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Abstract: In recent decades, the traditional monopolistic energy exchange market has been replaced
by deregulated, competitive marketplaces in which electricity may be purchased and sold at market
prices like any other commodity. As a result, the deregulation of the electricity industry has produced
a demand for wholesale organized marketplaces. Price predictions, which are primarily meant to
establish the market clearing price, have become a significant factor to an energy company’s decision
making and strategic development. Recently, the fast development of deep learning algorithms, as
well as the deployment of front-end metaheuristic optimization approaches, have resulted in the
efficient development of enhanced prediction models that are used for electricity price forecasting.
In this paper, the development of six highly accurate, robust and optimized data-driven forecasting
models in conjunction with an optimized Variational Mode Decomposition method and the K-Means
clustering algorithm for short-term electricity price forecasting is proposed. In this work, we also
establish an Inverted and Discrete Particle Swarm Optimization approach that is implemented for
the optimization of the Variational Mode Decomposition method. The prediction of the day-ahead
electricity prices is based on historical weather and price data of the deregulated Greek electricity
market. The resulting forecasting outcomes are thoroughly compared in order to address which of
the two proposed divide-and-conquer preprocessing approaches results in more accuracy concerning
the issue of short-term electricity price forecasting. Finally, the proposed technique that produces the
smallest error in the electricity price forecasting is based on Variational Mode Decomposition, which
is optimized through the proposed variation of Particle Swarm Optimization, with a mean absolute
percentage error value of 6.15%.

Keywords: short-term electricity price forecasting; data-driven forecasting models; metaheuristic
optimization algorithms; signal decomposition; clustering algorithms; preprocessing approaches

1. Introduction

The landscape of the formerly monopolistic power systems has changed over the past
few decades as a result of deregulation and the introduction of competitive markets [1]. In
many countries worldwide, electricity is traded through spot and derivative contracts in
accordance with strict market principles [2]. Electricity, on the other hand, is economically
unstorable and contradicts the fundamental operating principle of power systems, which
calls for a permanent equilibrium between production and consumption. With the advent
of restructuring in the electric power industry, the price of electricity has become the focal
point of all power market activity. The price of electricity is the most significant signal to all
market players in a power market and the market-clearing price is the most fundamental
pricing notion [3]. Following the receipt of bids, the Independent System Operator (ISO)
combines the supply bids into a supply curve and the demand bids into a demand curve.

Energies 2022, 15, 7929. https:/ /doi.org/10.3390/en15217929

https:/ /www.mdpi.com/journal/energies


https://doi.org/10.3390/en15217929
https://doi.org/10.3390/en15217929
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-6547-7454
https://orcid.org/0000-0001-8285-8972
https://orcid.org/0000-0001-7452-4083
https://orcid.org/0000-0003-0154-175X
https://orcid.org/0000-0003-0787-5013
https://doi.org/10.3390/en15217929
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15217929?type=check_update&version=2

Energies 2022, 15, 7929

2 of 24

The market-clearing price is determined at the point where these two curves intersect and
identifying it is essential for the efficient and orderly operation of power systems [4].

Electricity price forecasting can be divided into three categories based on length of
time: short-term, mid-term and long-term. In order to set up bilateral transactions or
define bidding strategies on the spot market, this study primarily focuses on developing
data-driven models for predicting short-term electricity prices. The spot electricity market
usually conducts day-ahead auctions and does not support uninterrupted trade. Agents
are required to submit their bids and offers for the delivery of electricity during each hour
of the following day before a specific market closing time on the previous day.

In comparison to the load forecasting problem [5], where the load curve is mostly
homogenous and its variations are cyclic [6], the electricity price forecasting problem has a
non-homogeneous pricing curve and only weakly cyclic variations [7]. At the same time,
price spikes that occur when a system’s load level approaches its generating capacity limit
have an explicit impact on prediction accuracy [8-10]. Although the price of power is
highly volatile [11], it is not considered random. It is obvious that various physical factors
could influence the electricity price, with some variables dominating over others. As a
result, in short-term applications, it is critical to identify the parameters that have the most
impact on price predictions. The time, i.e., the hour of the day, day of the week, etc., special
days, previous pricing values and historical and predicted load values are the parameters
that have the greatest influence on the outcome of electricity price forecasting.

Short-term electricity forecasting can be approached using two strategies, statistical
methods [12] and computational intelligence models [13]. Statistical approaches forecast
the current price by combining previous prices with prior or present values of exogenous
factors. Simple Moving Average, Exponential Smoothing and Autoregressive Integration
Moving Average (ARIMA) are some statical strategies that are successfully implemented
in electricity price forecasting [14-16]. Due to their flexibility and ability to manage com-
plexity and non-linearity, computational intelligence approaches have been created to
solve problems that traditional statical methods are inefficient at handling [17]. Artificial
Neural Networks (ANNs), Fuzzy Systems, Support Vector Machines (SVM), techniques for
evolutionary computation and hybrid approaches that combine two or more computational
intelligence algorithms have yielded satisfactory price prediction results.

The majority of recent papers in the literature that address the problem of predicting
electricity prices usually propose a regressor model, an optimization method and an
algorithm for signal decomposition of the price. Unlike the few regression models used
to predict the price of electricity, the literature is replete with optimization strategies.
Support Vector Regression (SVR) models, ANNs and Extreme Learning Machines (ELMs)
are the major price forecasting models. Empirical Mode Decomposition (EMD), either
as is or in some modified form, and Variational Mode Decomposition (VMD) are the
primary techniques employed for signal decomposition. Those two approaches have found
extensive application in the existing literature on price forecasting in general and their
results have been thoroughly compared [18].

In [19], Ribeiro et al. use a combination of several non-linear models, including ELMs,
Gradient Boosting Machine (GBM), SVR models and Gaussian Process (GP), to predict
commercial and industrial electricity prices in Brazil for one to three months ahead. The
suggested model is based on exogenous factors such as power supply, lagging pricing
and electricity demand and the hyperparameters are chosen using the Complementary
Ensemble Empirical Mode Decomposition (CEEMD) technique, the fine tuning of which
is based on the implementation of the Coyote Optimization Algorithm (COA). Similarly,
Qiu et al. [20] used EMD to decompose the electricity price signal into numerous Intrinsic
Mode Functions (IMFs) and a Kernel Ridge Regression (KRR) model to predict each
IMF’s trends. The predictions of all IMFs were then utilized by an SVR to provide the
aggregated price forecasting result for the Australian Energy Market Operator. Although
this proposed method improved accuracy and efficiency compared to traditional methods,
it failed to produce satisfactory mean absolute percentage error (MAPE) values. In another
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study [21], Ensemble Empirical Mode Decomposition was used in conjunction with various
regression models such as Recurrent Neural Network (RNN), Multi-Layer Perceptron
(MLP), SVR and ELM to obtain the actual predicted price of electricity based on data from
the power systems of New South Wales (NSW), Queensland (QLD) and Victoria (VIC).
According to the findings of this study, computational intelligence models produce a large
MAPE; however, the suggested ELM model paired with the Ensemble Empirical Mode
Decomposition manages to reduce the MAPE to less than 10%.

Unlike EMD, VMD has not been widely adopted in the literature on electrical price
forecasting, but it is found in applications for forecasting challenges such as carbon price
prediction [22], crude oil price forecasting [23] and short-term wind power projection [24].
In [25], Yang et al. offer an adaptive hybrid forecasting model employing an Improved
Multi-Objective Sine Cosine algorithm (IMOSCA) for the optimization of a Regularized
Extreme Learning Machine (RELM), which is the first attempt to deal with EPF based
on Variational Mode Decomposition. The MAPE values are close to 6% when using the
proposed model. In a similar effort, Wang et al. [26] used the Improved Variational Mode
Decomposition (IVMD), as a data preprocessing technique, in order to decompose the
original electricity price series into several modes. Then, they utilize the Chaotic Sine
Cosine Algorithm (CSCA) enhanced with the Phase Space Reconstruction (PSKR) in order to
select the optimal input vector of each mode and use it for the prediction of the electricity
price based on an Outlier-Robust Extreme Learning Machine (ORELM) model.

Similarly, clustering is another ensembled preprocessing method utilized to improve
the outcomes of electricity price predictions. Although the theoretical foundations of
these two preprocessing approaches differ, they both operate on the divide-and-conquer
concept. A divide-and-conquer algorithm recursively divides a problem into two or more
sub-problems of the same or related nature, until they are simple enough to resolve directly.
The sub-problems’ answers are then merged to provide a solution to the initial problem.
As a result, the signal decomposition method may be safely termed a clustering method.

An initial implementation of the clustering approach is conducted in [27], where
Ghayekhloo et al. present an enhanced data clustering technique for price-load input
data in order to group them into an appropriate number of subsets utilizing six new
game-theoretic methods. This unique cluster selection method based on the persistence
approach is used to identify the best suitable cluster as the input to a Bayesian Recurrent
Neural Network (BRNN) for electricity market day-ahead price forecasting. The proposed
forecast model surpasses current state-of-the-art forecasting algorithms, demonstrating a
significant improvement in prediction accuracy. In a different approach to data clustering,
Pourhaji et al. [28] investigate the seasonal data clustering effect on price forecasting. The
energy price forecasting for the day-ahead horizon is based on data from Ontario province
in Canada. The important parameters of the prediction are identified using the Gray
Correlation Analysis (GCA) approach and the day-ahead electricity price forecasting is
achieved using a Long Short-Term Memory (LSTM) model. Finally, the predictions are
compared in three modes: non-clustering, seasonal clustering and monthly clustering. In an
alternative study, Wang et al. [29] propose a classification modeling strategy for predicting
electricity prices based on daily pattern prediction (DPP). In this study, K-Means is used
to cluster all of the historical daily electricity price curves and then the suggested DPP
model is used to detect the following day’s pricing trend from the forecasting data supplied
by numerous traditional forecasting methods. Then, for each individual daily pattern,
a classification predicting model is developed and a credibility check on the DPP result
determines which of them will be eventually employed. This approach is applied to real
electricity price data from the PJM market, yielding more accurate forecasting results than
the single integrated modeling approaches.

This paper examines the issue of short-term electricity price forecasting using historical
price data from the Greek electricity market. More specifically, six robust prediction models
that use subsets of the original dataset resulting from the application of VMD and the
K-Means clustering algorithm are proposed. The regressor approaches used are an SVM,
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an MLP neural network and an XGBoost model, whose optimization is based on the
Base Optimizing Algorithm (BOA). The forecasting results provided by each model are
compared to each other, based on the MAPE, with the aim of choosing the forecasting
model that provides the most accuracy. More specifically, by extensively studying the
existing literature and identifying some gaps, the fundamental aspiration of this paper is:

¢ To develop robust and optimized data-driven forecasting models in conjunction with
the VMD or the K-Means algorithm that will improve the accuracy of electricity price
predictions, compared to the existing results;

* To propose an enhanced modification of the Particle Swarm Optimization (PSO)
technique used for the selection of the discrete values of the VMD algorithms” hyper-
parameters. The proposed algorithm is applied in identifying the local maximum (and
not the local minimum as usual) of a well-defined objective function;

¢  To propose the use of BOA as a front-end metaheuristic algorithm that will determine
the appropriate values of the hyperparameters of each regression model;

e To propose an XGBoost prediction model that will produce accurate results in a short
convergence time;

*  Tobe the first paper that compares the effect of the signal decomposition and clustering
approach on the results of electricity price forecasting.

This paper is organized as follows. Section 2 analyzes the materials and methods used
for the establishment of the proposed robust and optimized data-driven forecasting models.
In Section 3, the numerical results from the implementation of the proposed approaches
in short-term electricity price forecasting based on historical data of the Greek electricity
market are presented. In Section 4, those results are analyzed and compared in order to
determine the performance of the preprocessing techniques in terms of price prediction
accuracy. Section 5 summarizes and concludes the results of the proposed work and
suggests topics for further research in the area of short-term electricity price forecasting.

2. Materials and Methods

In this section, the algorithmic structures of the signal decomposition methods, the
K-Means clustering technique, the Base Optimizing Algorithm, as well as the various
regression models used to design robust, highly accurate and data-driven forecasting
approaches are presented and analyzed.

2.1. Signal Decomposition

Electricity price forecasting is mainly based on the signal that reflects the price of
electricity to a currency (EUR/MWh or USD/MWHh). This signal has certain oddities
because it is influenced by many exogenous sources, yet it has a distinctive curve in the
domain of time. Therefore, a variety of signal decomposition techniques can be used to
better comprehend and monitor the signal relating to the price of electricity. According
to the theory of decomposition, every signal is made up of various intrinsic oscillation
modes. Each mode is an oscillation, or Intrinsic Mode Function (IMF), that is symmetric
with respect to the local mean and has a maximum difference of one in the number of local
extrema and zero-crossings.

A first approach to signal decomposition was presented by Huang et al. by establishing
the Empirical Mode Decomposition (EMD) technique [30]. EMD is an entirely data-driven
strategy that decomposes a signal into several modes of unidentified but distinct spectral
bands [31]. One of EMD’s key advantages is that it automatically determines the ideal
number of modes based on the signal’s characteristics. The derived modes are hierarchically
arranged so that the first IMF has the highest-frequency component and the residual signal
is left with the information of lower-frequency components [32]. On the other hand, the
algorithm’s robustness of decomposition is diminished by the absence of mathematical
theory. Due to its recursive execution, EMD is noted for having restrictions including
susceptibility to noise and sampling [33] and does not support backward error correction.
Additionally, it is prone to undermining the accurate identification of the extrema and as
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a result of that, of their upper and lower envelopes [34]. This is due to the phenomenon
of over-decomposition of a signal, which occurs when more IMFs are extracted than the
number of oscillatory modes that comprise the original signal.

More robust variants, including Ensemble Empirical Mode Decomposition (EEMD) [35]
and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEM-
DAN) [36], have recently been proposed to solve the original EMD algorithm’s shortcom-
ings in terms of sensitivity to noise and sampling. EEMD is a noise-assisted data analysis
technique that may spontaneously divide the original signal into IMFs without the need of
predetermined, subjective criteria. CEEMDAN is a variation of the EEMD algorithm, which
offers a precise reconstruction of the original signal and improved IMF spectral separation.
Even though it requires more computational power, this enhanced version, which uses
White Gaussian Noise, is intended to significantly lessen the negative impacts of noise.

In a later attempt, Dragomiretskiy and Zosso [37] proposed VMD, a more reliable
and mathematically solid method. This method has been widely used in the diagnosis
of gearbox faults [38], the fault diagnosis scheme for rolling bearings [39], the seismic
time-frequency analysis [40], the forecasting of crude oil prices [41], the prediction of wind
power [42] and the forecasting of short-term load [43]. In order to create a reliable, robust
and accurate forecast model that might be employed in the EPF, this paper focuses on the
application of VMD in the signal that reflects the hourly price of electricity. Therefore, the
VMD algorithm’s structure as well as its benefits over competing decomposition techniques
should be taken into account. The purpose of VMD is to decompose an input signal with
real value into a discrete number of IMFs that are compact around a central pulsation, which
is to be identified simultaneously with the decomposition. In particular, the squared norm
of each IMF’s Hilbert supplemented analytic signal [32] is used to determine each IMF’s
bandwidth. Mixing each mode with a tuned exponential function causes the spectrum
of each mode to be displaced on the approximated angular frequency. The demodulated
signal’s Gaussian smoothness, which is the gradient’s squared Euclidean norm (L2-norm), is
ultimately used to determine the bandwidth. The IMFs are updated using straightforward
Wiener filtering in the Fourier domain to address the variational problem.

The VMD technique is resilient to noise and has been widely employed because it
has been proven to be sensitive in identifying weak side-band signals that are frequently
covered up by background noise [44]. As a result, it has been asserted that the VMD
technique is effective for signal denoising and detrended fluctuation analysis, with a
temporal complexity order comparable to that of EMD [45]. The decomposed modes are
extracted continuously rather than iteratively grading enhanced error balancing, which
makes EMD non-recursive [46]. It has also been suggested in real-time pattern recognition
implementations, demonstrating a significant improvement in efficiency over EMD and
wavelet-based methods [47].

The VMD algorithm is parameter sensitive, according to [37], as the decomposition out-
come mainly depends on the choice of penalty constant and decomposition number K. Each
IMF component has a constrained bandwidth under specifics « and K. The requirement to
predefine in how many modes (or clusters) data are to be binned is a common weakness of
many segmentation methods. The parameter K in the VMD process determines how many
modes the original signal is dived into. The selection of the penalty parameter a determines
the IMFs’ bandwidth size. Therefore, the ideal pairing of parameters K and « should be
chosen in order to prevent overdecomposition/underdecomposition of the provided signal.
These parameters are chosen either empirically, through a process of trial and error, or
with an optimization algorithm. Particle Swarm Optimization (PSO) [48], Cuckoo Search
(CS) [49], Gray Wolf Optimizer [50] and the Chaotic Sine Cosine (CSC) method [51] are a
few optimization techniques that are utilized to configure VMD appropriately. Inverted
and Discrete Particle Swarm Optimization (IDPSO), a novel and reliable methodology,
is used in this study as the foundation for VMD parameterization. A mathematical and
algorithmic analysis of IDPSO is provided in the following section.
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Inverted and Discrete Particle Swarm Optimization into Variational Mode Decomposition

Particle Swarm Optimization (PSO) is a bio-inspired algorithm that has been widely
employed in deep learning situations to optimize continuous nonlinear functions [52]. This
heuristic approach aims to locate the best solution in a high-dimensional space, or as close
to it as is possible [53,54]. PSO differs from other optimization techniques since it does
not depend on the gradient or any differential form of the objective function in order to
arrive at a solution that is near the global minimum [55]. Since the PSO is used to minimize
an objective function for certain pairs of (K, &) parameters in order to produce the best
practicable parametrization, it may be simply adapted to the selection of these parameters
in the VMD approach. The formulation of an objective function should be taken into
account initially because the VMD technique does not include any mathematical functions
that should be minimized. Due to this, different versions of multiple objective functions
have been presented in the literature, including the ratio of 1 to kurtosis of decomposed
signals [56], the average of the envelope and Renyi entropy of modes [57] and the ratio
of the mean to variation of the cross-correlation signal between the original signal and
the IMFs [39]. In this paper, the objective function used is that of [39] and therefore its
mathematical function should be rendered.

Cross-correlation is a metric used in signal processing to determine how similar two
signals are to each other. Correlation of two signals is defined as the convolution of one
signal with the functionally inverse representation of the other signal. The cross-correlation
of the two input signals is the name given to the resulting signal. The cross-correlation
signal’s amplitude serves as an indicator of how closely the received signal resembles the
target signal [58]. The mathematical expression for the cross-correlation of continuous time
signals f(t) and g(t) is given by Equation (1):

c(t) = (1) +g(t) = [ f(0) xglt—7)dr )

Cross-correlation is used as a measure of the correlation between the initial signal and
the decomposed modes as a result of the application of VMD for particular pairs K and «
in terms of the decomposition of the price signal. Cross-correlation, however, cannot be an
objective function in itself; hence, it is important to use the information that indicates how
much the cross-correlation signal varies from the mean value. The cross-correlation signal
between the original signal and all IMFs” mean values and their variance is therefore used
to establish the proposed objective function. The objective function used in the proposed,
enhanced version of PSO is given in Equation (2):

Var(C)

Objective Function = m (2)

Equation (3) attributes the variance of the cross-correlation signal between the original
signal and the decomposed modes:

N
Var(C) = N_1 Z,(Xz‘ —u)? 3)

where N is the number of samples, x; is the value of the signal at the i-th sample and p is
the mean of the signal. Therefore, the appropriate parameterization of the VMD is given for
the constants K and « in which greater correlation results between the original signal and
all IMFs. Therefore, the pair (K, «) that maximizes the objective function of Equation (2)
must be found.

Once the proper objective function has been established to be employed by the PSO in
order to acquire the correct decomposition of the signal of the electricity price, the need
for the application of an appropriate variation of this heuristic algorithm can be easily
identified. The development of an inverted version of PSO is initially required, where it will
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search for the global maximum of the objective function rather than its global minimum.
The implementation of PSO in discrete values of K and « should also be considered for
this specific differentiation, as demanded by the algorithmic analysis of VMD. This paper
proposes the establishment of an Inverted and Discrete Particle Swarm Optimization
(IDPSO) algorithm that will be applied as a front-end heuristic algorithm for the optimal
parameterization of the VMD algorithm. The novel IDPSO-VMD algorithm is analyzed
as follows:

e  Step 1: Initialize the values K and « within the defined solution space. The pair (K, «)
is a group of particles, the number of which is defined by the user, that is initialized
with random values in order to find the global maximum of the objective function;

e  Step 2: For the initial particles of Step 1 the VMD algorithm is executed and the values
of the objective function are calculated;

¢  Step 3: The solution of the algorithm is considered to be the largest value of the
objective function found in Step 2;

*  Step 4: The particles start moving towards the global best solution by updating the
values K and «. These variables should have integer values and for this reason they
are updated based on Equations (4)—(7) as follows:

K;tpdate = ZUKf +c1r1 (Kcurrent best — Kf) + corp (Kglobal best — Kf) (4)
KEF = K4 K )
a:tpdate = w“f + Clrl(‘xcurrent best — D‘zt) + CZrZ(‘J‘global best — af) (6)
af"t = af o )

*  Step 5: For the new particles, the VMD algorithm is executed and the values of the
objective function are calculated;

¢  Step 6: In cases where the objective function displays a higher value of the existing
global best solution for the new particles, the optimal solution is updated;

*  Step 7: Steps 4-6 are repeated until the parameters K and « stop being updated, i.e.,
the particles stop moving towards the point that shows the optimal solution or the
algorithm for the maximum number of repetitions set by the user is reached;

e  Step 8: The algorithm returns the best possible solution.

In Equations (4) and (6) the parameters w, ¢; and ¢, are user-defined constants that
represent the inertia of the particles and how sensitive they are to the current best and the
global best solution, respectively. The variables denoted as r; and r; are random numbers
between 0 and 1. Therefore, the results of Equations (4) and (6) become a distinct value
when applying a well-defined Python function, which returns the closest to the resultant
integer number.

2.2. Data Clustering

Unsupervised learning techniques like clustering are frequently used to discover
significant structure, explanatory underlying processes and generative features in a large
dataset. The fundamental concept behind clustering is that homogeneous data groups are
produced by splitting a given set of data points into a set of groups that are as identical
as possible. It is crucial because it establishes the inherent grouping among the existing
unlabeled data. Because the efficiency of clustering is directly affected by the type of data,
it is not surprising that a variety of methodologies, including probabilistic, distance-based,
spectral and density-based strategies, are utilized in the clustering process. Each of these
techniques has advantages and limitations of its own and may be effective in various
situations and different domains.

Clustering analysis is widely utilized in a variety of fields, including market research,
pattern recognition, image processing and the analysis of biological data. In recent years,
the necessity to upgrade traditional power systems and convert them to Smart Grids has



Energies 2022, 15, 7929

8 of 24

expanded the number of installed smart meters, which has increased the amount of electri-
cal network data that is currently available. Therefore, clustering finds wide application in
datasets that consist of time-series concerning both load forecasting and electricity price
forecasting. It should be highlighted that identifying data that are developing over time
differs significantly from classifying data that are static. Due to the significant differences
in the behavior of the data variables across different parts of the datasets, high dimensional
datasets, such as those referring to short-term electricity price forecasting, provide unique
difficulties for cluster analysis.

Time series clustering frequently involves the use of conventional cluster analysis
techniques including hierarchical and non-hierarchical clustering approaches. In this first
case, an appropriate distance measure for comparing time series is established, inheriting
the dynamic aspects of the time series and then a typical hierarchical cluster analysis is used
while utilizing the provided distance measure. In the latter case, partitioning clustering
approaches divide a set of data points into K clusters. This procedure typically follows
the optimization of a criterion function that represents the inner variability of the clusters
during the minimization of an objective function. One of the most well-known and often
used non-hierarchical clustering algorithms is K-Means clustering, which aims to partition
the data in an effective manner by minimizing the Sum of Squared Errors (SSE) criterion
through an iterative optimization process. Denoting as Cj the k-th cluster, x; a point in Cy,
ck is the mean (centroid) of the k-th cluster and K the number of clusters, the SSE is given
by Equation (8):

K
SSE(C) =Y Y (cx — xi)? ®)
k=1x€eCy

K-Means starts by choosing K representative points as the initial centroids. Next, based
typically on Euclidian distance, each point is allocated to the nearest centroid. The centroids
for each cluster are updated after the clusters have formed. Afterwards, the algorithm
iteratively repeats these two steps until the centroids remain the same or a different relaxed
convergence condition is satisfied. The initial centroids and the estimated K-Means optimal
number of clusters are the two main variables that can affect the performance of the method.
The most important aspects influencing the efficiency of the K-Means algorithm are the
initial centroids and estimating the ideal number of clusters K.

The initial centroids in this study are chosen using the K-Means++ approach. This
algorithm employs a straightforward probability-based approach in which the first centroid
is chosen at random. The next centroid determined is the one that is farthest away from
the present centroid. This decision is based on a weighted probability score. The selection
process is repeated for K iterations. The Elbow Method is used to solve the problem of
estimating the ideal number of clusters K.

Determining the Optimal Number of Clusters—Elbow Method

A major challenge in partitioning clustering is determining the optimal number of
clusters in a dataset, which involves the user defining the number of clusters K to be formed.
The appropriate number of clusters is rather subjective and depends on the method used
to measure similarities as well as the clustering algorithm’s parameters. As previously
stated, the purpose of the K-Means clustering algorithm is to segment data effectively while
minimizing SSE. However, its rate of decrease varies depending on whether it is above or
below the optimal number of clusters K. The inertia reduces rapidly for k < K, whereas
it decreases slowly for k > K. The user can therefore identify the point where the curve
bends or elbows and determine this point as the ideal number of clusters by visualizing
the inertia across a range of k. However, because various users may locate the elbow in a
different spot, this method is somewhat arbitrary.
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In our work, the clustering algorithm under consideration is K-Means and its im-
plementation is based on Python’s library scikit-learn [59]. The clustering approach is
implemented on historical data of electricity price and hourly weather data such as temper-
ature and humidity. The ideal number of clusters is determined using the Elbow Method.
Therefore, for a range of clusters, the SSE resulting from the use of the K-Means algorithm
is calculated and graphed.

2.3. Regression Models

In this paper, the use of an SVR, an MLP neural network as well as the innovative and
highly efficient XGBoost model is proposed to address the electricity price forecasting issue.
The SVR and the MLP neural network were built based on the scikit-learn library [59], and
the XGBoost model with the corresponding Python library.

2.3.1. Support Vector Machines

Support Vector Machine is an algorithmic approach appropriate for supervised learn-
ing, the primary intention of which is to find a hyperplane in an N-dimensional space
(where N is the number of features) that distinctly allocates the data points [60]. There is a
variety of different hyperplanes that might be used to split the subclasses of data points.
The primary goal of using SVMs to address a classification problem is to determine a
hyperplane that has the maximum margin, or the maximum distance between data points
from the distinct classes. When applied to a regression problem, they aim to predict a real
function (f) using pairs of input—output training data produced similarly and indepen-
dently dispersed in accordance with an unknown probability distribution function. Since
Support Vector Regression (SVR) is one of the regression models employed in the problem
of short-term electricity price forecasting, its method will be investigated in this study.

Margin is a classification-specific concept. The purpose of SVR is to establish a function
that has the least amount of deviation (€) from the real targets for all of the training data
while also being as flat as possible in order to avoid using overcomplicated regression
functions. Thus, results with inaccuracy less than € are accepted, but deviations greater than
€ are unacceptable [61]. Using the e-sensitive loss function of Equation (9), an equivalent of
the margin is built in the space of the target values y:

ly = f(x)| = max{0, [y — f(x)| — €} ©)

A regression function that generalizes efficiently is determined by modifying both the
regression ability via the weight vector w and the loss function. The data are fitted to a
tube with a radius €. The trade-off between the complexity term and the empirical error
is adjusted by the regularization constant C, which accepts values greater than zero [61].
The objective function of Equation (10) that should be minimized, known as C-SVR, is
as follows: ;

min{ 31wl +C x Y- lyi — fx)|} (10)
i=1

SVRs are extensively used in short-term electricity price forecasting applications
because of their many advantages, the most important of which are encapsulated in their
robustness to outliers, their ease of implementation, which reduces their computational
complexity and their ability to use a symmetrical loss function, which equally penalizes
high and low misestimates [62]. Therefore, SVRs should be optimized by selecting the
proper hyperparameters in order to be implemented effectively. The parameters that
should be optimized using the BOA metaheuristic algorithm are the kernel type, the strictly
positive regularization parameter C and the radius € of the epsilon tube-SVR model [63].
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2.3.2. Extreme Gradient Boosting

A gradient boosting framework is used by the decision-tree-based ensemble machine
learning method known as Extreme Gradient Boosting (XGBoost) [64]. Boosting is an
ensemble strategy in which new models are sequentially introduced to rectify errors
committed by previous models until no more improvements are possible [65]. Gradient
boosting is a method where new models are made to forecast the errors or residuals of
earlier models, which are then combined together to provide the final prediction. Because
it employs a gradient descent approach to reduce loss when introducing new models, it
is known as gradient boosting [66]. The mathematical aspect of the XGBoost algorithm,
which explains how boosting is accomplished, and the algorithm’s greedy behavior are
fully discussed in [64].

XGBoost is a novel sparsity-aware parallel tree learning algorithm built on a highly
scalable end-to-end tree boosting framework. This algorithm has piqued the scientific
community’s interest because it focuses on computational speed and model performance.
It is a perfect combination of software and hardware optimization techniques as it produces
superior results with fewer computing resources in the shortest amount of time.

To properly leverage the benefits of the XGBoost method in our work, the model needs
to be fine tuned with the suitable selection of specific hyperparameters. As previously
stated, the BOA method is used to determine the learning rate, i.e., a step size shrinkage
used to prevent overfitting, the y parameter, which is a minimum loss reduction required
to make a further partition on a tree’s leaf node, the maximum depth of a tree and the L1
regularization term on weights defined as « [64].

2.3.3. Multi-Layer Perceptrons

One of the most significant and often used types of neural networks is the Multi-Layer
Perceptrons (MLPs). They are highly interconnected, nonlinear systems which can be used
for both nonlinear classification and nonlinear function approximation applications [67].
Due to their straightforward architecture, which is entirely defined by an input layer, one or
more hidden layers and an output layer, they have found use in a number of power system
engineering challenges, including the forecasting of short-term loads and electricity prices.

MLPs are global approximators that may be trained to implement any specified
nonlinear input-output mapping given a set of features (X) and a target (Y). Each neuron
in the hidden layer adjusts the information from the preceding layer using a weighted
linear summation followed by a non-linear activation function (G). The values from the
last hidden layer are sent to the output layer, where they are converted into output values.
The value that each neuron takes in the hidden layer is calculated by Equation (11):

hi = G(xowo; + X1w1i + - - + XWm i) (11)

Multi-Layer Perceptron (MLP) continuously updates initial random weights to mini-
mize a loss function, often the Mean Square Error loss function. A backward pass prop-
agates the loss from the output layer to the preceding layers after it has been computed,
giving each weight parameter an update value intended to reduce the loss. The Mean
Square Error loss function is provided by Equation (12), where # denotes the real values
and a||W||? denotes an L,-regularization term that penalizes complex models, where a is a
non-negative hyperparameter that regulates the severity of the penalty:

1 & 2 4 2
Loss = — Y |17 — il P+ 2= ||w 12
0ss 2m1§)”y’ vill +2m|\ I (12)

MLPs demonstrate their interpolation capability in a subsequent testing step by gen-
eralizing even in sparse data space areas. Performance and computational complexity
factors are important when constructing a neural network, especially when using a fixed
architecture [68]. It has been demonstrated mathematically that even a single hidden-layer
MLP may approximate the mapping of any continuous function [69]. In this paper, the
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MLP consists of a hidden layer and it is trained via the backpropagation algorithm. In
order to create an optimized model that will bring high accuracy to the prediction result,
the BOA metaheuristic algorithm is called upon to determine the appropriate values of
the hyperparameters of the MLP. In our work, these hyperparameters are the number of
neurons in the hidden layer of the MLP and the number of iterations (epochs) used by each
data point during the training of the neural network.

2.4. Base Optimizing Algorithm

In mathematics, the study of problems involving the minimization or maximization
of a real function by methodically selecting the values of real or integer variables within a
permitted set is referred to as optimization. Concurrently, there are plenty of optimization
issues in many research areas, particularly engineering. A generic algorithm framework,
based on approximation techniques, is used to address these optimization issues. It mainly
contains metaheuristic algorithms that can locate a workable solution in an acceptable
amount of time. Fred Glover was the first to introduce the word “metaheuristic” to refer
to an algorithmic structure that often applies to a wide range of optimization problems
with only a few adjustments to conform to the particular problem [70]. The main strengths
of metaheuristic techniques are their inability to be restricted to a specific problem, their
ease of extension from basic local search to sophisticated learning techniques and their
capability to explore the search space for a suitable solution while avoiding premature
convergence. Metaheuristics’ principal objectives are exploration and exploitation and a
successful trade-off between the two is essential to an effective search process [71].

The Base Optimization Algorithm (BOA) is a mathematical, population-based meta-
heuristic algorithm proposed by Salem [72]. This approach uses a combination of basic
arithmetic operators along with a displacement parameter (delta) to efficiently guide and
redirect the solutions towards the optimum point. In the first step, an initial population
of solutions is produced at random. The displacement parameter and the number of solu-
tions that constitute the initial population (number of particles) are defined. Then, each
initial solution is evaluated and for each one, a vector with four possible solutions that are
calculated using the Equations (13)—(16) is created, within a predefined range:

Possible Solution;" = Initial Solution; + delta (13)
Possible Solution;” = Initial Solution; — delta (14)
Possible Solution; = Initial Solution; x delta (15)
Possible Solutionf = Initial Solution; + delta (16)

Each potential solution is evaluated according to how efficiently it minimizes (or
maximizes) the predefined objective function. After being assessed, the best of the four
potential solutions is then picked as the new candidate solutions (next solutions). When
the number of executions approaches the predetermined maximum number of iterations
or when another user-defined convergence criterion is satisfied, the algorithm ends. The
algorithmic architecture of the BOA is shown in the flowchart in Figure 1.

In this paper, BOA is used for the fine tuning of three different regression models used
for short-term electricity price forecasting. More specifically, this metaheuristic algorithm
is used to determine the appropriate values of the hyperparameters of an XGBoost model,
an SVM and an MLP neural network that are used for prediction. The step of these models’
fine tuning, through the BOA, is particularly crucial as it aims to establish data driven
models that will significantly enhance the prediction outcome of short-term electricity
price forecasting.
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Initial Solutions  j€————

Use of
equations 11-14

Possible Solutions

Evaluation of
candidate solutions

Next Solutions

Initial Solutions = Next Solutions

Convergence?

Final Solutions

Figure 1. Algorithmic Structure of Base Optimizing Algorithm applied for the optimization of the
proposed regression models.

3. Results

In this paper, the issue of short-term electricity price forecasting is examined using
various optimized regression models in conjunction with the VMD approach or the K-
Means clustering technique. For this reason, both ensembled preprocessing approaches are
thoroughly examined separately by utilizing historical price data from the Greek electricity
market as well as historical weather data consisting of hourly temperature and relative
humidity values for the years 2017-2019. In order to fortuitously evaluate the data driven
models and thoroughly compare the electricity price prediction results, the separation of
the data into training and test sets has a rate of 80% and 20%, respectively. As previously
mentioned, the models used for forecasting are an SVR, an MLP neural network and an
XGBoost approach. The optimization of these regression models lies in the determination
of their appropriate hyperparameters using BOA. The computer system used in this work
for the development of the optimization algorithms and the preprocessing techniques, as
well as for the evaluation of the proposed data-driven models, has an Intel Core i7-4510U
at 2.00 GHz processor and an 8 GB installed memory.

3.1. Short-Term Electricity Price Forecasting Based on an Ensemble IDPSO-VMD Approach

In order to create a robust, data-driven forecasting model, which will display high
accuracy in the electricity price forecasting results, the proposed IDPSO is utilized for the
fine tuning of the VMD algorithm. Therefore, the number of IMFs in which the price signal
is decomposed is not arbitrary, but is calculated from the maximization of Equation (2).
Each resulting IMF is used by a regression model and then the individual results are
combined in order to obtain the required price. The flowchart in Figure 2 illustrates in
detail and clarity the proposed approach.
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Min-Max Scaling
Data » Scaled Data ——> IDPSO E—— VMD

Base Optimizing Algorithm

~
. -1 <-

Aggregated Results for | Composition
% (

Electricity Price Optimized Regression Model
Forecasting . for Electricity Price Forecasting

-

Figure 2. Flowchart of the proposed STEPF approach in conjunction with the ensemble IDPSO-
VMD algorithm.

In order to be able to deal with the EPF issue with accuracy and limited computational
cost, the number of IMFs should be within a feasible range of values which is chosen
arbitrarily. Table 1 gives the results of IDPSO-VMD within a certain range of K and « values,
as well as the values obtained by the remaining parameters of the algorithm. Figure 3
illustrates the decomposition of the scaled signal of the electricity price in the optimal
number of IMFs, as derived from the IDPSO algorithm.

0.5 '| .
0.0
0.3 - W‘\IW/\I‘
0.2 -
0.05 A
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0.05 A
0.00 A MM*W
—0.05 A
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0.025 - ' l I ' | I l l |
0.000 -
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Figure 3. Decomposition of the scaled signal of electricity price as a result of the IDPSO-VMD
approach (Red: Initial signal; Blue: Decomposed IMFs).



Energies 2022, 15, 7929

14 of 24

Then, the optimization based on BOA is examined separately for each regression
model that is proposed. The values from each of the IMFs obtained through the IDPSO-
VMD approach are the input variables for a regression model. The individual results
obtained from each model are evaluated based on two metrics that find extensive use in
forecasting matters, the Mean Absolute Error (MAE) and the Mean Squared Error (MSE).
In this particular approach, MAPE is not a safe comparison criterion as it takes very high
values. This happens because the residuals resulting from the proposed decomposition
method have values close to zero.

Table 1. Optimization results of the enhanced VMD method based on the proposed IDPSO optimiza-
tion technique.

Parameters For IDPSO-VMD Results
Iterations Particles w 1 2 Kinin Kmax ®min &max K 12
200 200 0.5 0.7 0.6 2 8 100 1500 6 1266

First, the case of an SVR is analyzed, due to their widespread use in the literature. It
is emphasized that the hyperparameters that are free to choose in an SVR model are the
type of kernel, the regularization parameter (C) and the epsilon () parameter. An MLP
neural network is considered as the next regression model. The BOA is asked to determine the
appropriate values of the neurons in the hidden layer and the number of epochs for each of the
six neural networks deployed. Finally, this paper examines the effect that the implementation
of an optimized XGBoost model will have on the result of the electricity price forecast. As
previously mentioned, the XGBoost hyperparameters selected by BOA to create an optimized
forecasting model are the learning rate, the maximum depth, the y and a parameters.

In Tables 2—4, the values of the hyperparameters of each SVM, MLP and XGBoost
model, respectively, that utilize the data of the corresponding IMFs, as well as the results
of the metrics for each IMF are aggregated. Figures 4-6 illustrate the aggregated result
of the forecast of electricity price using SVR, MLP and XGBoost models, respectively, in
conjunction with the ensemble IDPSO-VMD algorithm.

Table 2. BOA results for each SVR used in conjunction with the proposed IDPSO-VMD approach for
STEPE.

IMFs Hyperparameters Metrics
Kernel c € MAE MSE

IMF 1 linear 0.01 0.01 0.01167 0.00023
IMF 2 linear 0.01 0.01 0.00702 0.00010
IMF 3 rbf 0.07 0.15 0.00700 0.00010
IMF 4 rbf 0.54 0.65 0.00458 0.00005
IMF 5 linear 0.01 0.01 0.00256 0.00001
IMF 6 linear 0.01 0.01 0.00180 0.00001

Table 3. BOA results for each MLP neural network used in conjunction with the proposed IDPSO-
VMD approach for STEPF.

IMFs Hyperparameters Metrics

Neurons Epochs MAE MSE
IMF 1 200 2000 0.01148 0.00022
IMEF 2 67 724 0.00723 0.00010
IMF 3 86 449 0.00487 0.00005
IMF 4 80 235 0.00387 0.00003
IMF 5 170 318 0.00266 0.00005

IMF 6 200 1584 0.00245 0.00005
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Table 4. BOA results for each XGBoost model used in conjunction with the proposed IDPSO-VMD

approach for STEPE.

IMFs Hyperparameters Metrics
Learning Max
Rate Depth Gamma Alpha MAE MSE
IMF 1 0.1 5 0.1 0.1 0.01144 0.00023
IMF 2 0.2 25 1.0 0.4 0.00750 0.00012
IMF 3 0.1 13 0.4 0.3 0.00489 0.00005
IMF 4 0.8 19 0.5 0.2 0.00450 0.00004
IMF 5 0.3 6 0.4 0.1 0.00256 0.00001
IMF 6 0.3 9 0.2 0.1 0.00178 0.00001
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Figure 4. Graphical comparison of forecasting results based on the proposed IDPSO-VMD-SVR
approach and the actual electricity price values.
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Figure 5. Graphical comparison of forecasting results based on the proposed IDPSO-VMD-MLP
approach and the actual electricity price values.
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Figure 6. Graphical comparison of forecasting results based on the proposed IDPSO-VMD-XGB
approach and the actual electricity price values.

3.2. Short-Term Electricity Price Forecasting Based on an Ensemble K-Means Approach

In this work, the effect that the implementation of the K-Means clustering technique
has on the result of price forecasting is examined. As in the previous approach, the number
of clusters into which the data are divided is explicitly and thoroughly determined in order
to apply the divide-and-conquer approach. Then, for each cluster, a regression model is
used whose hyperparameters are optimized by BOA. Finally, the individual results are
combined to obtain the desired STEPF result. Figure 7 illustrates the flowchart of this
proposed approach.

Min-Max Scaling g
Data > Scaled Data » Elbow Method > guf{jfiﬁsg
— Base Optimizing Algorithm 1
Results N <-
Cluster 1
Aggregatc?d‘ Resqlts for | Composition Results ] e
Electricity Prlce Cluster 2 Optimized Regression Model <
Forecasting : for Electricity Price Forecasting .
Results | <-
- Cluster K )

Figure 7. Flowchart of the proposed STEPF approach in conjunction with the Ensemble K-Means
clustering algorithm.

In the current work, the optimal number of clusters is determined using the Elbow
Method. This approach requires the judgment and evaluation of the user to select the
appropriate number of clusters. Therefore, two different users could choose a different
K for the optimal number of clusters for the implementation of K-Means and therefore
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produce different results in the prediction. In this work, K accepts values between 2 and 8
because it is assumed that for more than 8 clusters, short-term electricity price forecasting
cannot be addressed feasibly. Figure 8 illustrates the SSE for different numbers of clusters
K. By applying the elbow approach, it is determined that 4 is the ideal number of clusters.
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Figure 8. Graphical representation of SSE values for a different number of clusters to decide the
optimal value of K.

Similar to the previous approach, the regression models implemented for the STEPF
issue are an SVR, an MLP neural network and an XGBoost model. The selection of their
hyperparameters is achieved with the BAO metaheuristic technique. Tables 5-7 aggregate
the hyperparameters for the SVR, MLPs and XGBoost models, respectively, used for each
cluster, as well as the results of the metrics that each of them yields to the STEPF issue. In
this approach, the prediction result of each cluster, apart from MAE and MSE, is calculated
and evaluated based on MAPE. Figures 9-11 illustrate the aggregated result of the forecast
of electricity price using SVR, MLP and XGBoost models, respectively, in conjunction with
the Ensemble K-Means clustering technique.

Table 5. BOA results for each SVR used in conjunction with the Ensemble K-Means approach
for STEPFE.

Clusters Hyperparameters Metrics

Kernel C € MAE MSE MAPE (%)
Cluster 1 linear 0.02 0.02 0.01891 0.00077 7.080
Cluster 2 linear 0.02 0.02 0.02314 0.00101 7.730
Cluster 3 linear 0.01 0.01 0.01937 0.00085 6.180
Cluster 4 linear 0.04 0.04 0.03960 0.00267 16.36

Table 6. BOA results for each MLP neural network used in conjunction with the Ensemble K-Means
approach for STEPE.

Clusters Hyperparameters Metrics

Neurons Epochs MAE MSE MAPE (%)
Cluster 1 75 1223 0.01793 0.00069 6.68
Cluster 2 126 1324 0.01991 0.00087 6.87
Cluster 3 33 1680 0.02318 0.00101 7.19

Cluster 4 200 1758 0.02997 0.00201 13.32
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Table 7. BOA results for each XGBoost model used in conjunction with the Ensemble K-Means

approach for STEPE.
Clusters Hyperparameters Metrics
Learning Max MAPE
Rate Depth Gamma Alpha MAE MSE %)
Cluster 1 0.4 10 0.1 0.2 0.01817 0.00071 6.75
Cluster 2 0.1 21 0.1 0.1 0.02226 0.00093 7.45
Cluster 3 0.1 26 0.1 0.1 0.01866 0.00081 6.03
Cluster 4 1.0 25 1.0 0.8 0.03457 0.00246 13.95
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Figure 9. Graphical comparison of forecasting results based on the proposed Ensemble K-Means-SVR

approach and the actual electricity price values.
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Figure 10. Graphical comparison of forecasting results based on the proposed Ensemble K-Means-

MLP approach and the actual electricity price values.
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Figure 11. Graphical comparison of forecasting results based on the proposed Ensemble K-Means-
XGB approach and the actual electricity price values.

This work presents a thorough comparison of the results that both signal decom-
position and clustering techniques can bring to STEPF. Table 8 aggregates the results of
the metrics obtained from the implementation of all three proposed regressor models in
conjunction with the IDPSO-VMD algorithm and from the implementation of the Ensemble
K-Means, respectively. Figure 12 is a comparison of the proposed methods in terms of the

MAPE metric.
7.0
Bl Decomposition
HEl Clustering
6.8

MLP SVM XGB
Methods

Figure 12. Bar chart for visual comparison of MAPE values of each proposed electricity price

forecasting algorithm.
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Table 8. Aggregate results of the metrics for each proposed electricity price forecasting method.

Proposed Method MAE MSE MAPE (%)
IDPSO-VMD-SVR 0.01865 0.00079 6.30
IDPSO-VMD-MLP 0.01860 0.00075 6.27
IDPSO-VMD-XGB 0.01819 0.00077 6.15
Ensemble K-Means-SVR 0.02002 0.00087 6.78
Ensemble K-Means-MLP 0.01991 0.00084 6.67
Ensemble K-Means-XGB 0.01917 0.00081 6.47

4. Discussion

In this paper, two novel and robust approaches for short-term price forecasting using
historical electricity prices are proposed. Although the proposed methods can be applied
to any forecasting approach, in this work their accuracy is examined using data from
the Greek deregulated electricity market. The results based on the metrics which are
summarized in Table 8 and Figure 12 will be discussed in the current section in order to
conduct a comparative analysis between the effect of signal decomposition and the effect
of the clustering technique on STEPE.

First, the proposed technique that produces the smallest error in the forecast is IDPSO-
VMD-XGB with an MAPE value of 6.15%. The proposed IDPSO-VMD-XGB data-driven
model, compared to the rest of the models examined, brings the highest accuracy to the
STEPF issue in the shortest convergence time. Morevoer, it is concluded that in both
approaches the regressor model that produces the most accurate results and therefore the
lowest MAPE value is the XGBoost model. Next come the MLP neural networks that
perform more accurately in predicting the electricity price compared to the SVRs that
are extensively used in the literature. The comparison regarding the accuracy of all the
proposed methods can be conducted safely as all the regressor models used in electricity
price forecasting have been optimized using BOA as a front-end metaheuristic algorithm. In
addition, in the approach where signal decomposition is used as a preprocessing technique,
the regression models used in the prediction bring more accurate results compared to
their peers that are implemented in conjunction with the Ensemble K-Means clustering
technique. This conclusion is also observed from Figure 12 where the red bars are lower
compared to the corresponding blue ones. By observing Figures 4-6 and 9-11, it can be
distinguished that the proposed approaches cannot accurately generalize in the price drops
observed in the Greek electricity market. These price drops are mainly due to exogenous
factors and therefore should be treated differently in the electricity price forecast. Therefore,
as future work, a model specializing in the price drops of the Greek electricity market could
be designed, which in conjunction with the proposed IDPSO-VMD-XGB model will bring
even greater accuracy to the electricity price forecast issue.

5. Conclusions

In this paper, we address the short-term electricity price forecasting issue by de-
veloping and implementing six robust and optimized data-driven forecasting models in
conjunction with the Variational Mode Decomposition or the K-Means approach. In order to
confirm the high accuracy of the proposed approaches, the prediction outcomes, that yield
from their application on the short-term electricity price forecasting issue, are thoroughly
compared in terms of accuracy by calculating the MAE, MSE and MAPE scores. At the
same time, an enhanced IDPSO optimization algorithm is developed for the selection of the
optimal values of the VMD’s hyperparameters. The optimization of the regressor models
used for short-term electricity price forecasting, using the data of the deregulated Greek
electricity market, is achieved via the BOA metaheuristic algorithm. This paper fills the gap
that exists in the literature for the comparison between signal decomposition and clustering
as preprocessing approaches used by hybrid models of electricity price prediction. Based
on a thorough comparison of the forecasting results, it is clear that signal decomposition
of the electricity price produces more accurate results than data clustering methods and
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should thus be preferred as a preprocessing approach when developing hybrid forecasting
models that are implemented in the STEPF, while the IDPSO-VMD-XGB model, with an
MAPE value of 6.15%, is the proposed method that results in the lowest prediction error.
As future work, the creation of appropriate forecasting models will be investigated in order
to generalize effectively in circumstances when price decreases (or spikes) arise in the
electricity price curve, resulting in even more accurate predicting results.
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