure 9 shows a sequence of the Hamiltonian approximationsHN , N = 5, . . ., 45.
The sequence clearly converges to zero, indicating that the final numerical solution for
N = 45 is indeed a close approximation of the true optimal solution.
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The reader is referred to [57,58] for additional numerical examples.

Figure 7. Defense against swarm attack. The plot shows optimal trajectory of one defender (purple)
protecting a high-value unit (positioned at the origin) against five attackers.
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Figure 8. Defense against swarm attack. The plot shows the time history of the control input.
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Figure 9. Hamiltonian Convergence. The plot shows a sequence of the Hamiltonian approximations
HN , N = 5, . . . , 45, indicating that the numerical solution converges to the true optimal solution.
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8. Conclusions

This paper proposed a numerical method for costate estimation of nonlinear con-
strained optimal control problems using Bernstein polynomials. A rigorous analysis is
provided that shows convergence of the costate estimates to the dual variables of the
continuous-time problem. To this end, a set of conditions are derived under which the
Karush–Kuhn–Tucker multipliers of the NLP converge to the costates of the optimal control
problem. This led to the formulation of the Covector Mapping Theorem for Bernstein
approximation. The theoretical findings are validated through several numerical examples.
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Appendix A. Proof of Equation (34)

Let us focus on Equation (34a). Adding and subtracting
∫ 1

0 Fx(xN(t), uN(t))b0,N(t)dt,
we have

∥∥∥w
N

∑
j=0

Fx(xN(tj), uN(tj))b0,N(tj)−
∫ 1

0
Fx(x(t), u(t))b0,N(t)dt

∥∥∥

≤
∥∥∥w

N

∑
j=0

Fx(xN(tj), uN(tj))b0,N(tj)−
∫ 1

0
Fx(xN(t), uN(t))b0,N(t)dt

+
∫ 1

0
Fx(xN(t), uN(t))b0,N(t)dt−

∫ 1

0
Fx(x(t), u(t))b0,N(t)dt

∥∥∥

≤
∥∥∥w

N

∑
j=0

Fx(xN(tj), uN(tj))b0,N(tj)−
∫ 1

0
Fx(xN(t), uN(t))b0,N(t)dt

∥∥∥

+
∥∥∥
∫ 1

0
Fx(xN(t), uN(t))b0,N(t)dt−

∫ 1

0
Fx(x(t), u(t))b0,N(t)dt

∥∥∥.

(A1)

Using Lemma 3 and continuity of Fx(xN(t), uN(t)) and b0,N(t), the first term on the
right-hand side of the inequality above satisfies
∥∥∥w

N

∑
j=0

Fx(xN(tj), uN(tj))b0,N(tj)−
∫ 1

0
Fx(xN(t), uN(t))b0,N(t)dt

∥∥∥ ≤ CIWFxb0,N (N−
1
2 ),

where WFxb0,N (·) is used to denote the modulus of continuity of the product

Fx(xN(t), uN(t))b0,N(t)),



Machines 2022, 10, 1132 20 of 22

with Fx(xN(t), uN(t)) being a bounded function due to its continuity over a bounded domain.
Denote its bound as Fx,max. Notice that b0,N(t) is bounded, as maxt∈[0,1] b0,N(t) ≤ 1. Then,
using the properties of the modulus of continuity, we get

∥∥∥w
N

∑
j=0

Fx(xN(tj), uN(tj))b0,N(tj)−
∫ 1

0
Fx(xN(t), uN(t))b0,N(t)dt

∥∥∥

≤ CI Fx,maxWb0,N (N−
1
2 ) + CIWFx (N−

1
2 )

≤ CI Fx,maxN−
1
2 + CIWFx (N−

1
2 ),

(A2)

where WFx (·) is the modulus of continuity of Fx, and CI is a positive constant independent
of N. Furthermore, we have

∥∥∥
∫ 1

0
Fx(xN(t), uN(t))b0,N(t)dt−

∫ 1

0
Fx(x(t), u(t))b0,N(t)dt

∥∥∥

≤
∫ 1

0

∥∥∥Fx(xN(t), uN(t))b0,N(t)− Fx(x(t), u(t))b0,N(t)
∥∥∥dt

≤ LFx (CxWx(N−
1
2 ) + CuWu(N−

1
2 )) ,

(A3)

where LFx is the Lipschitz constant of Fx, Cx < 5nx/4, Cu < 5nu/4, and Wx(·) and Wu(·)
are the moduli of continuity of x and u, respectively. Combining Equations (A2) and (A3)
with Equation (A1) yields

∥∥∥w
N

∑
j=0

Fx(xN(tj), uN(tj))b0,N(tj)−
∫ 1

0
Fx(x(t), u(t))b0,N(t)dt

∥∥∥

≤ CI Fx,maxN−
1
2 + CIWFx (N−

1
2 ) + LFx (CxWx(N−

1
2 ) + CuWu(N−

1
2 )) ,

which proves the bound in Equation (34a). The bounds in Equation (34b–d) follow easily
using an identical argument.
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