
  1 

Comparison of Regression Methods to Identify Differential Expression in 
RNA-Sequencing Count Data from the Serial Analysis of Gene Expression 

 

Ivan Arreola and David Han 
 

Department of Management Science and Statistics, University of Texas at San Antonio, TX 
 
 
ABSTRACT 
 
Comparative RNA-sequencing analysis for 
the Serial Analysis of Gene Expression 
(SAGE) can help identify changes in gene 
expression which are characteristic to human 
diseases. Since the RNA-sequencing 
experiment measures gene expressions in the 
form of counts, usually with a large degree of 
skewness, the analysis methods based on 
continuous probability distributions such as 
the normal distribution are generally 
inappropriate for modeling this type of data. 
Currently, the parametric regression 
techniques for solving this problem are based 
on the well-known discrete probability 
distributions such as Poisson and negative 
binomial. In order to overcome this modeling 
challenge with higher flexibilities to account 
for a wide range of dispersion levels, here we 
introduce an alternative Generalized Linear 
Model (GLM) based on the Conway–
Maxwell-Poisson distribution, also known as 
COM-Poisson or CMP distribution. The 
CMP regression model generalizes the 
standard Poisson and negative binomial 
regressions, and it is suitable for fitting count 
data with varying degrees of over- and under-
dispersions. Using simulated and real SAGE 
datasets, the performance of the proposed 
method is assessed in comparison to the 
Poisson- and negative binomial-based 
regression models. 
 
Keywords:   Conway-Maxwell-Poisson 
Regression, Count Data, Generalized Linear 
Models, RNA-Sequencing, Serial Analysis 
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INTRODUCTION 
 
During the last decades, mRNA sequencing 
technology and other sequencing-based 
genomic experiments such as SAGE were 
able to uncover significant patterns between 
gene expressions and metabolic pathways. 
These sequence-based findings have 
furthered our understanding of cellular 
functions, which are characteristic to human 
diseases such as cancers. In particular, the 
information obtained from SAGE is similar 
to those obtained from microarray 
experiments but there are several 
distinguishable differences [1]. First, SAGE 
uses sequencing techniques as opposed to 
competitive microarray hybridization. 
Second, microarrays give continuous 
expression values while SAGE gives discrete 
expression values. Finally, SAGE provides 
information of all genes in a given sample 
whereas microarrays only give information 
on the genes that have been printed on the 
array.  

Figure 1 below describes how the 
sequence spellings are obtained from an 
RNA-sequencing experiment. In the usual 
case, a sample containing messenger 
ribonucleic acids (mRNA) are randomly 
shattered into small fragments and reverse 
transcribed into complimentary 
deoxyribonucleic acids (cDNA) [1-3]. The 
cDNA library is then amplified through a 
PCR machine and sequenced by using the 
Sanger method, resulting in thousands of 
short sequences known as “tags” or “reads.” 
The list of tags is then counted to tabulate the 
frequency of occurrences for each gene 
across a library. 
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Figure 1.   Flowchart for a typical RNA sequencing experiment [1] 

 
RNA-sequencing experiments, just 

like microarrays, use comparative analysis. 
The experiments can come in the following 
forms: two classes, normal vs. tumor; 
multiple classes, primary tumor A vs. 
primary tumor B vs. primary tumor C vs. cell 
lines; quantitative such as continuously 
measured viral concentrations in a patient’s 
blood specimen [2,3]. The goal of the 
comparative analysis is to identify 
differentially expressed genes that may be 
involved in the underlying biological 
functions of a cell. 

Since the results of the RNA-
sequencing experiments such as SAGE 
provide data in the form of the frequency of 
occurrences for each gene, their analyses 
require the statistical techniques for modeling 
discrete count data. This includes the popular 
Poisson, negative binomial, and logistic 
regressions. However, certain limitations 
exist in these methods. The Poisson 
regression assumes that the mean and 
variance are equal and this limits the 
manipulation of the underlying distribution 
[4,5]. On the other hand, the negative 
binomial regression only accounts for over-

dispersion (where the variance is greater than 
the mean) but not under-dispersion. Lastly, 
the logistic regression model is useful but can 
be influenced by outliers. To overcome these 
obstacles, the CMP regression is suggested as 
it is able to account for various levels of 
dispersion in modeling discrete count data. 
As a member of the exponential family, the 
CMP distribution generalizes the Poisson and 
logistic models as well. Here we report the 
performance of the proposed CMP regression 
to analyze the SAGE count data in 
comparison to the Poisson, negative 
binomial, and logistic regression-based 
methods.  
 
 
PROBABILITY MODELS & METHOD 
 
Overdispersed Logistic Regression        Over-
dispersed logistic regression has been applied 
to model highly skewed count data [1]. For 
the change of expressions for a single tag, let 
us denote the set of counts ሼ ௜ܻሽ and the set of 
library sizes ሼ݊௜ሽ, where i represents the 
specific library. Often, we have a covariate 
௜ܺ describing the properties of a library. The 
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most common situation is to compare 
between normal and cancer groups. Then, the 
covariate ௜ܺ decides which group library i 
belongs to. The logistic model for 
proportions is expressed as  
 

݃݋݈ ൬
௜݌

1 െ ௜݌
൰ ൌ ௜ሻ݌ሺݐ݅݃݋݈ ൌ ଴ߚ	 ൅  ௜ݔଵߚ

 
ܸሺ ௜ܻሻ ൌ ݊௜݌௜ሺ1 െ  ௜ሻ݌

 
where ݔ௜ is 0 for the control group and 1 for 
the treatment group. The logistic framework 
is able to define what is to be modeled 
concerning the covariates and with accuracy 
of each measurement.  

When over-dispersion is present, a 
quasi-likelihood and a hierarchical model are 
applied to handle the skewness. First, the 
quasi-likelihood inflates the variance for each 
observation by like amounts. With the scale 
term, ߪொ௅

ଶ , we have the variance defined as 
 

ܸሺ ௜ܻሻ ൌ ݊௜݌௜ሺ1 െ ொ௅ߪ௜ሻ݌
ଶ  

 
Second, the hierarchical model is able to fit 
the proportions of the covariates from a 
positive distribution, which is implemented 
in an R package dispmod. With an estimation 
parameter ߶, we have the variance of the 
beta-binomial model defined as 
 

ܸሺ ௜ܻሻ ൌ ݊௜݌௜ሺ1 െ ௜ሻሾ1݌ ൅ ሺ݊௜ െ 1ሻ߶ሿ 
 
Under the logistic framework, analyzing 
differential expressions diminishes down to 
whether the regression coefficients are 
different from zero. When high skewness is 
present in count data, the logistic regression 
model is able to handle the outliers but can be 
easily influenced by extreme outliers, 
therefore resulting in false conclusions. 
 
Poisson, Negative Binomial, and CMP 
Regressions         A widely applied model for 
the count analysis is Poisson distribution, 

whose probability mass function is defined 
by  

ܲሺ ௜ܻ ൌ ௜ሻݔ|௜ݕ ൌ
݁ିఓ೔ߤ௜

௬೔

!௜ݕ
, ௜ݕ			 ൌ 0,1,2,… 

 
given a vector of covariates ݔ௜ and the mean 
parameter follows the log linear relationship 
defined by 
 

௜ߤ	݃݋݈ ൌ ଴ߚ ൅  ௜ݔଵߚ
 

When using the Poisson distribution for 
count analysis, the mean and variance must 
equal to each other. That is  
 

ܸሺ ௜ܻ|ݔ௜ሻ ൌ ሺܧ ௜ܻ|ݔ௜ሻ ൌ  ௜ߤ
 
This condition causes the Poisson regression 
to be restrictive, not allowing to capture over-
dispersion in real datasets. Accommodating 
the over-dispersion can certainly improve the 
performance of the predictive capability of 
the model. 

One distribution that allows for over-
dispersion is the negative binomial 
distribution. The negative binomial 
distribution is derived from a mixture of both 
the gamma and Poisson random variates [5]. 
Its mean and variance are  
 

ሺܧ ௜ܻ|ݔ௜ሻ ൌ ௜ߤ ൌ ݁ఉబାఉభ௫೔	  
 

ܸሺ ௜ܻ|ݔ௜ሻ ൌ ௜ߤ ൤1 ൅
1
ߠ
௜൨ߤ ൐ ሺܧ ௜ܻ|ݔ௜ሻ 

 
Notice that the variance exceeds the mean.   

Making the substitution of ߙ ൌ ଵ

ఏ
, ߙ ൐ 0, 

the negative binomial distribution can be 
reparametrized as  
 

݂ሺݕ௜|ݔ௜ሻ ൌ
Γሺݕ௜ ൅ ଵሻିߙ

!௜ݕ Γሺିߙଵሻ
ቆ

ଵିߙ

ଵିߙ ൅ ௜ߤ
ቇ
ఈషభ

൬
௜ߤ

ଵିߙ ൅ ௜ߤ
൰
௬೔

 

 
for ݕ௜ ൌ 0,1,2, …. The mean parameter again 
follows the log linear relationship defined by 
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௜ߤ	݃݋݈ ൌ ଴ߚ ൅  ௜ݔଵߚ
 
As a special case, when ߙ approaches 0, the 
negative binomial GLM converges to the 
Poisson GLM. Although the negative 
binomial distribution is able to handle over-
dispersion, it is not in the case of under-
dispersion. A flexible distribution that can 
model both under-dispersed and over-
dispersed data will be able to shed more 
biological insight.  

The CMP distribution is a 
generalization of the Poisson and negative 
binomial distributions and it allows for 
under-dispersion as well as over-dispersion 
[4]. The CMP distribution is defined as  
 

ܲሺ ௜ܻ ൌ ௜ሻݔ|௜ݕ ൌ
1

ܼሺߣ௜, ௜ሻݒ
௜ߣ
௬೔

ሺݕ௜!ሻ௩೔
 

 
where	ݕ௜ ൌ 0,1,2,…	and the normalization 
factor is  

ܼሺߣ௜, ௜ሻݒ ൌ ෍
௜ߣ
௡

ሺ݊!ሻ௩೔

ஶ

௡ୀ଴

 

 
with the regression models introduced by 
 

௜ߣ	݃݋݈ ൌ ଴ߚ ൅  ௜ݔଵߚ
 

௜ݒ ൌ ݁ሺ௚೔
ᇲఋሻ 

 

The corresponding mean and variance are 
 

ሾܻሿܧ ൌ
1

ܼሺߣ, ሻݒ
෍

௝ߣ݆

ሺ݆!ሻ௩

ஶ

௝ୀ଴

 

 

ܸሾܻሿ ൌ
1

ܼሺߣ, ሻݒ
෍

݆ଶߣ௝

ሺ݆!ሻ௩

ஶ

௝ୀ଴

െ  ሾܻሿଶܧ

 
An additional parameter ݒ provides the 
flexibility in modeling the tail behavior of the 
CMP distribution [5]. If, for instance, ݒ ൌ 1, 
the rate of decay is equal to that of the 
Poisson distribution. If 0 ൏ ݒ ൏ 1, then the 

rate of decay decreases, allowing to 
manipulate the model to have longer tails 
than the Poisson distribution (i.e., over-
dispersion). Lastly, if ݒ ൐ 1, then the rate of 
decay increases in a nonlinear form, therefore 
shortening the tail of the distribution and 
allowing for under-dispersed data. Hence, the 
CMP distribution possesses many advantages 
to model various levels of dispersion and 
generalizes the widely applied Poisson and 
negative binomial distributions.  
 A re-parameterization of the CMP 
model was proposed in order to provide a 
measure of central tendency that can be 
interpreted in the context of GLM [7]. By 
substituting ߣ௜ ൌ  ௜௩೔, this formulation isߤ
written as  

ܲሺ ௜ܻ ൌ ௜ሻݔ|௜ݕ ൌ
1

ܵሺߤ௜, ௜ሻݒ
ቆ
௜ߤ
௬೔

!௜ݕ
ቇ
௩೔

 

 
where the new normalization factor is 
defined as 

ܵሺߤ௜, ௜ሻݒ ൌ ෍ቆ
௜ߤ
௡

݊!
ቇ
௩೔ஶ

௡ୀ଴

 

 
with the regression model redefined as 
 

௜ߤ	݃݋݈ ൌ ଴ߚ ൅  ௜ݔଵߚ
 

The corresponding mean and variance are 
approximated by 
 

ߤ		ሾܻሿܧ ൅
1
2
ݒ െ

1
2

 

	 

ܸሾܻሿ		
ߤ
ݒ

 

 

The dispersion is estimated as 
௏ሾ௒ሿ

ாሾ௒ሿ
	 ଵ

௩
. 

Likewise, 0 ൏ ݒ ൏ 1 for the over-dispersed 
data, ݒ ൌ 1 for the Poisson data, and  ݒ ൐ 1 
for the under-dispersed data.  

In the next section, we report the 
performance of these regression models 
based on a simulation study. It was found that 
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in some cases the (reparametrized) CMP 
regression outperforms other GLM 
considered in this study (logistic regression, 
Poisson regression, and negative binomial 
regression). 
 
 
SIMULATION STUDY 
 
Random variates were simulated from 
Poisson, negative binomial, and CMP 
distributions for two classes: ݊௖ control and 
݊௧ treatment groups. The selected coefficient 
values are ߚ଴ ൌ 5 and ߚଵ ൌ െ1, where ߚ଴ is 
the intercept and ߚଵ is the slope. 
Furthermore, the covariate ݔ௜ is defined as 
௖ݔ ൌ 0 for control and ݔ௧ ൌ 1 for treatment. 
The regression equation for the Poisson 
model is  

௣ߣ	݃݋݈ ൌ ଴ߚ ൅  ௜ݔଵߚ
 
For the negative binomial model, it is 
 

௡௕ߤ	݃݋݈ ൌ ଴ߚ ൅  ௜ݔଵߚ
 
For the CMP regression model, it is 
 

௖௠௣ߤ	݃݋݈ ൌ ଴ߚ ൅  ௜ݔଵߚ
 
All the measurements were applied to the 
Poisson, negative binomial, and 
(reparametrized) CMP regression models to 
test which distribution is more effective in 
finding differentially expressed sequences 
(viz., statistical significance of ߚଵ).  

First, 8 Poisson random variables 
were generated with ݊௖ ൌ 4 for control and 
݊௧ ൌ 4 for treatment with covariates ݔ௖ ൌ 0 
and ݔ௧ ൌ 1 (Scenario A). Then, 8 negative 
binomial variables were generated with ݊௖ ൌ
4 and ݊௧ ൌ 4 with covariates ݔ௖ ൌ 0 and 
௧ݔ ൌ 1. Two cases were considered in this 
situation: one simulation that converges to 
the Poisson distribution (Scenario B) and 
another that presents the usual over-
dispersion (Scenario C). Lastly, 8 CMP 

random variables were generated with ݊௖ ൌ
4 and ݊௧ ൌ 4 with covariates ݔ௖ ൌ 0 and 
௧ݔ ൌ 1. Similarly, we considered two cases, 
just as in the negative binomial situation: one 
simulation that converges to the Poisson 
distribution (Scenario D) and another that 
presents the over-dispersion (Scenario E). 
For analyzing these datasets, the following 
regression models were considered: 
 
(1) Poisson GLM 

(2) Poisson GLM with quasi-likelihood 

(3) Poisson GLM with hierarchical model 

(4) Negative binomial GLM 

(5) (Reparametrized) CMP GLM 

 

All the random variates were generated from 
the statistical software R and the analysis for 
all GLM-based methods were carried out in 
R and SAS. 

Table 2 below presents the average p-
values from the five regression models for 
each of the five scenarios aforementioned 
with 30 repetitions. Table 3 presents the 
average values of the log-likelihood and the 
Akaike Information Criterion (AIC) from the 
simulation study. The smaller the magnitudes 
of the log-likelihood are, the more significant 
the results are, and similarly for the AIC, the 
smaller the values are, the more significant 
the results are. From Table 2, it is observed 
that all the regression methods can handle the 
data from the exact or asymptotic Poisson 
distribution (p < .0001); see Scenarios A, B, 
and D. However, when dealing with the over-
dispersed data from the negative binomial or 
CMP distribution, the CMP regression is able 
to do a better job; see Scenarios C and E. 
From Table 3, it is observed that the values of 
the log-likelihood are close to each other but 
overall the proposed CMP regression 
performs better than the Poisson and negative 
binomial GLMs. Also, the CMP GLM is 
shown  to   be   better   in   handling  the  over-  
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 Scenario A 

Average p-values from Poisson random values with 30 repetitions 

Model ߚ଴ ߚଵ 

(1) .0001 .0001 

(2) .0001 .0001 

(3) .0001 .0001 

(4) .0001 .0001 

(5) .0001 .0001 

 
 Scenario B (Asymptotic Case) 

Average p-values from the negative binomial random 
values with 30 repetitions 

Model ߚ଴ ߚଵ 

(1) .0001 .0001 

(2) .0001 .0001 

(3) .0001 .0001 

(4) .0001 .0001 

(5) .0001 .0001 

 
 

 Scenario D (Asymptotic Case) 
Average p-values from the CMP random values with 

30 repetitions 

Model ߚ଴ ߚଵ 

(1) .0001 .0001 

(2) .0001 .0001 

(3) .0001 .0001 

(4) .0001 .0001 

(5) .0001 .0001 

 
 Scenario C 

Average p-values from the negative binomial random 
values with 30 repetitions 

Model ߚ଴ ߚଵ 

(1) .0001 .9900 

(2) .0024 .9980 

(3) .0001 .9980 

(4) .0005 .9985 

(5) .3788 .1705 

 
 

 Scenario E 
Average p-values from the CMP random values with 

30 repetitions 

Model ߚ଴ ߚଵ 

(1) .0001 .8092 

(2) .0001 .9542 

(3) .0001 .9523 

(4) .0001 .9517 

(5) .0001 .3800 

 
Table 2.   Average p-values from the simulation study of 30 repetitions 
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 Scenario A 
Average log-likelihood and AIC from Poisson random values  

Model log-likelihood AIC 

(3) -20.505 45.009 

(4) -20.382 45.698 

(5) -19.734 45.468 

 
 Scenario B (Asymptotic Case) 

Average log-likelihood and AIC from negative 
binomial random values  

Model log-likelihood AIC 

(3) -20.371 44.741 

(4) -20.323 45.512 

(5) -19.839 45.678 

 
 

 Scenario D (Asymptotic Case) 
Average log-likelihood and AIC from CMP random 

values  

Model log-likelihood AIC 

(3) -20.684 45.369 

(4) -20.535 46.269 

(5) -19.851 45.703 

 
 Scenario C 

Average log-likelihood and AIC from negative 
binomial random values  

Model log-likelihood AIC 

(3) -80.685 165.371 

(4) -26.148 58.296 

(5) -26.821 59.643 

 
 

 Scenario E 
Average log-likelihood and AIC from CMP random 

values  

Model log-likelihood AIC 

(3) -85.202 174.404 

(4) -35.886 77.771 

(5) -35.836 77.672 

Table 3.   Average values of the log-likelihood and AIC from the simulation study 
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dispersed data from the CMP population; see 
Scenario E. 
 
 
APPLICATION TO RNA SEQUENCES 
 
Based on the results of the simulation study, 
we also assessed the proposed method in 
detecting differentially expressed genes in a 
real SAGE dataset, composed of the counts 
for the following three mRNA sequences: 
ATTTGAGAAG, TGCTGCCTGT, and 
GCGAAACCCT in 8 libraries, which 
include two normal colons (NC1 and NC2), 
two primary tumors (TU98 and TU102), and 
four cell lines (CACO2, HCT116, RKO, and 
SW837) [1]. The counts for tags and library 
sizes are also provided in [1]. The initial 
focus is on comparing the counts of tag 
ATTTGAGAAG between two libraries for 
normal colon and primary tumors. The 
following GLM models were used for this 
purpose. 
 

(1) Logistic regression GLM 
(2) Logistic regression GLM with quasi-

likelihood  
(3) Logistic regression GLM with 

hierarchical model 
(4) Poisson GLM 
(5) Poisson GLM with quasi-likelihood  
(6) Poisson GLM with hierarchical 

model 
(7) Negative binomial GLM 
(8) (Reparametrized) CMP GLM 

 
From Table 4, tag ATTTGAGAAG is 

found to be a significant sequence in GLM 
(1), (4), and (5). The significance of the 
logistic GLM agrees with the results in [1]. 
Next, the tag TGCTGCCTGT was examined 
and found interesting in [6]. It was first 
attempted to model the counts from two 
libraries, normal and tumor, ignoring the cell 
lines (two groups). Then, the counts from 
normal, tumor, and cell lines were modeled. 
Here we used two covariate vectors, ݔଵ ൌ

ሺ0,0,1,1,0,0,0,0ሻ and ݔଶ ൌ ሺ0,0,0,0,1,1,1,1ሻ, 
each for two groups so that the modeling of 
normal and tumor does not intertwine with 
cell lines. The results are shown in Table 5. 

 
Table 4. 

Average p-values for tag ATTTGAGAAG 
 

Model ߚ଴ ߚଵ 

(1) .0001 .0001 

(2) .0001 .187 

(3) .00004 .186 

(4) .0001 .0001 

(5) .0001 .0001 

(6) .00004 .186 

(7) .00004 .230 

(8) .0001 .139 

 
Table 5. 

Average p-values for tag TGCTGCCTGT 
 

  Two Groups Three Groups 

Model ߚ଴ ߚଵ ߚ଴ ߚଵ ߚଶ 

(3) .038 .378 .007 .361 .299 
(6) .630 .200 .584 .099 .054 
(7) .623 .186 .583 .097 .053 
(8) .912 .908 .651 .621 .615 
 
Similar to the case of tag ATTTGAGAAG, it 
was found that the logistic regression GLM 
agrees well with the results in [1]. Moreover, 
the models (6) and (7) for three groups were 
able to detect differential expressions, 
showing that tag TGCTGCCTGT might be 
characteristic to human diseases.  

In the above case, we only compared 
the libraries of two groups, normal and 
tumor. Since it is more practical to compare 
three libraries (normal colon, primary tumor, 
and cell lines), we performed this analysis on 
tag GCGAAACCCT to examine the 
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capability of various GLM to detect 
differential expressions across multiple 
groups. With the addition of a new covariate, 
we could also create two cases, hypothetical 
covariate and hypothetical biomarker. The 
results are shown in Table 6 below. 
 

Table 6. 
Average p-values for tag GCGAAACCCT 

 
 Hypothetical Covariate Hypothetical Biomarker 

Model ߚ଴ ߚଵ ߚଶ ߚ଴ ߚଵ ߚଶ ߚଷ  

(3) .0001 .088 .082 .0060 .120 .113 .459  

(6) .0001 .119 .019 .0001 .185 .042 .982  

(7) .0001 .050 .006 .0002 .070 .011 .937  

(8) .0001 .023 .045 .0001 .0002 .0001 .020  

 
In this particular case, the model (8) – CMP 
GLM – was able to identify the tag as 
differentially expressed for hypothetical 
covariate and biomarker. Additionally, the 
negative binomial GLM in both cases was 
able to identify the tag as differentially 
expressed. 

Now, we examine the averages of the 
log-likelihood and AIC for all three tags: 
ATTTGAGAAG, GCGAAACCCT, and 
TGCTGCCTGT. From Table 7 below, the 
average log-likelihoods of tag 
ATTTGAGAAG for the negative binomial 
(7) and CMP (8) regressions are shown to be 
marginally close to each other but 
substantially better than the Poisson GLM 
with hierarchical model (6). However, in 
terms of AIC, the CMP GLM is stands out to 
be clearly a better model.  

Similarly, Table 8 shows the averages 
of the log-likelihood and AIC for tag 
TGCTGCCTGT. In two groups, both the 
negative binomial and CMP are 
exceptionally close in terms of the log-
likelihood and AIC. In three groups, the same 
observation could be made but the CMP 
GLM was found to be slightly better than the 
negative binomial results. Finally, from 
Table 9 for tag GCGAAACCCT, similar 

observations could be made just like in Table 
8. For the log-likelihood values and AIC of 
the hypothetical covariate case, both the 
negative binomial and CMP GLM are again 
close to each other but the negative binomial 
GLM was found to be slightly better than the 
CMP one this time. On the other hand, in the 
hypothetical biomarker case, the CMP GLM 
was found to be slightly better than the 
negative binomial regression. 
 

Table 7. 
Averages log-likelihood and AIC  

for tag ATTTGAGAAG 
 

Model log-likelihood AIC 

(6) -540.660 109.89 

(7) -51.944 1085.00 

(8) -52.289 110.58 

 
Table 8. 

Averages log-likelihood and AIC  
for tag TGCTGCCTGT 

 
  Two Groups Three Groups 

Model log-likelihood AIC log-
likelihood 

AIC 

(6) -12.321 28.321 -35.897 77.794 
(7) -8.182 22.365 -22.300 52.600 

(8) -8.182 22.364 -22.221 52.442 

 
Table 9. 

Averages log-likelihood and AIC  
for tag GCGAAACCCT 

 
  Hypothetical Covariate Hypothetical Biomarker 

Model log-likelihood AIC log-
likelihood 

AIC 

(6) -169.601 345.203 -109.561 227.122 
(7) -40.177 88.354 -40.175 90.349 

(8) -41.887 91.773 -39.551 89.102 

 
Overall, the CMP regression is suggested as 
a competitive or better model to handle over-



  10

dispersed data as well as the Poisson data and 
under-dispersed data. 
 
 
SUMMARY 
   
The RNA-sequencing experiments such as 
SAGE produce discrete data in the form of 
the frequency of gene tags/reads. Because of 
this, their analyses require the count data 
regression techniques, which differ from the 
conventional continuous data regressions. 
This work recommends the CMP regression 
model as a better alternative to the classical 
Poisson and negative binomial regressions 
because of its versatility to accommodate all 
levels of dispersion in modeling discrete 
count data. It also includes the classical 
models as special asymptotic cases. The 
performance results from the simulation 
study and the SAGE application demonstrate 
the utility of the CMP regression for 
detecting statistically significant different-
ially expressed genes for biomedical 
research. Further research in this area 
requires a sound development of multiple-
comparison procedures when processing a 
large number of tags with the false discovery 
rates under control.  
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