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Abstract: Cytoskeleton filaments have the extraordinary ability to change conformations dynam-
ically in response to alterations of the number density of actins/tubulin, the number density and
type of binding agents, and the electrolyte concentration. This property is crucial for eukaryotic
cells to achieve specific biological functions in different cellular compartments. Conventional ap-
proaches to biopolymers’ solution break down for cytoskeleton filaments because they entail several
approximations to treat their polyelectrolyte and mechanical properties. In this article, we intro-
duce a novel density functional theory for polydisperse, semiflexible cytoskeleton filaments. The
approach accounts for the equilibrium polymerization kinetics, length and orientation filament distri-
butions, as well as the electrostatic interaction between filaments and the electrolyte. This is essential
for cytoskeleton polymerization in different cell compartments generating filaments of different
lengths, sometimes long enough to become semiflexible. We characterized the thermodynamics
properties of actin filaments in electrolyte aqueous solutions. We calculated the free energy, pressure,
chemical potential, and second virial coefficient for each filament conformation. We also calculated
the phase diagram of actin filaments’ solution and compared with the corresponding results in
in vitro experiments.

Keywords: cytoskeleton filaments; second virial coefficient; phase behavior; polyelectrolytes

1. Introduction

Eukaryotic cells can dynamically regulate the biological environment and the polyelec-
trolyte and mechanical properties of cytoskeleton filaments to achieve specific biological
functions as diverse as directional growth, shape, division, plasticity, and migration [1]. For
instance, an increase in the number density of G-actin/tubulin and electrolyte concentration
can lead to conformation transformations from the orientation-disordered (isotropic) to
orientation-ordered (nematic) phase, as well as increasing the filaments’ average length.
Additionally, a growth in the number density of binding agents, such as divalent ions or
linker proteins, can yield bundling or network conformations [2]. These self-organization
behaviors, yet poorly understood, have been observed experimentally. Currently, valuable
information on the distribution and type of cytoskeleton conformations in cells is obtained
from fluorescence and electron microscopy images [3–6], whereas confocal microscopy
captures their dynamic conformation changes [7–9]. However, this information usually
provides an incomplete molecular understanding of the interplay between the polydisper-
sity, semiflexibility, polyelectrolyte, and mechanical properties of cytoskeleton filaments
on their conformational dynamics, self-organization, and stability. This understanding is
crucial to elucidate the biophysical principles underlying fundamental biological functions
of eukaryotic cells in normal and pathological conditions, which may vary depending on
the cell type and location, gender, age, and inheritance conditions.

A substantial amount of theoretical research has been performed in the field to study
the isotropic to nematic phase transformation in macromolecules’ solution. The conven-
tional understanding of the properties of these polyelectrolytes is based on monodisperse
(e.g., same filament lengths), mean-field theories, and rod-like cylindrical filament models
(e.g., with contour lengths shorter than their persistence length). These methods break
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down for cytoskeleton filaments because they entail several approximations to treat the
inter-filament interactions, electrolytes, and filament structures. Onsager [10] showed that
the expansion of the free energy functional up to the second virial coefficient provides
accurate results for monodisperse long charged rods in the coexisting isotropic and nematic
phases. In the nematic phase, the free energy is expressed as a functional of angular distri-
bution functions of rods, which minimizes the free energy functional. Onsager introduced
a trial function for the angular distribution functions depending on a single parameter
to increase the efficiency of these calculations. Subsequently, a variety of modifications
and extensions of Onsager’s theory were proposed [11,12]. For instance, Odijk introduced
a Gaussian-type trial function for the angular distribution. While less accurate than On-
sager’s approximation, it overcame some limitations on the numerical calculations. It
provides explicit, analytic expressions for the thermodynamic properties that indeed facili-
tated the phase diagram transition and coexistence analysis [13]. A different approach was
proposed to estimate the angular distribution functions for monodisperse, long cytoskele-
ton filament rods [2]. They were not obtained by minimizing the free energy, but postulating
a particular form in each phase with a single variational parameter characterizing the width
of the angular distributions.

Additionally, corrections were made to the orientational part of Onsager’s free energy
to consider monodisperse macromolecules having contour lengths larger than or the same
order as their persistence length [14,15]. Furthermore, later approximations were developed
to patch the orientational free energies for rigid and semiflexible macromolecules [13,16].
A different approach was introduced by Sluckin [17], who generalized Onsager’s theory to
describe polydisperse rigid rods having the same Gaussian form for the size distribution
function in both isotropic and nematic phases. Moreover, Odijk’s ansatz was generalized
to the polydisperse case, where the nematic phase onset was formed by rods with lengths
larger than the average length of the size distribution in the isotropic phase. Different mod-
ifications of the method were proposed to address this shortcoming [18–21]. In particular,
the input size asymmetric distribution functions in the form of Schultz’s and log-normal
distributions were considered.

On the other hand, a particular approach was introduced for amphiphilic micellar
suspensions [22]. The size distribution function of micellar macromolecules was not
considered as an input value, but rather the standard chemical potential that governs the
size–angular distribution functions [23]. It was found that the micella average lengths in
the coexisting isotropic and nematic phases are different, with larger micella sizes in the
nematic phase.

The size distribution function of uncharged polydisperse actin filament rods in the
bundling phase was calculated from a free energy that accounts for hard-core filament
repulsion and short-range attractions [24]. It was shown that short-range attractions, arising
either from linker proteins, depletion-mediated attractions, or polyvalent ions, enhance the
tendency of filaments to align parallel to each other, yielding an increase in the average
filament length and a decrease in the relative width of the distribution of filament lengths.

These approaches for phase diagram studies consider specific macromolecular prop-
erties, neglecting others. For instance, some approaches focused on polyelectrolyte and
polydispersity properties only, whereas other approximations accounted for semiflexibil-
ity and polyelectrolyte properties, and so on. However, for cytoskeleton filaments, it is
imperative to consider the balance and competition between contributions coming from
their polydispersity, semiflexibility, polyelectrolyte, and mechanical properties to the total
free energy. When accounting for all of these features, one can formulate a more accurate
and realistic description of the conformational dynamics, self-organization, and stability
properties of cytoskeleton filaments in different cell compartments.

As a first step to face this challenge, we introduce in this article a novel density
functional theory for polydisperse, semiflexible cytoskeleton filaments. The approach
accounts for the equilibrium polymerization kinetics, length and orientation filament distri-
butions, as well as the electrostatic interaction between filaments and the electrolyte. As a
unique feature, the formulation is able to determine critical parameter values governing
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the isotropic–nematic phase diagram behavior. This approach is essential to study the self-
organization behavior of actin filaments taking place in different cell compartments, where
the G-actin polymerization and electrolyte conditions may generate filaments with different
conformations and lengths long enough to become semiflexible. Specifically, we consider
experimental conditions on the actin filaments’ solution where the isotropic–nematic phase
diagram transition is due to changes in the G-actin concentration. Additionally, the fila-
ment average size for different G-actin concentrations was fixed by changing the gelsolin
proteins’ concentration [25,26]. From these special equilibrium conditions, we obtained
the size distribution function, whereas we used Sluckin’s trial function to calculate the
angular distribution function in the nematic phase. Additionally, we introduced an ansatz
for the standard chemical potential excess of actin filaments that results in the asymmetric
Schulz distribution function for the actin filaments size. This distribution function agrees
with those used in light-scattering experiments on actin filaments [25]. In addition, we
generalized the formula for the orientational free energy introduced in [13] to the case of
a polydisperse system to account for the filament semiflexibility. Finally, we calculated
the isotropic–nematic phase diagrams for a variety of Schulz size distributions, persis-
tence lengths, and concentrations of monovalent ions in the electrolyte solution. We also
compared these results with available experimental data [26].

The paper is organized as follows. The theory is described in Section 2; the numerical
results are given in Section 3; the discussion is provided in Section 4; the details of the
calculations are presented in Appendices A–E.

2. Materials and Methods

We considered a solution of polydisperse actin filaments, each of them having a length
L = lmν, where lm is the length of an actin monomer unit and ν the number of monomer
units representing the filament size. Each filament has its own direction in 3D space, which
is characterized by a body-angle ω accounting for the chosen nematic director. In spherical
coordinates, we have dω = sin θdθdϕ with the z direction taken along the nematic axis.

The size–angular density distribution function of actin filaments ρν(ω) is given by the
following expression:

ρν(ω) = ρnνην(ω), (1)

where ρ = N/V is the total density of the filaments, N is the total filament number of any
size, and V represents the volume of the system. Basically, ρν(ω) represents the number of
filaments of size ν oriented along the direction ω. Additionally, nν is the size distribution
function averaged over all angles, and ην(ω) represents the angular distribution functions,
which also depend on the filament size ν. The normalization conditions for the size- and
angular-distribution functions nν and ην(ω) are

∑
ν≥1

nν = 1, (2)

and
ˆ

ην(ω)dω = 1, (3)

respectively. The summation in Equation (2) is performed over all filament sizes ν, whereas
the integration in Equation (3) is carried out over the whole body angle. The size distribu-
tion function nν is characterized by the filament average size < ν >, namely the average
degree of polymerization, as well as the normalized standard deviation σ, such as

< ν >= ∑
ν≥1

νnν, (4)

and
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σ2 =
< ν2 > − < ν >2

< ν >2 , (5)

where

< ν2 >= ∑
ν≥1

ν2nν. (6)

2.1. The Free Energy Density Functional

We define the dimensionless Helmholtz free energy of cytoskeleton filaments f as follows:

f =
βF
N

= fig + fint + ∑
ν≥1

ˆ
βµ

(0)
ν ρν(ω)dω, (7)

where F is the free energy, β = 1/kBT the inverse thermal energy, kB the Boltzmann con-
stant, T the temperature, fig the dimensionless ideal gas free energy, fint the dimensionless

energy due to the inter-filament interactions, and µ
(0)
ν the standard chemical potential of

ν-sized filaments.
The expressions for fig and fint as functionals of the density distributions nν and ην(ω)

are provided below.

2.1.1. Ideal Gas Free Energy fig

The ideal gas free energy per volume of the system V can be written in the follow-
ing form:

βFig

V
= ∑

ν≥1

ˆ
ρν(ω)

(
ln[4πρν(ω)Λ3

ν]− 1
)

dω, (8)

where Λν = h√
2πmνkBT is the thermal de Broglie wavelength of ν-sized filaments, h is the

Planck constant, and mν = νm1 stands for the ν-sized filament mass. Substitution of
Equation (1) into Equation (8) yields

fig =
(

ln ρΛ3
1 − 1

)
∑
ν≥1

nν

ˆ
ην(ω)dω + ∑

ν≥1
nν ln nν

ˆ
ην(ω)dω (9)

− ∑
ν≥1

nνs(or)
ν +

ˆ
ρν(ω) ln(ν−

1
3 )dω,

where fig = βFig/N is the ideal gas free energy per filament (N = ρV), Λ1 = h√
2πm1kBT the

monomer thermal de Broglie wavelength, and s(or)
ν the filament orientational entropy:

s(or)
ν = −

ˆ
ην(ω) ln[4πην(ω)]dω. (10)

2.1.2. Interaction Free Energy fint

We write the interaction free energy per volume V in a mean-field fashion, namely

βFint
V

=
1
2 ∑

ν1≥1
∑

ν2≥1

ˆ
ρν1(ω1)ρν2(ω2)Bν1ν2(ω1, ω2)dω1dω2. (11)

where Bν1ν2(ω1, ω2) represents the cluster integral

Bν1ν2(ω1, ω2) =

ˆ
d~r12[1− e−βw12(r12,ω1,ω2)], (12)
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In Equation (12), w12 is the interaction potential between two filaments and r12 the
closest distance between them. The expression (11) is a good approximation for the
interaction free energy of monodisperse rigid charged rods. In fact, it becomes exact
in the limit of infinitely long rods, i.e., for L/D → ∞ [10].

Substitution of Equation (1) into Equation (11) yields the following expression for Fint
as a functional of the densities nν and ην(ω):

βFint
V

=
ρ2

2 ∑
ν1≥1

∑
ν2≥1

nν1 nν2

ˆ
ην1(ω1)ην2(ω2)Bν1ν2(ω1, ω2)dω1dω2. (13)

To calculate the cluster integral Bν1ν2(ω1, ω2) in obvious form, we model the interaction
potential between two charged rod filaments w12(r12, ω1, ω2) as follows:

βw12(r12, ω1, ω2) =


+∞, r12 < D

Γ(r12, γ12), D ≤ r12

(14)

where D is the bare rod diameter and γ12 the angle between them. The function Γ(r12, γ12)
represents the following repulsive electrostatic inter-filament interaction potential: [27]

Γ(r12, γ12) =
Γ⊥

sin γ12
e−kD(r12−D), (15)

where

Γ⊥ =
2πλ2β

εkD

e−kD D

[ kD D
2 K1(

kD D
2 )]2

. (16)

In Equation (16), kD = (4πβe2/ε ∑2
i=1 ξiρi)

1
2 stands for the inverse Debye length, K1

the modified Bessel function of second kind of first order, λ the filament linear charge
density, ε the water solvent dielectric permittivity, e the electron charge, and ξi and ρi the ion
valency and concentration of species i in solution, respectively. We note that Equation (15)
comes from the solution of the linearized Poisson–Boltzmann equation, which is accurate for
monovalent ions, namely |ξi| = 1. Substitution of Equations (14) and (15) into Equation (12)
results in the following expression for the cluster integral Bν1,ν2(ω1, ω2)

Bν1,ν2(ω1, ω2) = 2De f f l2
mν1ν2B∗(sin γ12), (17)

where De f f and B∗(sin γ12) are the effective diameter and the dimensionless function given
by Equations (A12) and (A14), respectively. The details of these calculations are presented
in Appendix A.

Furthermore, substitution of Equation (17) into Equation (13) provides the following
form for the interaction free energy:

fint = ρB2, (18)

where
B2 ≡

π

4
De f f l2

m ∑
ν1≥1

∑
ν2≥1

nν1 nν2 ν1ν2hν1ν2

is the extension of the second virial coefficient for polydisperse filaments, and the function
hν1ν2 is given by

hν1ν2 =
4
π

ˆ
ην1(ω1)ην2(ω2)B∗(sin γ12)dω1dω2. (19)

We note that the parameter hν1ν2 accounts for the orientational averaged contributions
coming from the excluded volume and charge density interactions between filaments of
size ν1 and ν2, as well as the influence of the ionic strength on the second virial coefficient.
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It is worth mentioning that the solution of the linearized Poisson–Boltzmann equation
in Equations (14)–(16) is valid for infinitely long filaments. Indeed, some correction terms
should be considered for short filaments to account for the end effects. However, we
considered filaments of average size units of monomers 450÷ 5000, which correspond to
filament lengths in the range of 1.2÷ 13.5µm only. Thus, the linearized Poisson–Boltzmann
equation solution is justified in our study.

2.2. The Distribution Functions

We introduce the Lagrange functional:

f ′ = f + A(∑
ν≥1

nν − 1) + ∑
ν≥1

nνBν(

ˆ
ην(ω)dω− 1). (20)

to find the distribution functions, where f represents the free energy functional given
by Equation (7), whereas A and Bν are the Lagrange multipliers accounting for the nor-
malization conditions given by Equations (2) and (3), respectively. For a fixed angular
distribution function ην(ω), the equilibrium size distribution function nν minimizes the
Lagrange functional. Thus, we have

∂ f ′

∂nν
= 0. (21)

Using the chain rule, the l.h.s. of Equation (21) can be rewritten in the following form:

∂ f ′

∂nν
= ∑

λ≥1
µ′λ

(
∂nλ

∂nν

)
, (22)

where

µ′λ =
∂ f ′

∂nλ
. (23)

An additional relationship for the distribution functions {nν} comes from Equation (4).
Differentiation on both sides of Equation (4) yields

dn1 + ∑
ν≥2

νdnν = 0. (24)

As a result, Equation (22) can be written as follows:

∂ f ′

∂nν
= µ′1

∂n1

∂nν
+ ∑

λ≥2
µ′λ

(
∂nλ

∂nν

)
. (25)

Substitution of Equation (24) into the r.h.s. of Equation (25) leads to

∂ f ′

∂nν
= −µ′1ν + µ′ν. (26)

Consequently, Equations (21) and (26) yield

µ′ν = µ′1ν. (27)

It is worth noting that ν-sized filaments can be considered as separated “pseudo-
phases”. Additionally, the “pseudo-phases” with all possible sizes ν are in equilibrium
with each other if the equilibrium condition given by Equation (27) is executed. In fact,
the value for µ′ν in Equation (27) does not represent the real chemical potential of ν-sized
filaments since it comes from the Lagrange functional f ′ in Equation (23), rather than the
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Helmholtz free energy f . To calculate µ′ν, we substitute Equation (20) into Equation (23)
and use Equations (3), (7), (9), and (18). We obtain

βµ′ν = ln nν − ln C +
π

2
Dl2

mρ ν ∑
ν′≥1

nν′ν
′hνν′ + βµ

(0)
ν , (28)

where C is the following constant:

− ln C = ln ρΛ3
1 − s(or)

ν + A. (29)

We substitute the expression (28) into the condition of equilibrium (27) to obtain the
following equation for the length distribution function nν:

ln
nν

C
= ν ln

n1

C
− π

2
Dl2

mρ ν ∑
ν′≥1

nν′ν
′(hνν′ − h1ν′)− β∆µ

(0)
ν , (30)

where ∆µ
(0)
ν denotes the standard chemical potential difference between ν actin units

aggregated in a ν-mer filament µ
(0)
ν and the one in the single dispersed phase νµ

(0)
1 , i.e.,

∆µ
(0)
ν = µ

(0)
ν − νµ

(0)
1 . (31)

Finally, we substitute the parameter y ≡ − ln
( n1

C
)

into Equation (30) to obtain the
following master equation for nν:

nν = Ce−νye−β∆µ
(0)
ν e−

π
2 Dl2

mρ ν ∑ν′≥1 nν′ ν
′(hνν′−h1ν′). (32)

Similarly, for a fixed distribution function nν, the angular distribution function ην(ω)
is obtained by using the variational principle:

∂ f ′

∂ην(ω)
= 0. (33)

Substitution of Equation (20) into Equation (33) and the use of Equations (2), (4), (7),
(9), (10), (18), and (19) yield

ην(ω1) = Eνe−2Dl2
m ρν ∑ν′≥1 nν′ ν

′ ´ ην′ (ω2) sin γ12dω2 , (34)

where Eν is a constant that satisfies the following relationship:

− ln Eν = ln ρΛ3 + ln nν + βµ
(0)
ν + Bν. (35)

To obtain the expression for Eν, we integrate both sides of Equation (34) with respect
to ω1 and use the normalization conditions (2) and (3). Finally, we replace the expression
obtained for Eν into Equation (34) to obtain the following master equation for ην(ω):

ην(ω1) =
e−2De f f l2

m ρν ∑ν′≥1 nν′ ν
′ ´ ην′ (ω2) sin γ12dω2

´
dω1e−2De f f l2

m ρν ∑ν′≥1 nν′ ν
′ ´ ην′ (ω2) sin γ12dω2

. (36)

Furthermore, the angular distribution function ην(ω) depends only on the polar angle
θ due to the symmetry of the system. Thus, we have ην(ω) = ην(θ).

To find the size and angular distribution functions nν and ην(θ), we solve the ex-
pressions (32) and (36) using the successive iterations method. To this end, we chose
the monodisperse size distribution as the initial guess for the first iteration step, i.e.,
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nν = δ(ν− < ν >), where δ is a Dirac delta function. Substitution of this expression for nν

into Equation (36) generates the following equation to numerically calculate η(θ) [28]:

η(θ1) =
e−2De f f l2

m ρ<ν>2´ η(θ2) sin γ12dω2

´
dω1e−2De f f l2

m ρ<ν>2
´

η(θ2) sin γ12dω2
. (37)

More efficient, but less accurate values for the monodisperse angular distribution
function η(θ) were proposed using some functional forms. For instance, Onsager [10]
introduced the trial function η(θ) = α cosh(α cos θ)/(4π sinh α). Another commonly used,
although slightly less-accurate ansatz is the so-called Odijk’s trial function [13]:

η(θ) =
α

4π
e−

α
2 θ2

. (38)

We note that these trial functions depend on a single unknown parameter α, which is
chosen to minimize the free energy functional f .

In the second iterative step, we substitute the angular distribution function η(θ)
obtained in the first step into Equations (19) and (32) to calculate nν. Since η(θ) does not
depend on ν, it follows from Equation (19) that hνν′ − h1ν′ = 0. Additionally, we use in
Equation (32) the ansatz:

β∆µ
(0)
ν = −z ln ν (39)

to obtain a size distribution function nν in the asymmetric Schulz–Zimm form [29]:

nν =
yz+1

Γ(z + 1)
e−νyνz, (40)

where z represents the conventional polydispersity parameter, whereas C = yz+1

Γ(z+1) is the
constant coming from the normalization condition given by Equation (2). In Appendix B,
we show that the polydispersity parameter z is related to the normalized standard deviation
of the size distribution function σ = 1√

z+1
, whereas the parameter y depends on the values

< ν > and z only, i.e., y = (z + 1)/ < ν >.
Finally, substitution of Equation (40) into Equation (36) gives an equation to calculate

the function ην(θ). Obtaining the numerical solution of this equation indeed requires a high
computational cost because it depends on two variables ν and θ. Alternatively, we gener-
alize the monodisperse Odijk’s trial function given by Equation (38) to the polydisperse
case. Specifically, we introduce the following parametrization for the polydisperse angular
distribution function [17]:

ην(θ) =
αν

4π
e−

αν
2 θ2

, (41)

where the polydisperse Gaussian parameter αν depends on the filament size ν. For the weak
polydispersity of the system, the ratio ∆ν

<ν> ≡
ν−<ν>
<ν> can be considered a small parameter.

As a result, the polydisperse Gaussian parameter αν can be calculated using the following
linear expansion around the monodisperse solution:

αν = α (1 + γ
∆ν

< ν >
), (42)

where the two unknown parameters α and γ are chosen to minimize the free energy
functional f . In the monodisperse limit, we have that ∆ν→ 0 and αν → α.

2.3. Free Energy in the Nematic Phase

We substitute the normalization conditions (2) and (3) into Equations 7 and (9) to write
the Helmholtz free energy per filament as follows:
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f = ln ρΛ3
1 − 1 + for + fint + fmix + ∑

ν≥1
βµ

(0)
ν nν, (43)

where µ
(0)
ν → µ

(0)
ν + ν1/3 and the terms for, fint, fmix represent the orientational, interaction,

and mixing free energies, respectively. The expressions for these energies are provided below.

2.3.1. Orientational Free Energy

The orientational free energy in Equation (43) is given by the expression:

for = ∑
ν≥1

nν

ˆ
ην(θ) ln[4πην(θ)]dω. (44)

Substitution of the expressions for ην(θ) (41) and (42) into Equation (44) yields

for = ln α− 1− γ2

2
σ2. (45)

Equation (45) represents the generalization of the orientational free energy expression
obtained by Odijk for monodisperse rods, i.e., for filaments with contour length < L >� P,
where P is the filament persistence length. Indeed, in the monodisperse limit σ→ 0, the
correct limit for → ln α− 1 is obtained for any value of the parameter γ [13]. For flexible
filaments, where < L >� P, the orientational free energy can be written in the following
form [13]:

for = ∑
ν≥1

nν
L

8P

ˆ
1

ην(θ)

(
∂ην(θ)

∂θ

)2

dω. (46)

Substitution of the expressions for ην(θ) (41) and (42) into Equation (46) leads to

for =
Npα

4
, (47)

where
Np ≡

< L >

P
(1 + γσ2). (48)

and < L >= lm < ν >. Certainly, in the monodisperse limit, σ → 0 the correct limit
for → L

P
α
4 is obtained [11].

To calculate the orientational free energy for any persistence length, we combine these
two asymptotic cases for for using the following interpolating formula:

for = ln α− γ2

2
σ2 + Np

(α− 1)
6

+
5
12

ln[cosh(Np
(α− 1)

5
)]− 19

12
ln 2 (49)

The details on these calculations are provided in Appendix C.

2.3.2. Interaction Free Energy

We substitute Equations (40)–(42) into Equations (18) and (19) to obtain

fint = ρ BN
2 , (50)

where

BN
2 ≡

π

4
De f f l2

m < ν >2 hz (51)

represents the second virial coefficient for polydisperse filaments in the nematic phase and
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hz = 32
ˆ π/2

0
sin θ1dθ1

ˆ π/2

0
sin θ2dθ2gz(θ1)gz(θ2)K(θ1, θ2), (52)

gz(θ) =
α

4π
e−

α
2 (1−γ)θ2

 γ
(z+2)
(z+1)

(1 + γαθ2

2(z+1) )
z+3

+
(1− γ)

(1 + γαθ2

2(z+1) )
z+2

, (53)

and

K(θ1, θ2) =

ˆ 2π

0
B∗(sin γ12)dϕ12. (54)

The details on these calculations are presented in Appendix D.
Equation (50) represents the generalization of the interaction free energy expression

for polydisperse actin filaments. In fact, in the monodisperse limit z→ ∞, the expression
for gz(θ) goes to

gz(θ)→ η(θ) (z→ ∞), (55)

which is the monodisperse distribution function given by Equation (38). Similarly, Equa-
tions (50) and (52)–(54) recover the correct expression for the filaments’ interaction free
energy fint in the monodisperse case:

fint = ρ
π

4
De f f L2h, (56)

with

h = 32
ˆ π/2

0
sin θ1dθ1

ˆ π/2

0
sin θ2dθ2η(θ1)η(θ2)K(θ1, θ2). (57)

2.3.3. Mixing Free Energy

The mixing free energy in Equation (43) can be written as:

fmix = ∑
ν≥1

nν ln nν. (58)

This expression is not well defined in the monodisperse limit (z → ∞) since the
density distribution nν → δ(ν− < ν >) and the mixing free energy diverges, rather than
going to zero. To overcome this shortcoming, we extract the density ρ-independent term
fmix(z→ ∞) in Equation (A45) from the r.h.s. of Equation (58). The resulting renormalized
mixing free energy reads

fmix = ∑
ν≥1

nν ln nν + ln[
√

2πe < ν > σ]. (59)

This new expression (59) recovers the correct value in the monodisperse limit, i.e.,
fmix → 0 for σ→ 0 (z→ ∞). More details on these calculations are provided in Appendix E.

2.4. Free Energy in the Isotropic Phase

In the isotropic phase, there is no preferential direction for the filament orientations;
thus, the orientational distribution function ην(θ) = 1/(4π) for any filament length, and
the orientational free energy becomes

for = 0. (60)
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The expression for the interaction free energy is obtained from Equations (4), (18), and (19).
We have

fint = ρBI
2, (61)

where BI
2 is the second virial coefficient for polydisperse filaments in the isotropic phase

BI
2 =

π

4
De f f l2

m < ν >2 h, (62)

with

h =
2
π

ˆ π

0
B∗(γ12) sin γ12dγ12. (63)

Finally, substitution of Equation (A14) into Equation (63) generates the following
expression for h in the isotropic phase

h = 1 +
1

kDDe f f

2
π

ˆ π

0
dγ12 sin2 γ12 E1(

Γ⊥
sin γ12

), (64)

where E1(x) is the elliptic integral given by Equation (A9).

2.5. Isotropic–Nematic Phase at Equilibrium

The isotropic–nematic phase equilibrium in a system of polydisperse macromolecules
occurs when the chemical potentials of each species µν and the osmotic pressures Π are
equal to each other. Specifically, we have [17,19,20]

µ
(I)
ν = µ

(N)
ν (ν ≥ 1), (65)

Π(I) = Π(N). (66)

In the case of the self-aggregation of actin filaments, there is an additional condition
for the chemical equilibrium in each thermodynamic phase, namely

µν = νµ1, (67)

where µν = ∂F
∂Nν

is the chemical potential of ν-sized filaments and µ1 the chemical potential
of actin monomers. The condition (67) is obtained using a method similar to the one
leading to Equation (27). Substitution of Equation (67) into Equation (65) provides a single
equilibrium condition for the chemical potentials, i.e.,

µ
(I)
1 = µ

(N)
1 . (68)

To calculate the chemical potential of actin monomers µ1, we write the Gibbs free
energy of mixture of actin filaments of all sizes in the following form:

G
N

= ∑
ν≥1

µνnν. (69)

Substitution of Equations (4) and (67) and the use of condition G
N = F

N + Π
ρ in Equa-

tion (69) yield

µ1 =
1

< ν >

(
F
N

+
Π
ρ

)
. (70)

In Equations (66) and (70), we use the formula Π = ρ2 ∂
∂ρ (

F
N ) for practical calculations

of the osmotic pressure.
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Using Equation (4), we can also write the average filaments’ length in Equation (70)
as follows:

< ν >=
ρA
ρ

, (71)

where ρA = ∑ν≥1 νρnν is the G-actin number density. As a result, the average filaments
length represents the ratio of G-actin and F-actin concentrations. Additionally, G-actin is
usually polymerized in in vitro experiments in the presence of gelsolin, an actin-binding pro-
tein known to cap and sever actin filaments [25,26,30]. It was noticed in these experiments
that the concentration of F-actin in the solution becomes almost equal to the concentration
of gelsolin, i.e., ρ ≈ ρG. As a result, the average length of filaments (average degree of
polymerization) < ν > in these experiments was regulated by the gelsolin concentration.
In [26], the variation of the concentration of G-actin ρA was accompanied by a change in
the concentration of gelsolin ρG to keep the average length of filaments < ν > fixed during
the isotropic–nematic phase transition. Using this experimental condition in our theory, the
mixing free energy fmix and the term with µ

(0)
ν in the r.h.s. of the expression for free energy

(43) are also fixed values and, thus, do not contribute to the phase coexistence properties.
Thus, using Equations (43), (50), and (61), the dimensionless free energy f in the

nematic and isotropic phases can be written as follows:

f (c) = ln c− 1 + for + c H, (72)

where c represents the dimensionless filaments’ density:

c = ρ
π

4
De f f l2

m < ν >2 . (73)

The expressions to calculate for are given by Equations (49) and (60) for the nematic
and isotropic phases, respectively, whereas the corresponding expressions for H are given
by Equations (52) and (64).

In the nematic phase, the free energy f (72) is a function of the parameters of the angu-
lar distribution function α, γ, and the dimensionless filaments’ density c; thus, f ≡ f (c; α, γ).
By minimizing f , we obtain the equilibrium parameter functions αeq(c) and γeq(c) for each
value of c. Thus, the expression for the nematic free energy at equilibrium becomes
feq(c) = f (c, αeq(c), γeq(c)). The minimization is carried out using the downhill simplex
method in multiple dimensions [31]. Finally, the coexisting dimensionless densities cI and
cN are obtained from the coexistence conditions (66) and (68), whereas the corresponding
actin densities ρI

A and ρN
A are obtained from Equations (71) and (73).

In principle, the chemical potential of the non-depleted unimers (G-actin) µ1 and the
depleted actin concentration ρA are related by Equation (70). We calculate the Helmholtz
free energy in Equation (72) as a function of ρA in the isotropic or nematic phase. Subse-
quently, we substitute the result into the r.h.s. of Equation (70) to obtain the relationship
µ1 = µ1(ρA) or, vice versa, ρA = ρA(µ1). In the last case, the chemical potential of unimers
µ1 can be regarded as an input parameter, which is set by the reservoir condition.

3. Results

In this section, we apply the approach to investigate the isotropic–nematic phase
diagram for polydisperse actin filaments in monovalent salt solutions. We considered
typical experimental values for key parameters, such as the filament persistence length,
the average filament size, the polydispersity parameter, and the electrolyte concentration
to elucidate their impact on the orientational and size distributions. We also calculated
the thermodynamic properties of the system, including the free energy, pressure, chemical
potential and, consequently, the range of G-actin concentrations and filaments’ average
lengths leading to conformation transformations from the orientation-disordered (isotropic)
to orientation-ordered (nematic) phase. In the numerical calculations, we chose the values
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for the filaments’ diameter D = 80 Å, the monomer units’ length lm = 27 Å, the actin molar
weight mA = 42 kDa, and the linear filament charge density λ = −4 e

nm .
We calculated the isotropic and nematic coexisting dimensionless densities for rigid

monodisperse rods with length L = 1µm for the electrolyte’s concentration ce = 0.1 M to
compare our results with those obtained by Borukhov et al. [2]. Our result was cI = 3.82
and cN = 5.10, whereas the corresponding one in [2] was cI = 4.25 and cN = 9.98 (see
Figure 3 in [2]). The source of such discrepancy is associated with the cone approximation
used in [2] for the angular distribution function.

3.1. Distribution Functions

In this section, we present the analysis on the distribution functions nν and ην(θ) in the
I–N phase coexistence for polydisperse, semiflexible filaments. We used a persistence length
P = 18µm and an electrolyte concentration ce = 0.1 M. In Figure 1, we plot the Schulz
length distribution function nν for different average sizes < ν > in a weakly polydisperse
system with normalized standard deviation σ = 0.5 (z = 3).

Figure 1. Schulz length distribution function nν as a function of the filament size ν for different
average sizes < ν > from Equation (40). The normalized standard deviation is σ = 0.5 (z = 3).

Our results revealed polydisperse distribution functions with lower peaks and broad-
ened distributions for larger values of the average size < ν >, while the asymmetric
behavior characterizes the different increasing rate lengths of barbed and pointed ends.
This asymmetry property plays a crucial role in the phase diagram behavior. Since the nor-
malization integral

´ ∞
1 nνdν = 1 can be split into the sum of two integrals

´ <ν>
1 nνdν = 0.57

and
´ ∞
<ν> nνdν = 0.43 (z = 3), each of them is independent of the value < ν >, and the

amount of the filaments with the sizes ν shorter than < ν > is larger than the one with the
sizes longer than < ν >. In contrast, monodisperse, symmetric distribution functions are
represented by delta function distributions nν → δ(ν− < ν >).

In Figures 2 and 3, we depicted the I–N phase coexistence values of the parameters
α and γ appearing in the angular distribution function for different values of the average
length < ν >.
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Figure 2. The parameter α as a function of the average size < ν > at the I–N phase coexistence. The
normalized standard deviations are σ = 0 (dashed line) and 0.5 (solid line).

Figure 3. The parameter γ as a function of the average size < ν > at the I–N phase equilibrium. The
normalized standard deviation is σ = 0.5.

It is seen that a larger average length < ν > leads to lower parameter values α and
γ. In fact, larger filament sizes generate narrower angular distributions, increasing the
order of the system. For a given value of < ν >, Figure 2 also shows that the parameter
α decreases with increasing the polydispersity parameter σ. This is due to the typical
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broadened size distributions that characterize polydisperse systems, which include short
filaments, lowering the order of the system.

In Figure 4, we plot the Gaussian parameter αν given in Equation (42) as a function of
the average filament size ν. For a fixed size ν, the parameter αν decreases with increasing
the average length < ν >. Additionally, the dependence of the orientational distribution
function ην(θ) on the angle θ for different sizes ν is plotted in Figure 5.

Figure 4. The Gaussian parameter αν vs. the average size < ν > at I–N phase coexistence for different
lengths of filaments ν.

-1.5 -1 -0.5 0 0.5 1 1.5
θ

0

1

2

η ν(θ
)

ν=100
ν=400
ν=600
ν=800
ν=1100

Figure 5. The angular distribution function ην(θ) as a function of the angle θ at the I–N phase
coexistence for different sizes ν. The average length is < ν >= 600.
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It is seen that the increase of size ν flattens and widens the distribution ην(θ). On the
other hand, the dependence of the total size–angular distribution function ρν(θ)/ρ = nνην(θ)
on the filament size ν for several angles θ is displayed in Figure 6.

Figure 6. The size–angular distribution function ρν(θ)/ρ = nνην(θ) as a function of the size ν at the
I–N phase coexistence for different angles θ. The average length is < ν >= 600.

Our results showed that the increase of the angle θ flattens the total distribution
ρν(θ)/ρ. This is because most filaments in the nematic phase are oriented along the nematic
director with θ = 0. By increasing the angle θ, the amount of filaments decreases and is
directed along the direction with angle θ.

3.2. Isotropic–Nematic Phase Diagram

In Figure 7, we plot the I–N phase diagram of actin filaments in terms of the coexisting
dimensional densities of actin ρA for different average lengths < ν > and two values for the
normalized standard deviation of Schulz distribution function: σ = 0 (monodisperse) and
σ = 0.5 (weakly polydisperse). In these calculations, we used the values P = 18µm and
ce = 0.1 M. In the same figure, we plot the experimental data extracted from Figures 4 and 5
in [26].

Our results showed isotropic and nematic metastable phases represented by the area
enclosed between the red and black curves, whereas the area to the left of the black curves
and to the right of the red curves defines the exclusive randomly oriented (isotropic) and
parallel oriented (nematic) phases, respectively. Additionally, the red and black curves
display an increase in the average filament length with decreasing G-actin concentration
and, consequently, the order of the system. For a given G-actin concentration, the ne-
matic phase generates larger average filament lengths as compared to the isotropic phase,
whereas higher G-actin concentrations are required in the nematic phase to generate the
same average filament length obtained in the isotropic phase. Figure 7 also shows a minor
dependence of the coexisting densities on the polydispersity parameter. This is in part
due to the experimental condition fixing the same degree of polymerization < ν > for
both the isotropic and nematic phases. In fact, Figure 7 shows that polydispersity with a
larger amount of short filaments slightly reduces both isotropic and nematic coexisting
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densities as compared to the monodisperse case. Thus, additional factors such as electro-
static effects compete with hard-body interactions to reduce the coexisting densities in the
polydisperse case.

Figure 7. The isotropic–nematic phase diagram in terms of coexisting densities of actin ρA for
different average lengths of filaments < ν > and two values of the normalized standard deviations
σ = 0 (dashed lines) and σ = 0.5 (solid lines). The persistence length is P = 18µm, and the electrolyte
concentration ce = 0.1 M. The experimental data (triangles) were retrieved from [26]. The coexisting
isotropic and nematic densities are plotted in black and red colors, respectively.

We also studied the polydispersity effects on the nematic (anisotropic) order parameter
S, which is defined as follows:

S = ∑
ν≥1

nν

ˆ
dωην(θ)P2(cos θ), (74)

where P2 = (3 cos2 θ − 1)/2 is the Legendre polynomial of second order. In the isotropic
phase, where ην(θ) is constant, the order parameter S vanishes. In contrast, in a system
highly aligned, ην(θ) becomes the Dirac delta function leading to S = 1. The I–N phase
coexistence values of the nematic order parameter S for different average sizes < ν > and
two values of the polydispersity parameter σ are displayed in Figure 8. For both values
of σ, our results revealed a decrease of the order parameter S with increasing the average
length < ν >. Moreover, the order parameter S is even smaller for polydisperse filaments.

Overall, we realized that the orientational order of filaments at I–N phase equilibrium
is due to the competition between two contributions. In the previous section, we showed
that the increase of the average length < ν > leads to narrower angular distributions
and, thus, higher order in the filaments orientation. On the other hand, Figure 7 displays
a decrease in the coexisting nematic density, lowering their order. Since the order parameter
S accounts for both contributions and the total order becomes smaller for larger average
lengths < ν >, we conclude that the contribution coming from the decrease in the coexisting
nematic density dominates the order behavior of the filaments over those arising from
narrowed angular distributions.
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We also considered several filament semiflexibility parameter values since they vary
depending on the polymerization buffers, experimental protocols, and techniques. We
analyze in Figure 9 the isotropic–nematic phase diagram for two typical values of the per-
sistence length, namely P = 7µm and P = 18µm, in physiological conditions (electrolyte
concentration ce = 0.1 M).

Figure 8. The nematic order parameter S at the I–N phase coexistence for different average lengths
< ν >. The normalized standard deviation are σ = 0 (dashed line) and 0.5 (solid line).

Figure 9. The isotropic–nematic phase diagram in terms of coexisting densities of actin ρA for
different average lengths of filaments < ν > and two values of persistence lengths P = 7µm (dashed
lines) and P = 18µm (solid lines). The normalized standard deviation is σ = 0.5, and the electrolyte
concentration ce = 0.1 M. The experimental data (triangles) were retrieved from [26]. The coexisting
isotropic and nematic densities are plotted in black and red colors, respectively.
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For a given value < ν >, we found that larger values of the persistence length P
decrease both the isotropic and nematic coexisting densities. Additionally, the results for
P = 18µm give the best fit against the experimental data. This result stems from the impact
of the semiflexibility on the orientational free energy for. It can be seen from Equation (49)
that the increase of the persistence length P leads to the decrease of the orientational term
for, which boosts the formation of the nematic state and generates smaller values for the
coexisting densities.

Finally, we studied the effects of the electrolyte’s concentration on the I–N phase
diagram of actin filaments. We plot in Figure 10 the dependence of the effective diameter
De f f on the concentration of monovalent ions ce.

Our results show an exponential decay of De f f with increasing ce. This result agrees
with the formation of an electrical double-layer accumulating many counterions around
the filament surface. The lower the electrolyte concentration, the larger its thickness and,
consequently, the effective filament diameter are. For salt concentrations larger than 0.4 M,
the effective diameter of filaments De f f is smaller than the diameter of filaments D = 80 Å,
and the calculations may become inaccurate.

Furthermore, we show in Figure 11 the isotropic–nematic phase diagram for two
values of electrolyte concentration ce = 0.01 M and ce = 0.1 M. It is seen that the in-
crease in electrolyte concentration leads to the increase in both coexisting isotropic and
nematic densities.

Clearly, the results for ce = 0.1 M give the best fit against the experimental data. This
behavior is due to a substantial decrease of the effective diameter De f f with increasing the
electrolyte concentration ce (see Figure 10), as well as because the coexisting density ρA is
inversely proportional to the effective diameter (see Equation (73)).
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Figure 10. The effective diameter De f f as a function of the monovalent ions’ concentration ce.

In Figure 12, we investigate the I–N phase diagram for a fixed average length < ν >
in terms of the dependence of the coexisting densities of actin ρA on the concentration of
monovalent ions ce.
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Figure 11. The isotropic–nematic phase diagram in terms of coexisting densities of actin ρA for
different average lengths of filaments < ν > and two values of electrolyte concentrations ce = 0.01 M
(dashed lines) and ce = 0.1 M (solid lines). The persistence length is P = 18µm, and the normalized
standard deviation σ = 0.5. The experimental data (triangles) were retrieved from [26]. The coexisting
isotropic and nematic densities are plotted in black and red colors, respectively.
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Figure 12. The isotropic–nematic phase diagram in terms of coexisting densities of actin ρA for
different values of the monovalent ions’ concentrations ce. The average lengths of filaments are < ν >

= 800 (solid lines) and 3000 (dashed lines); the persistence length P = 18µm, and the normalized
standard deviation σ = 0.5. The coexisting isotropic and nematic densities are plotted in black and
red colors, respectively.
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It is seen that the increase of the concentration ce leads to the increase of both isotropic
and nematic coexisting densities ρA. On the other hand, for a fixed value of ce, the increase
of the average size < ν > decreases both coexisting densities ρA. Certainly, it is easier for
long rods or filaments to form a nematic order rather than for shorter ones. Similarly, for
longer filaments (< ν >= 3000) , the I–N phase transition occurs at lower densities ρA
compared to short ones (< ν >= 800) with the same concentration ce.

Another quantity playing a key role in the I–N phase diagram is the twisting parameter.
In some studies [12], the terms with exponential integral E1(t) in the formulas analogous
to Equations (A14) and (64) were dropped for simplicity, such as the electrostatic effects on
the phase equilibrium can be described exclusively by the effective diameter De f f and the
twisting parameter:

t =
1

kDDe f f
, (75)

which is a measure of a twist of equally charged cylinders, which hinders the formation of
the nematic order. On another hand, the increase of the effective diameter De f f promotes the
nematic order. The competition between these two effects affects the I–N phase equilibrium
in the electrolyte solution [12]. We plot the dependence of the twisting parameter t on the
concentration of monovalent ions ce in Figure 13.

For actin filaments, the parameter t decreases with the increase of the concentration
ce. We also rescale the I–N phase diagram in terms of coexisting densities of actin ρA for
different values of the twisting parameter t in Figure 14.
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Figure 13. The twisting parameter t as a function of the monovalent ions’ concentration ce.

It is seen that both isotropic and nematic coexisting densities ρA decrease with increas-
ing twisting parameter t, whereas, for a fixed value t, the increase of the average size < ν >
decreases both coexisting densities ρA. Indeed, according to Figures 10 and 13, the increase
of the twisting parameter t decreases the electrolyte concentration ce and, correspondingly,
increases the effective diameter De f f . Furthermore, our results plotted in Figure 14 show
that stabilizing effects on the nematic state of larger effective diameters De f f dominate
destabilizing twisting effects with larger twisting parameters t [11].
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Figure 14. The isotropic–nematic phase diagram in terms of coexisting densities of actin ρA for
different values of the twisting parameter t. The average lengths of filaments are < ν > = 800
(solid lines) and 3000 (dashed lines); the persistence length P = 18µm, and the normalized standard
deviation σ = 0.5. The coexisting isotropic and nematic densities are plotted in black and red
colors, respectively.

4. Discussion

In the present article, we developed a classical density functional theory to calculate the
isotropic–nematic phase diagram for actin filaments in physiological electrolyte solutions.
The approach is based on an extension of Onsager’s second-order theory for monodisperse,
charged rigid rods [10]. The key ingredients in this work are a unique definition of the
orientational free energy for and the nν size and angular ην(θ) distribution functions, which
properly account for the polydispersity and semiflexibility of the actin filaments. Unlike
many studies on polydisperse rods where the size distribution function nν is an input
parameter [17,19], actin filaments self-aggregate to produce a size distribution function nν

that satisfies the equilibrium condition given by Equation (27). Our results reveal that nν

has the form of Schulz distribution function, which is in accordance with experimental
work performed on actin filaments [25,26]. To model an angular distribution function in the
nematic phase ην(θ), we generalized the trial function introduced in [17] for polydisperse
filaments, which depends on two parameters α and γ. Additionally, we accounted for
the filament semiflexibility by extending the formula for orientational free energy for
introduced in [13] to the case of a polydisperse system. Finally, we calculated the isotropic–
nematic phase diagrams for several values of the normalized standard deviation of Schulz
distribution σ, the persistence lengths of actin filaments P, and the concentrations of
monovalent ions ce. We compared the obtained results with the corresponding experimental
data presented in [26]. We found that the set of parameters P = 18µm and ce = 0.1 M gives
the best match against the experiment.

In principle, our method can be applied with suitable modifications to other asso-
ciating particles or exchange colloids that form charged rod-shaped aggregates such as
DNA and ionic micelles. In the case of microtubules, the theory should be modified to
account for the impact of the lumen on the their electrostatic interactions. It can be also
extended to study phase diagrams in confined spaces, as well as under other electrolyte
and filament conditions.
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For instance, the orientational trial function used in this article is valid for weak
polydispersity, i.e., when the normalized standard deviation σ is small. However, the
solution can also be obtained for highly polydisperse systems, while the computational
burden dramatically increases.

Additionally, in our study, we followed the conditions of the experiment, where
the average length of actin filaments < ν > was fixed both in the isotropic and nematic
phases [26]. As a result, the last two terms in the expression for free energy (43) did
not contribute to the phase equilibrium. In principle, we can also apply our theory for
polydisperse systems having different average lengths in the coexisting isotropic and
nematic phases. In this case, the last two terms in the equation for free energy (43) cannot
be disregarded. Additionally, the approximation introduced in this work for the excess
standard chemical potential ∆µ

(0)
ν in Equation (39) should be properly changed/modified

if the length distribution of the polydisperse system does not follow Schulz distribution
function nν.

On the other hand, we used Brenner–Parsegian’s formula [27] to approximate the
electrostatic part of inter-filament potential in Equation (15). This approximation accounts
for water solvent as a dielectric medium characterized by a constant dielectric permittivity.
In principle, a more accurate, distance-dependent dielectric medium can be used to capture
the high water polarization near the filament surface [32].

Furthermore, actin filaments may form bundles and networks due to the attraction
forces between filaments produced by linker proteins or divalent ions in eukaryotic cells.
In our method, we accounted only for repulsive interaction between filaments, i.e., the hard
core plus electrostatic repulsion in Equation (14). The attraction between filaments can be
included, for example, using square-well-type potentials [2,33].

Our approach is also able to describe charged filaments in pathological conditions. For
instance, pH changes and G-actin mutations were accounted for from molecular structure
models for actin filaments [34].

Overall, more realistic models can be developed for filament–filament and filament–
binding protein interactions in constrained spaces (encapsidated polyelectrolytes) [35,36].
For instance, a variety of geometries such as spherical and cylindrical capsids can be used
to model different cellular compartments such as dendrites (spines and filopodia), soma,
axons, and terminals.
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Appendix A. Cluster Integral Bν1ν2(ω1, ω2) in Equation (12)

The volume integration in Equation (12) can be written as follows:

ˆ
d~r12 →

ˆ L1

0
dz
ˆ L2 sin γ12

0
dy
ˆ +∞

−∞
dx, (A1)
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where the x axis is chosen along the direction of the closest distance between rods, the z
axis along the direction of first rod, and the y axis in the perpendicular direction to the
z− x plane. L1, L2 are the lengths of two rods and γ12 the angle between the axis of two
rods. Substitution of Equation (A1) into Equation (12) yields

B(ω1, ω2) =

ˆ L1

0
dz
ˆ L2 sin γ12

0
dy
ˆ +∞

−∞
dx[1− e−βw12(x,ω1,ω2)]. (A2)

Integration in Equation (A2) on the y− z plane leads to

B(ω1, ω2) = L1L2 sin γ122
ˆ +∞

0
dx[1− e−βw12(x,ω1,ω2)]. (A3)

Substitution of Equation (14) into Equation (A3) yields

B(ω1, ω2) = 2L1L2 sin γ12(D +

ˆ +∞

D
dx[1− e−Γ⊥(x,γ12)]). (A4)

Substitution of Equation (15) into the integral in the r.h.s. of Equation (A4) yields the
following expression:

J =
ˆ +∞

D
dx[1− e−C1e−kx

], (A5)

where
C1 =

Γ⊥
sin γ12

ekD D. (A6)

The analytic solution of Equation (A5) is given by

J =
1

kD
{ln(C1e−kD D) + γE + E1(C1e−kD D)}, (A7)

where γE is Euler’s constant:

γE = −
ˆ +∞

0
e−t ln tdt = 0.5772 . . . , (A8)

and E1(x) is the exponential integral:

E1(x) =
ˆ +∞

x

e−t

t
dt. (A9)

Next, we substitute Equations (A5)–(A7) into Equation (A4) to obtain

B(ω1, ω2) = 2L1L2 sin γ12 (D +
1

kD
{ln( Γ⊥

sin γ12
) + γE + E1(

Γ⊥
sin γ12

)}). (A10)

We introduce the effective diameter De f f to rewrite Equation (A10) as follows:

B(ω1, ω2) = 2L1L2 sin γ12De f f (1 +
1

kDDe f f
{− ln sin γ12 − ln 2 +

1
2
+ E1(

Γ⊥
sin γ12

)}), (A11)

where
De f f = D +

1
kD
{ln(Γ⊥) + γE + ln 2− 1

2
}. (A12)

Finally, Equation (A11) can be written as

Bν1ν2(ω1, ω2) = 2De f f l2
mν1ν2 B∗(sin γ12), (A13)
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where

B∗(sin γ12) = sin γ12 {1 +
1

kDDe f f
[− log(sin γ12)− ln 2 +

1
2
+ E1(

Γ⊥
sin γ12

)]}. (A14)

Appendix B. Schulz Distribution Function in Equation (40)

Here, we provide some properties of Schulz distribution function nν. We define the
average size in the k-th power < νk > as follows:

< νk >=

ˆ ∞

0
dν νk nν. (A15)

Substitution of Equation (40) into Equation (A15) gives

< νk >=
Γ(z + k + 1)

Γ(z + 1)
1
yk , (A16)

where Γ is the Gamma function:

Γ(z + 1) =
ˆ ∞

0
dx xz e−x. (A17)

Equation (A16) yields the following expressions for k = 0, 1, 2:

< ν0 >=< 1 >= 1, (A18)

< ν >=
(z + 1)

y
, (A19)

< ν2 >=
(z + 1)(z + 2)

y2 . (A20)

Substitution of Equations (A19) and (A20) in Equation (5) generates the following
relation between the normalized standard deviation σ and parameter z:

σ =
1√

z + 1
. (A21)

Appendix C. Orientational Energy for in Equation (49)

The orientational free energy for in the nematic phase for monodisperse systems can
be expressed as [13]:

for =


´

η ln η dω, L� P

L
8P
´ 1

η

(
∂η
∂θ

)2
dω, L� P

(A22)

where L is the filament length and P the persistence length. Khokhlov and Semenov
introduced the correction terms to the r.h.s. of Equation (A22) to make this expression even
more accurate: [13–15]

for =


´

η ln η dω + L
12P
´ 1

η

(
∂η
∂θ

)2
dω, L� P

L
8P
´ 1

η

(
∂η
∂θ

)2
dω− 2 ln[

´
η

1
2 dω] + ln[4π]. L� P

(A23)

We generalize Equation (A23) to the case of polydisperse system in the following form:
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for =


∑ν≥1 nν

´
ην ln ην dω + ∑ν≥1 nν

L
12P
´ 1

ην

(
∂ην

∂θ

)2
dω, < L >� P

∑ν≥1 nν
L

8P
´ 1

ην

(
∂ην

∂θ

)2
dω− 2 ∑ν≥1 nν ln[

´
η

1
2
ν dω] + ln[4π], < L >� P

(A24)

where < L >= lm < ν >. Substitution of Equation (41) into Equation (A24) and the use of
Equations (45) and (47) lead to

for =


ln α− 1− γ2

2 σ2 + Np
α
6 , < L >� P

Np
α
4 + ln α− γ2

2 σ2 − 2 ln 2, < L >� P
(A25)

where Np is given by Equation (48). We interpolate these two asymptotic values in Equa-
tion (A25) to obtain

for = ln α− γ2

2
σ2 + Np

α

6
+

5
12

ln[cosh(Np
α

5
)]− 19

12
ln 2. (A26)

In the monodisperse case, i.e., for σ = 0, Equations (48), (A25), and (A26) reduce to
those provided in [13]. It was also suggested in [13] to substitute (α− 1)Np instead of αNp
in the monodisperse version of Equation (A26) to have reliable results for small α, even
when Np ∼ 1.

Appendix D. Interaction Energy fint in Equations (50), (52)–(54)

We substitute Equations (18) and (19) into Equation (50) to have

fint = ρ
π

4
De f f l2

m
4
π

ˆ
∑

ν1≥1
nν1 ν1ην1(θ1) ∑

ν2≥1
nν2 ν2ην2(θ2)B∗(sin γ12)dω1dω2. (A27)

Equation (A27) can be expressed as

fint = ρ
π

4
De f f l2

m < ν >2 4
π

ˆ
gz(θ1)gz(θ2)B∗(sin γ12)dω1dω2, (A28)

where

gz(θ) =
1

< ν > ∑
ν≥1

nννην(θ). (A29)

Additionally, we substitute Equation (40) for the distribution functions nν and Equa-
tions (41) and (42) for ην(θ) into Equation (A29). This results in

gz(θ) =
1

< ν > ∑
ν≥1

yz+1

Γ(z + 1)
νze−yν ν

α

4π

( γν

< ν >
+ (1− γ)

)
e−

α
2 (

γν
<ν>+(1−γ))θ2

. (A30)

In Equation (A30), the summation can be written in the form of integration as follows:

gz(θ) =
yz+1

Γ(z + 1)
1

4π

α

< ν >2 e−
α
2 (1−γ)θ2

ˆ ∞

0
dν
(

γνz+2 + (1− γ)νz+1 < ν >
)

e−(y+
α
2

γ
<ν> θ2)ν. (A31)

Using the definition of the Gamma function given by Equation (A17), Equation (A31)
becomes

gz(θ) =
α

4π

yz+1

< ν >2 e−
α
2 (1−γ)θ2

(
Γ(z + 3)
Γ(z + 1)

γ

(y + γαθ2

2<ν> )z+3
+

Γ(z + 2)
Γ(z + 1)

(1− γ) < ν >

(y + γαθ2

2<ν> )z+2

)
(A32)
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which can be rewritten as

gz(θ) =
α

4π

e−
α
2 (1−γ)θ2

< ν >2

 γ(z + 1)(z + 2)

y2(1 + γαθ2

2<ν>y )
z+3

+
(z + 1) < ν > (1− γ)

y(1 + γαθ2

2<ν>y )
z+2

. (A33)

Substitution of the function y in Equation (A19) into Equation (A33) leads to

gz(θ) =
α

4π
e−

α
2 (1−γ)θ2

 γ
(z+2)
(z+1)

(1 + γαθ2

2(z+1) )
z+3

+
(1− γ)

(1 + γαθ2

2(z+1) )
z+2

. (A34)

Finally, we transform the angular integrals in Equation (A28). To this end, we use the
following formula:

ˆ
dω1dω2 . . . = 8π

ˆ π/2

0
sin θ1dθ1

ˆ π/2

0
sin θ2dθ2

ˆ 2π

0
dϕ12 . . . (A35)

Substitution of Equation (A35) into Equation (A28) yields

fint = ρ
π

4
Dl2

m < ν >2 32
ˆ π/2

0
sin θ1dθ1

ˆ π/2

0
sin θ2dθ2gz(θ1)gz(θ2)K(θ1, θ2), (A36)

where

K(θ1, θ2) =

ˆ 2π

0
B∗(sin γ12)dϕ12 (A37)

and

sin γ12 =
√

1− (cos θ1 cos θ2 + sin θ1 sin θ2 cos ϕ12)2. (A38)

We note that the function K(θ1, θ2) is independent of the filaments’ concentration ρ
and the average filaments’ length < ν >. Thus, it can be numerically precalculated and
used in subsequent calculations. In practice, we calculated K and stored the values in
a matrix of size [200× 200].

Appendix E. Asymptotic Expression for fmix in the Monodisperse Limit

We substitute the distribution function nν, given by Equation (40) into Equation (58).
We obtain

fmix =

ˆ
dν nν ln

(
yz+1

Γ(z + 1)
νz e−yν

)
. (A39)

Substitution of Equations (A18), (40), and (A19) into Equation (A39) yields

fmix = ln[
yz+1

Γ(z + 1)
] + z

yz+1

Γ(z + 1)
J − (z + 1), (A40)

where

J =
ˆ

dν νz e−yν ln ν. (A41)

We obtain the analytic solution for J using the expression number 4.352 from the
integral table provided in [37]. We have

J =
Γ(z + 1)

yz+1 (Hz − γE − ln y), (A42)
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where γE = 0.5772 is Euler’s constant, Γ(z + 1) = z! the gamma function, and Hz =
1 + 1

2 + 1
3 + . . . + 1

z the z-th harmonic number. Substitution of Equation (A42) into the
second term in the r.h.s. of Equation (A40) gives

fmix = ln[
y

Γ(z + 1)ez+1 ] + z (Hz − γE). (A43)

We use the following asymptotic formula for the harmonic number:

Hz → ln z + γE +
1
2z

z→ ∞ (A44)

to calculate the free energy fmix in the monodisperse limit. We substitute Equation (A44)
into Equation (A43), and we use Equations (A19) and (A21), and Stirling’s formula
Γ(z + 1)→

√
2πz(z/e)z to finally obtain

fmix → − ln[

√
2πez
z + 1

< ν > σ] (z→ ∞). (A45)
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