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Abstract: In this work, a visualization experiment for rectangular channels was carried out to explore
gas–liquid two-phase flow characteristics. Typical flow patterns, including bubble, elastic and mixed
flows, were captured by direct imaging technology and the corresponding measurements with
fluctuation characteristics were recorded by using an electrical conductivity sensor. Time-domain
and frequency-domain characteristics of the corresponding electrical conductivity measurements of
each flow pattern were analyzed with a probability density function and a power spectral density
curve. The results showed that the feature vectors can be constructed to reflect the time–frequency
characteristics of conductivity measurements successfully by introducing the quantized characteristic
parameters, including the maximum power of the frequency, the standard deviation of the power
spectral density, and the range of the power distribution. Furthermore, the overall recognition rate of
the four flow patterns measured by the method was 93.33% based on the support vector machine,
and the intelligent two-phase flow-pattern identification method can provide a new technical support
for the online recognition of gas–liquid two-phase flow patterns in rectangular channels. It may
thus be concluded that this method should be of great significance to ensure the safe and efficient
operation of relevant industrial production systems.

Keywords: gas–liquid; flow pattern; rectangular channel; conductivity; support vector machine

1. Introduction

Rectangular channels (RCs) with high heat-transfer efficiency and small size have
been widely used in small reactors [1], compact heat exchangers [2], and various electronic
products [3]. In particular, the gas–liquid two-phase mixing process in rectangular channels
involves chemical engineering [4], power engineering [5], etc. Taking the bottom-blow
reactor as an example, the mixing state quality of the gas–liquid two phases is closely
related to the evolution of the flow patterns. The gas–liquid two-phase flow characteristics
are very complicated, due to different gas–liquid mixing modes, different working media,
and various intake volumes. Accurate identification of gas–liquid two-phase flow patterns
in rectangular channels is not only a basis for obtaining flow parameters, but also directly
affects the analysis results of the resistance properties and the heat and mass-transfer
properties of the two-phase flow in rectangular channels. In industrial production, some
flow patterns not only greatly reduce production efficiency, but even cause serious harm
to equipment [6]. Therefore, the investigation of two-phase flow-pattern identification in
rectangular channels is of great significance for understanding the heat-transfer mechanism
in rectangular channels and ensuring the safe and efficient operation of relevant industrial
production systems.
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The many approaches to flow-pattern identification can be divided into direct obser-
vation and indirect measurement, according to various applicable principles [7]. Direct
observation usually adopts a direct convection type, such as a high-speed camera or an
X-ray machine, for shooting observation and identification [8,9]. For instance, using a
high-speed camera, Schmid et al. obtained a flow pattern map for the adiabatic two-phase
flow of carbon dioxide in a vertical upward and downward direction [10]. Cely et al.
studied and characterized the gas–liquid slug flow in an annular duct using a high-speed
video camera, a wire-mesh sensor, and particle image velocimetry [11]. Skjæraasen et al.
studied the measurement of thin liquid films in a gas–liquid pipe flow via X-ray [12].
Azizi et al. investigated bubble column hydrodynamics using ultrafast X-ray computed
tomography and radioactive particle tracking [13]. The above studies found that fluid
motion can be accurately captured by high-speed cameras, as the information obtained is
very rich. However, this depends on the fluid being in transparent containers. In addition,
an X-ray machine can be used to scan the gas–liquid mixing process, and the measurements
are accurate. However, the identification of flow-pattern has higher requirements on an
experimental platform.

Compared with this direct method, the indirect measurement method is more widely
used, especially in the industrial production process, which does not require direct obser-
vation of flow patterns in most cases. The indirect measurement method obtains signals
such as capacitance [14], pressure [15], temperature [16], and capacitance [17] that can
be easily measured, and indicate characteristics of different flow patterns by combining
signal-processing technology. Then, the flow pattern or mixing state can be classified and
recognized according to these characteristics. For instance, Guo et al. proposed a novel
method based on temperature fluctuation for identifying the gas–liquid flow pattern [18].
Oliveira et al. investigated the fluctuations and characteristic frequencies of pressure drop
and flow pattern during the flow boiling of isobutane [19]. Perera et al. measured the flow
pattern of oil–water mixtures noninvasively by capacitance tomography [20]. The indirect
measurement method has a large number of potential engineering applications. However,
different industrial scenarios require different measurements. Rectangular channels or,
more specifically, bottom-blow reactors, are more difficult to identify because of the impact
of application scenarios, sizes, and intake volumes.

With the recent development of computer science, machine learning algorithms have
been widely applied with good classification ability [21,22]. In fact, machine learning can
be combined with indirect measurement to identify flow patterns quickly. For instance,
Zhang et al. studied the identification of oil–gas two-phase flow patterns based on machine
learning and electrical capacitance tomography [23]. Sestito et al. classified two-phase flow
patterns based on frequency-domain features by machine learning-based classifiers [24].
Amirsoleymani et al. explored two-phase flow-pattern identification in compressed air
energy storage systems via dimensional analysis coupled with machine learning [25].
All of the above studies confirmed the reliability of machine learning for flow-pattern
recognition. In particular, some machine learning algorithms provide many advantages
for small-size samples or nonlinear patterns and, thus, are among the first choices for flow
pattern recognition.

It is worth mentioning that various gas–liquid mixing scenarios can result in various
measurements, time series, or signals (see Table 1). With an appropriate method or model,
flow patterns can be accurately identified from these signals. Furthermore, the quantized
characteristic parameters can be used as the basis for flow pattern judgment. However, the
characteristic parameters of different flow patterns still overlap to some extent, and there is
some subjectivity and uncertainty in flow pattern recognition. Feature extraction based on
measurements, time series, or signals, combined with machine learning to identify flow
patterns quickly and accurately, is urgently needed in engineering research. Liang et al.
developed a new joint-probability density function of air density and wind speed [26].
Meng et al. analyzed the periodicity and frequency of an interfacial wave by power spectral
density (PSD) [27]. Nnabuife et al. attained objective flow-regime identification using
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spectral features and a support vector machine (SVM) [28]. However, to date, there is
no mature theory to describe flow-pattern recognition on the basis of the conductivity
measurements in rectangular channels.

Table 1. Summary of signal measurement and flow-pattern recognition in gas–liquid mixing process.

Study Method Aims Finding

Chu et al. [6] Pressure signal Identification of boiling
flow pattern

More than 75% of spectrograms of rolling
conditions could be identified.

Ju et al. [29] Digital imaging Flow image segmentation and
bubble-pattern extraction

Individual small and large bubbles in a
direct-contact mixing system could be

identified.

Liu et al. [30] Pressure signal Recognition of gas–liquid
two-phase flow patterns

Both optimal single and combined signals for
flow patterns recognition could be obtained.

Liu et al. [31] Machine learning Two-phase flow-pattern
identification

RUSBoost tree performed best with an
accuracy of 97.4%.

Li et al. [32] wavelet multiresolution Identification of two-phase
flow patterns

Average recognition rate of three flow patterns
was higher than 94.2% under certain condition.

Liang et al.
[33] Ultrasonic echoes Identification of gas–liquid flow

patterns in a horizontal pipe
Stratified flow, slug flow, and annular flow
were identified with an accuracy of 94.0%.

Wu et al. [34] Special forecasting rules
Qualitative prediction of the

formation position of the
liquid slug

All the cases of the transition to undesirable
flow patterns were successfully forecasted.

Xu et al. [35] Pressure difference Feature extraction and selection The influence of the measurement distance and
location on the recognition rate was revealed.

Inspired and motivated by all of the above studies, in this work, the issue we needed
to address was how to identify and classify the various flow patterns simply and accurately
with characteristic parameters of electrical conductivity measurements of the gas–liquid
mixing process in rectangular channels. Accordingly, the aim of this work is to propose
a two-phase flow-pattern recognition model or framework combining the time-domain
and frequency-domain characteristics and a support vector machine. In fact, a unqualified
flow pattern not only greatly reduces production efficiency, but also causes serious harm
to equipment. This investigation on gas–liquid two-phase flow-pattern identification is of
great significance for understanding the heat-transfer mechanism in rectangular channels
and ensuring the safe and efficient operation of relevant industrial production systems. The
contribution of this work is two-fold. First, using flow data analysis, this article responds
to a number of current growing needs for the in-depth mining of sensor data. It provides a
systematic solution for the integrative analysis of conductivity measurements, as the electri-
cal conductivity and the flow images were measured and obtained instantaneously. Thus,
the subjective experience of operators can be avoided as much as possible for flow-pattern
recognition in rectangular channels. Second, this study used a classification methodol-
ogy to provide a novel and broad framework for combining a feature vector reflecting
time–frequency characteristics with a support vector machine. A large number of models
and extensions are potential outcomes within this framework, as several signals—such
as conductivity, temperature, and pressure in industrial processes—can be input into the
algorithms proposed in this work. Hence, the universality of this work can provide a
demonstration for various investigators in related fields, including multiphase flow.

The rest of this paper is organized as follows. In Section 2, the gas–liquid two-phase
mixing experiment in rectangular channels and the data analysis method for conductivity
measurements are described. In Section 3, the main results and discussions of gas–liquid
flow-pattern identification in rectangular channels are provided. In Section 4, concluding
remarks are presented.
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2. Materials and Methods
2.1. Gas–Liquid Mixing Setup and Materials

The schematic of the gas–liquid mixing process in a vertical rectangular channel is
illustrated in Figure 1a. As shown in this figure, the gas–liquid mixing system consists
of an oil-free air compressor (4 × 1500W-20L, Outstanding, Taizhou, China), two intake
tubes (8 mm inner diameter, SenDa, Taizhou, China), a glass rotameter (50–500 mL/min,
Shuanghuan, Nanjing, China), a rectangular channel (self-made in the laboratory, Kunming,
China), a nozzle (self-made in the laboratory, Kunming, China), a conductivity meter
(DDSJ-307A, Leici, Shanghai, China), a video camera (equipped with a polarizer, HXR-
NX200NX100, Sony, Japan), and a light (L/LT-JY20W, LED, Suzhou, China). The above
devices were connected in turn. It is worth mentioning that the conductivity meter was
located in the upper part of the rectangular channel. As shown in Figure 1b, the internal
width, internal thickness, and considered length of the rectangular channel with the width
of 2 cm, thickness of 1 cm, and length of 20 cm were, respectively, 1.6 cm, 0.8 cm, and
16.8 cm. The outside and inside diameters of the nozzle (i.e., the glass tube with the copper
sheet covered on the top) fixed at the bottom of rectangular channel were 0.8 cm and
0.6 cm, respectively. Thirteen small holes with a diameter of 0.05 cm were on the top of the
nozzle to create more bubbles.
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Figure 1. Schematic of the gas–liquid mixing process in a vertical rectangular channel (a) and structure
and size of the vertical rectangular channel (b).

During the experimental procedure, normal-temperature air with density ranging
from 1.21 kg/m3 to 1.27 kg/m3 was used as the gas phase. An NaCl solution with different
concentrations was used for the liquid phase. Thirty sets of experiments were designed
in order to obtain different flow patterns, as shown in Table 2. The flow rates of air
ranged from 50 mL/min to 500 mL/min. At the same time, the rectangular channel was
filmed by video camera and instantaneous images of the gas–liquid mixture are obtained
via video separation. The gas–liquid mixing process was measured by the conductivity
sensor. The measured conductivity varied with the working medium flowing through
the conductivity sensor. The conductivity was larger with the NaCl solution inside the
sensor, the conductivity was small with bubbles inside the sensor, and the conductivity was
between the maximum and minimum levels with the NaCl solution and bubbles inside
the sensor.

Table 2. Experimental design of gas–liquid mixing in the rectangular channel.

NaCl Solution

Air Intake Unit: mL/min

50 100 150 200 250 300 350 400 450 500

Percentage
1.2% C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
0.75% C11 C12 C13 C14 C15 C16 C17 C18 C19 C20
0.25% C21 C22 C23 C24 C25 C26 C27 C28 C29 C30
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It is worth mentioning that electrical conductivity varies with the changing of various
flow patterns. In fact, the surface tension and viscosity of fluids can indeed affect the
evolution of flow patterns, but may not have a remarkable effect on the measurement
of electrical conductivity and the identification of flow patterns. In addition, changing
the original measurements of electrical conductivity is so very complicated and irreg-
ular that it is difficult to understand the flow pattern accurately according to the orig-
inal direct measurements. However, the abnormal information (i.e., irregular random-
ness or experimental uncertainty) of the original measurements could be reduced by
extracting the features of conductivity measurements to identify the flow patterns in the
rectangular channel.

2.2. Probability Density Function

The probability density function has often been used to describe the expected values of
random variables from a sample in time–frequency domain analysis [33]. According to the
conductivity-measurement principle, the conductivity measurements of the gas–liquid two-
phase flow in a rectangular channel has the characteristics of time-domain and frequency-
domain. Hence, the probability density function can be used to explore the time threshold
characteristics of the conductivity measurements. For the conductivity measurements of
two-phase flow, its probability density function can reflect the distributional range and
the intensity of fluctuation of the measurements, which are closely related to the flow
pattern. Therefore, two characteristic parameters, including the standard deviation σ and
the skewness Sk, were introduced to quantify the time-domain characteristics of the typical
flow-conductivity measurements from the probability density function point of view. Here,
the standard deviation σ reflected the dispersion degree of the conductivity measurements
and is calculated as follows:

σ =

√
1
n

n

∑
i=1

(xi − x)2 (1)

where xi refers to the original conductivity measurement, n refers to the quantity of conduc-
tivity measurements, and x refers to the average of the original conductivity measurements
during the mixing process. The skewness Sk is closely related to the shape of the probability
density function and is calculated as follows:

Sk =
µ3

σ3 =
1

σ3n

n

∑
i=1

(xi − x)3 (2)

where µ3 refers to the third-order center distance of conductivity measurements. The
measurement distribution has a negative deviation if the skewness Sk is less than zero,
whereas the measurement distribution has a positive deviation if the skewness Sk is greater
than zero. Generally, a normal distribution (i.e., bell curve) exhibits null skewness, but
most measurements from engineering practice and laboratory simulation are not absolutely
vibratory-symmetric. Greater positive or lower negative skewness is usually caused by
operating conditions or interference factors of flow behavior, while lower positive or
greater negative skewness can be regarded as the result of abnormal information of flow
behavior to a certain extent. Hence, the degree of asymmetry and direction of conductivity-
measurement distribution can be determined by measuring the skewness coefficient.
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2.3. Power Spectral Density

The power spectral density, which is a measure of the mean square value of a random
variable, belongs to a probabilistic statistical method and the power spectral density curve
shows the relationship between power spectral density and frequency [34]. According
to the conductivity-measurement principle, the conductivity measurements of the gas–
liquid two-phase flow in a rectangular channel has frequency-domain characteristics. The
difference in the conductivity measurements is inevitable in the frequency-domain while
the gas–liquid mixtures of different flow patterns pass through the conductivity sensor.
Given a conductivity measurement xi that changes with time, the power spectral density
P( f ) of the conductivity measurements with the frequency f is defined as follows:

P( f ) = |x̂( f )|2 (3)

where |x̂( f )|2 refers to the square norm of the Fourier transform of the conductivity mea-
surements x = {xi}n

i=1 calculated using the fast Fourier transform. In order to quantitatively
extract the frequency-domain features of the conductivity measurements, which is similar
to the time-domain feature-extraction process, three feature parameters are introduced to
further quantify the frequency-domain features of the measurements and construct the
feature vector. The three characteristic parameters are the frequency corresponding to the
maximum power fmax, the standard deviation σP of the power spectral density, and the
range RP of the power distribution. For instance, the standard deviation σP of the power
spectral density determined as follows:

σP =

√
1
n

n

∑
i=1

(
P( fi)− P( f )

)2 (4)

where P( fi) refers to the power spectral density of the conductivity measurements at
frequency fi and P( f ) refers to the average of the power spectral density. For the purpose
of employing a similar method, some more specific details of power spectral density are
present in Ref. [7].

2.4. Support Vector Machine

A support vector machine was originally a binary classification algorithm that sup-
ported both linear or nonlinear classifications [35], as shown in Figure 2a. It evolved to
support multiple classification problems as well. The learning strategy of a support vector
machine is to maximize the interval, which can be formalized as a problem of solving con-
vex quadratic programming and is also equivalent to the regularized hinge loss function
minimization problem. In this work, the radial basis function, which is one of the most
widely used kernel functions due to its similarity to Gaussian distribution, is considered
for support vector machine, and is defined as follows:

K
(
Xi, Xj

)
= exp

(
−γ·‖Xi·Xj‖2

)
(5)

where Xi and Xj are input modes and γ is the parameter. The construction of a suitable
feature vector is the basis of a support vector machine. Based on the time-domain and
frequency-domain characteristic parameters obtained by the above calculation, a five-
dimensional eigenvector composed of σ, Sk, fmax, σP, and RP was constructed.
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Figure 2. Schematic diagram of support vector machine for classification (a) and flowchart of the flow-
pattern identification using the conductivity feature-extraction technique combined with support
vector machine (b).

In addition, Figure 2b shows a flowchart of flow-pattern identification using conduc-
tivity feature extraction combined with a support vector machine. The procedure is as
follows: (1) Five-dimensional feature vectors of different gas–liquid flow patterns in a
rectangular channel are extracted; (2) Several five-dimensional eigenvectors of different
gas–liquid flow patterns in the rectangular channel are sent to the support vector machine;
(3) Five-dimensional feature vectors of different gas–liquid flow patterns in the rectangular
channel are trained and tested in the support vector machine; (4) The training sets of the
five-dimensional feature vectors of the different flow patterns are obtained; (5) A conduc-
tivity time series is entered; (6) The probability density function and the power spectral
density of the conductivity time series are obtained; (7) A five-dimensional eigenvector
composed of σ, Sk, fmax, σP, and RP is constructed; (8) The five-dimensional eigenvectors
are sent to the support vector machine; (9) The classification results of the flow patterns are
obtained. Note that each feature vector contains a label to indicate its corresponding flow
pattern. The number 1 indicates the bubble flow, 2 indicates the slug flow, and 3 indicates
the mixed flow.

3. Results and Discussion
3.1. Relationship between Flow Pattern and Conductivity

The flow pattern images of the gas–liquid mixing process in rectangular channel under
a variety of working conditions were recorded. At the same time, the conductivity of the
gas–liquid mixing process was recorded by a conductivity sensor. It is worth mentioning
that the conductivity of the gas–liquid mixture changes with various flow patterns. In
other words, the fluctuant conductivity measurements are recorded as bubbles, gas–liquid
mixtures, and liquids flowing through the conductivity sensor. Figure 3 shows three typical
flow patterns, including the bubble flow, the slug flow, and the mixed flow, observed
experimentally, and the corresponding conductivity measurements.
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As shown in Figure 3a, the bubbles are dispersed in a rectangular channel and can
flow freely while the gas flow rate is low. In particular, the shape of the bubbles is regular
and the bubbles are distributed independently. In this case, the resulting flow pattern
was the bubble flow. As shown in Figure 3b, the bubble size became larger and was
squeezed and deformed by liquid with the increase in gas velocity and flow rate. Adjacent
bubbles gradually began to collide and fuse into long and thin bubbles, and the flow
pattern gradually changed from the bubble flow to the slug flow. As can be seen, the
bubbles were no longer distributed independently, but were attached to each other to form
large, irregularly shaped bubbles. Due to the unique structure of the rectangular channel,
the tail of the elastic bubble followed a group of bubble flows during the flow process.
The size of the bubble increased gradually with the further increase in gas velocity. The
bubble swallowed up other bubbles around it. Then, the slug flow changed into other flow
patterns. Figure 3c shows a typical mixed flow. It can be seen that the liquid phase has
been unable to form a continuous channel, while the gas phase has formed a continuous
channel. The bubbles have connected to each other, forming larger, more irregular bubbles
or clusters of bubbles. Since various irregular forms of bubbles exist in the mixed flow,
it is difficult to tell what individual bubbles look like. This is also typical of the mixed
flow pattern. Figure 3d shows a schematic diagram of the above three flow patterns. The
corresponding conductivity measurements of the three typical flow patterns were further
analyzed. It was noted that among the conductivity measurements corresponding to the
three flow patterns, the amplitude of the mixed flow measurements was the lowest. The
bubble size was larger in the elastic flow. As a result, bubbles or groups of bubbles could
pass independently through the conductivity sensor in the rectangular channel, resulting
in smaller conductivity fluctuations and smaller measurements. However, the conductivity
corresponding to the bubble flow was the greatest. Because the bubbles were distributed
independently, the gas and liquid pass alternately through the conductivity sensor. The
conductivity was small when bubbles passed through, whereas the conductivity was
greater when the liquid passed through. In addition, the conductivity amplitude of the
elastic flow was large. There were large bubbles in the elastic flow, and large bubbles
could take up all the space of the conductivity sensor. This resulted in small conductivity
measurements. However, after the slug bubble flowed through the conductivity sensor, the
liquid did. This resulted in bigger conductivity.
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In fact, the mean of the conductivity measurements of different flow patterns was also
different. It can be observed from Figure 3 that the average conductivity of the bubble flow
was 18,081 µs/cm, the average conductivity of the slug flow was 5797 µs/cm, and the mean
of the mixed flow was 2810 µs/cm. There was little difference between the average conduc-
tivity of the slug flow and that of the mixed flow, whereas the average conductivity of the
bubble flow was very large and was different from that of the slug flow and the mixed flow.
This was mainly because the bubbles of the bubble flow were independently distributed
and the movement speed was small, so the conductivity sensor recorded more conductivity
of liquid. However, it was difficult to guarantee the accuracy of distinguishing the flow
patterns in the rectangular channel by observation, due to the lack of accurate evaluation
indices and rapid classification methods. Therefore, the characteristic parameters of the
conductivity measurements needed to be extracted. The characteristic parameters could be
used to describe flow patterns. By feeding these characteristic parameters into the support
vector machine, machine learning and flow classification could be achieved.

3.2. Time-Domain Feature Extraction of Conductivity

In order to extract the time-domain features of the conductivity time series, the prob-
ability density function was first used to analyze the conductivity measurements in a
vertical rectangular channel. The probability density function curves of the conductivity
measurements of different flow patterns were obtained via calculation software and are
shown in Figure 4. It can be seen that although these probability density function curves
were unimodal curves, the probability density function curves of the mixed flow had the
highest peak value and the most concentrated conductivity distribution, due to the collision
and deformation of bubbles at this time. However, due to the large intake volume, the
conductivity fluctuation was also small. The probability density function curve of the
slug flow had the smallest peak value and the widest distribution range of conductivity,
which indicated that the slug flow measurements fluctuated the most violently among the
three flow patterns. At this moment, as the gas velocity increased to a certain extent, the
gas–liquid phase ratio in the flow passage was close, and both of them moved violently,
alternately, in the flow passage. In the meantime, this violent movement was further re-
flected in the conductivity measurement probability density function curve characteristics.
Moreover, although its gas velocity of the bubble flow was lower than that of the elastic
flow, the bubbles were all independently distributed in the rectangular channel. The liquid
phase formed a continuous phase, occupying the main space within the rectangular channel.
At the same time, the liquid was distributed around all the intact bubbles and was moved
together by the gas phase. The intensity of the interaction between the two phases and
between the bubbles decreased in the rectangular channel, so the conductivity fluctuation
was lower than that of the slug flow, but it was still higher than that of the mixed flow.

In order to further quantify the time-domain characteristics of the typical flow con-
ductivity measurements, the standard deviation σ and the skewness Sk of the distribution
were introduced. After processing 30 groups of typical flow patterns, the ranges of dis-
tributional parameter of the three flow patterns were obtained, as shown in Figure 5. It
is worth mentioning that in order to facilitate the later training and testing of machine
learning, the 30 sets of data were divided into two groups, according to time. The first
group, which contained 30 sets of conductivity measurements with times of 0~90 s, was
used for feature parameter extraction and training. The second group, which also con-
tained 30 sets of conductivity measurements with times of 91~180 s, was used to test the
accuracy of flow-pattern recognition. As can be seen from Figure 5a, the dispersion degree
of its conductivity-measurement distribution was low, while the standard deviation of the
slug flow was small. The standard deviation of the bubble flow was significantly higher
than that of the other two flow patterns, indicating that the conductivity-measurement
distribution of the bubble flow was highly discrete. Moreover, it was consistent with the
previous conclusions based on the probability density function curve. Meanwhile, it can be
observed from Figure 5a that the standard deviation distribution range of the bubble flow



Sensors 2023, 23, 1907 10 of 16

and the mixed flow was wider. In particular, the standard deviation of the mixed flow was
between 7.59× 102 and 6.03× 103, indicating that mixed flow was an unstable flow pattern.
In general, the difference between the standard deviations of these three flow patterns was
relatively large. Hence, the standard deviation σ of the conductivity measurements could
be used as the characteristic parameter of the flow pattern. More importantly, it can be
noted from Figure 5b that the skewness Sk of the slug flow was less than zero, showing that
the measurements distribution was negative skew. However, for the bubble flow and the
mixed flow, the skewness Sk was both less than and greater than zero. The measurement
distribution was more complex than it was for the other two flow patterns.
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The specific distribution of the standard deviation and the skewness of the three flow
patterns in the rectangular channel are shown in Table 3. It can be observed from the
table that the measurements of the elastic flow were indeed negative skew. The skewness
Sk of the bubble flow was distributed from −3.47 to 1.14, the skewness Sk of the elastic
flow was distributed from −5.40× 10−1 to −1.57, and the skewness Sk of the mixed flow
was distributed from −5.86 × 10−2 to 2.49. Obviously, the skewness Sk of the three flow
patterns was different, but the distribution width of skewness was roughly equal. It can be
concluded that skewness Sk can be used as a characteristic parameter for the flow-pattern
recognition of the gas–liquid mixing process in the rectangular channel.
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Table 3. Specific distribution of standard deviation and skewness of three flow patterns in the
rectangular channel.

Flow Patterns
Range

σ Sk

Bubble flow 2.95 × 103~6.75 × 103 −3.47~1.14
Slug flow 1.06 × 103~8.70 × 103 −5.40 × 10−1~−1.57

Mixed flow 7.59 × 102~6.03 × 103 −5.86 × 10−2~2.49

3.3. Frequency-Domain Feature Extraction of Conductivity

On the basis of time-domain analysis, the conductivity measurements were processed
by the power spectral density with frequency-domain analysis. The power spectral density
curves of the three typical flow patterns were obtained and are shown in Figure 6. It may
be observed that the power spectral density curves of the three flow patterns had only one
peak. What is more interesting is that the peaks of all three power spectral density curves
were located near 3.85 × 10−3 Hz, showing that the power distribution of the three flow
patterns was very concentrated. Meanwhile, it can also be seen that the peak of the bubble
flow was the largest. The peaks of the elastic flow and the mixed flow were relatively small,
and the difference between them was not big. Compared with those of the bubble flow
and the slug flow, the power distribution of the mixed flow behaved more uniformly. The
difference in peaks did not suggest different flow patterns. However, other characteristic
parameters need to be introduced to assist when the peaks are close.
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Figure 6. Power spectral density distribution of conductivity measurements corresponding to the
three flow patterns in the vertical rectangular channel.

In order to further quantitatively extract frequency-domain features of conductivity
measurements, three characteristic parameters—frequency corresponding to the maximum
power fmax, the standard deviation σP of the power spectral density, and the power dis-
tribution range RP—were introduced. The distribution ranges of the three characteristic
parameters of the three flow patterns are shown in Figure 7. It is worth mentioning that
in this work 99% of the total power was distributed between 0 and RP. As can be seen
from Figure 7a, fmax of the three flow types, including the bubbly flow, the elastic flow,
and the mixed flow, were equal. This meant that fmax could not be used to describe the
flow characteristics, whereas fmax was universal in describing flow characteristics based on
signal processing. Hence, to provide a reference for other researchers, fmax was retained in
this work. The standard deviation σP of the power spectral density reflected the dispersion
degree of the power distribution of the three flow patterns. As can be seen from Figure 7b,
the values of σP of the slug flow and the mixed flow were small, while that of the bubble
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flow was large. Meanwhile, the values of σP of the power spectral density of the slug
flow and the mixed flow were distributed in a smaller width, while that of the bubble
flow was distributed in a larger width, which was consistent with the peak distribution
characteristics of the three flow patterns. This showed that the power distributions of the
slug flow and the mixed flow were less discrete, while that of the bubble flow was more
discrete. Therefore, σP could be used as a parameter to describe the characteristics of the
gas–liquid two-phase flow patterns in the rectangular channel. Parameter RP refers to the
power distribution range of the conductivity measurements. Figure 7c shows the total
power distribution of the three flow patterns. It is noted that the power distribution range
of the mixed flow was large and RP was relatively concentrated. The distribution of RP
in the slug flow was relatively uniform. The distribution of RP in the bubble flow was
relatively dispersed. In general, the total power distribution of the three flow modes was
quite different.
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to various working conditions.).

Moreover, the ranges of distribution parameters of the power spectral density of the
conductivity measurements in the rectangular channel are shown in Table 4. The data in
this table visually show the distribution range of each parameter. The distribution ranges
RP of the bubble flow and the mixed flow were similar. However, RP of the bubble flow
was more dispersed. This indicated that the distribution of RP in the mixed flow was
more obvious than that of the bubble flow. At the same time, the distribution of RP in
the slug flow was also more obvious than that in the bubble flow. Therefore, RP could be
used to describe the flow-pattern characteristic in the rectangular channel. In general, the
maximum power fmax, the standard deviation σP of the power spectral density, and the
power distribution range RP were significantly different under the different flow patterns.
All three parameters could be used to describe the flow patterns. In particular, in this work,
σP and RP were mainly used to describe the gas–liquid flow pattern characteristics.

Table 4. Parameter distribution range of power spectral density of conductivity measurements in the
rectangular channel.

Flow Patterns
Range

fmax σP RP

Bubble flow 3.91 × 10−3 3.72 × 108∼ 2.58 × 109 6.25 × 10−2∼ 1.33 × 10−1

Slug flow 3.91 × 10−3 1.36 × 108∼ 9.36 × 108 8.59 × 10−2∼ 1.33 × 10−1

Mixed flow 3.91 × 10−3 2.08 × 107∼ 2.23 × 109 4.30 × 10−2∼ 2.23 × 10−1

3.4. Flow Pattern Recognition Based on SVM

The time-domain and frequency-domain characteristics of the conductivity measure-
ments of three typical flow patterns during gas–liquid two-phase mixing in rectangular
channel were analyzed and quantified. It can be seen that the five quantized characteristic
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parameters—σ, Sk, the frequency corresponding to fmax, σP, and RP—can be used as the
basis for the judgment of flow pattern. However, these characteristic parameters of different
flow patterns still have some crossover, resulting in some subjectivity and uncertainty in
flow-pattern recognition. Therefore, based on the above research results, the support vector
machine was further constructed in this work to obtain more rapid, efficient, and accurate
flow-pattern-classification results.

First, several five-dimensional feature vectors consisting of σ, Sk, fmax, σP and RP
were constructed. These vectors could be used as indicators to identify the flow pattern
of the gas–liquid mixing process in the rectangular channel. In addition, each feature
vector contained a label to indicate its corresponding flow patterns. Label 1 referred to the
bubble flow, label 2 referred to the slug flow, and label 3 referred to the mixed flow. Table 5
shows some feature vectors for different flow patterns. In this table, the characteristics of
the three flow patterns are described quantitatively. In the case of the bubble flow, they
were as follows: σ = 3.39× 103, Sk = −3.47, fmax = 3.91× 10−3, σP = 2.58× 109, and
RP = 6.25× 10−2. All feature vectors were sent to the support vector machine for learning
and training. It is worth mentioning that a total of 30 sets of data were obtained in this
experiment, including four sets of bubble flow data, 18 sets of elastic flow data, and eight
sets of mixed flow data. The pre-90 s of data in each set was used for training, and the other
90 s was used for testing. The data number of the bubble flow, the slug flow and the mixed
flow in the training set was 4, 18, and 8, respectively. The data number of the bubble flow,
the slug flow, and the mixed flow in the test set was 4, 18, and 8, respectively.

Table 5. Examples of five-dimensional feature vectors for flow pattern in the rectangular channel.

σ Sk fmax σP RP Label Flow Patterns

3.39 × 103 −3.47 3.91 × 10−3 2.58 × 109 6.25 × 10−2 1 Bubble flow
8.70 × 102 −0.51 3.91 × 10−3 9.36 × 108 3.52 × 10−2 2 Slug flow
4.95 × 103 −1.27 3.91 × 10−3 2.23 × 109 2.23 × 10−2 3 Mixed flow

Table 6 shows the test set identification results of the three flow patterns for the gas–
liquid mixing process in the rectangular channel. In this table, it can be seen that the model
correctly identifies all bubble flows. However, one set of data in the slug flow was identified
as the bubble flow. One set of data in the mixed flow was identified as the slug flow. The
overall recognition accuracy was 93.33%. In general, it was feasible to analyze the time-
domain and frequency-domain characteristics of the gas–liquid two-phase conductivity
measurements in the rectangular channel and to construct the feature vector reflecting the
time–frequency characteristics of the conductivity measurements. The learning and training
of the feature vectors describing the flow patterns was conducive to the construction of the
support vector machine model. The established machine learning model could quickly and
efficiently identify and classify the flow patterns of the gas–liquid mixing process in the
rectangular channel.

Table 6. Testing results for flow-pattern identification of gas–liquid mixing in the rectangular channel.

Flow Patterns Conditions Number of
Test Sets

Correct Identification
Number Accuracy Rate (%)

Bubble flow C1, C2, C3, C5 4 4 100

Slug flow C4, C6~C10,
C15~C19, C25~C30

18 17 94.44

Mixed flow C11~C14, C21~C24 8 7 87.5
Total / 30 28 93.33

4. Conclusions

In this work, the gas–liquid mixing process in the rectangular channel was measured,
and the flow pattern images and conductivity measurements of the bubble flow, the
slug flow, and the mixed flow were obtained. The time-domain and frequency-domain
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characteristics of the conductivity measurements were analyzed by the probability density
function and power spectral density. The feature vector describing the flow pattern in
the rectangular channel was constructed by introducing characteristic parameters. The
classification and recognition of gas–liquid two-phase flow patterns in the rectangular
channel was realized by using a support vector machine, and good results were obtained.
The main conclusions can be summarized as follows: (1) The relationship between the gas–
liquid flow patterns and electrical conductivity in the rectangular channel was discussed
in detail. The bubble flow, the slug flow, and the mixed flow were measured in different
conductivity while passing through the conductivity sensor. The evolution of the flow
pattern could be qualitatively analyzed by observing the fluctuation of the conductivity
measurements. (2) The probability density function and power spectral density were used
to process the conductivity measurements of the gas–liquid two-phase mixing process in
the rectangular channel for the first time. The five-dimensional feature vector describing
the flow pattern was constructed by introducing feature parameters, including σ, Sk,
fmax, σP, and RP. (3) Two time-domain feature parameters and three frequency-domain
feature parameters were used as the feature vectors of the flow patterns for training and
identifying by the support vector machine. The recognition accuracy of the bubble flow
was 100%, and the overall recognition accuracy was 93.33%, showing that the recognition
accuracy of this model is reliable. (4) The proposed flow-pattern-recognition framework,
combining conductivity measurements and the support vector machine, has the advantages
of simplicity, accuracy, and universality for rectangular channels. In fact, the generality of
the model and the approach would be extended via extracting the other essential features
of different flow patterns in rectangular channels by capturing other signals, including
pressure, temperature, and resistance.
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