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Abstract: The catastrophic implication of harmful algal bloom (HAB) events in the Arabian Gulf is a
strong indication that the study of the spatiotemporal distribution of chlorophyll-a and its relationship
with other variables is critical. This study analyzes the relationship between chlorophyll-a (Chl-a)
and sea surface temperature (SST) and their trends in the Arabian Gulf and the Gulf of Oman along
the United Arab Emirates coast. Additionally, the relationship between bathymetry and Chl-a and
SST was examined. The MODIS Aqua product with a resolution of 1 × 1 km2 was employed for
both chlorophyll-a and SST covering a timeframe from 2003 to 2019. The highest concentration of
chlorophyll-a was seen in the Strait of Hormuz with an average of 2.8 mg m−3, which is 1.1 mg
m−3 higher than the average for the entire study area. Three-quarters of the study area showed a
significant correlation between the Chl-a and SST. The shallow (deep) areas showed a strong positive
(negative) correlation between the Chl-a and SST. The results indicate the presence of trends for both
variables across most of the study area. SST significantly increased in more than two-thirds of the
study area in the summer with no significant trends detected in the winter.
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1. Introduction

The Arabian Sea is one of the most essential bodies of water not only for the local
economy, but also for the global one, because it serves as a route to a significant portion of
the world’s oil supply. The ecosystems of the Arabian seas (Arabian Gulf (thereafter AG),
Gulf of Oman (thereafter GO), and Arabian Sea) are fragile, and susceptible to pollution.
Among these pollutants are algal blooms, particularly red tide [1–3]. The bloom’s growth
and biomass depend on the availability of nutrients in the surface layer. Therefore, the pro-
cesses by which the nutrients reach the surface are of crucial importance. The main source
of nutrients to the surface layer is the deep water, which is rich in nutrients [4]. The transfer
of these deep nutrients is affected by wind-induced or thermohaline upwelling, vertical
diffusion, deepening of the surface layer, and vertical overturning [4]. In the Arabian
Sea, the transfer of nutrients is related to the summer (southwest) and winter (northeast)
monsoon seasons. The distinct direction of the summer monsoon from the southwest,
which is almost parallel to the Oman coastline in the northern Arabian Sea, produces a
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strong coastal upwelling system that highly contributes to bringing the nutrient-rich deep
water to the surface and supporting phytoplankton blooms [5–7]. The northeast monsoon
drives convective mixing in the northern Arabian Sea, resulting in an upward transport of
nutrients from the base of the mixed layer and upper thermocline [2,8–10]. These processes
make the conditions conducive for phytoplankton growth and development in the AG
and GO all year around. The timely identification of the location and extent of the blooms
is crucial for assessing and managing the coastal environment as well as forecasting and
mitigating their negative impact [11].

Mapping, monitoring, and forecasting algal blooms in an efficient manner is critical for
mitigating their impacts. However, monitoring of algal blooms using traditional methods,
such as near coastal line and shipboard measurements, is very difficult because of spatial
and temporal data gaps. These problems can be addressed using remote sensing data,
which offer a supplement to local measurements by providing comprehensive coverage of
large areas, which are reliable data and are regularly updated.

Satellite ocean color data, remote sensing techniques, and algorithms are widely
used for the detection, measuring, mapping, monitoring, modeling, and managing of
phytoplankton blooms because satellite earth observation derived from various sensors
provides a synoptic view of the ocean, both spatially and temporally [12]. The main
limitation of these sensors is their inability to penetrate clouds, which makes their data
limited to only clear-sky conditions [13,14]. To fill in the gaps of remote sensing data, several
interpolation techniques are employed. One of these techniques is the data interpolating
empirical orthogonal function (DINEOF) method, which is used to reconstruct the monthly
mean datasets [15]. Other interpolation techniques are also used which are simpler and
computationally less expensive. These techniques can be very useful, especially in regions
and/or times where clouds do not cover a significant portion of the study area [16].

Numerous studies have been conducted to investigate and assess the spatial and tem-
poral distribution of phytoplankton and red tides from remotely sensed data. For example,
Brewin [17] used MODIS/Aqua data to assess the spatial and temporal distribution of
Chl-a in the Red Sea. The operational Chl-a algorithm, National Aeronautics and Space
Administration (NASA) OC3, and the Color Index (CI) algorithm developed by Hu [18]
were employed in the study. The OC3 algorithm is a polynomial function that relates the
remote sensing reflectance at wavelengths 443, 488, and 547 nm to the Chl-a concentration.
The CI is defined as the difference between the reflectance in the green region and the blue
and red regions of the visible spectrum. Their results revealed that OC3 and CI-derived
Chl-a concentrations were comparable to the in situ measurements and to other areas in
the global ocean.

Nezlin [19] and Tang [20] investigated the seasonal and inter-annual variations of
surface Chl-a concentration and their causes in the Black Sea and southwest of the Luzon
Strait in the South China Sea, respectively, from CZCS data collected during the period
1978 to 1986. They concluded that remotely sensed data are useful in detecting Chl-a
concentration over large areas. MERIS and MODIS data have been used by Gurlin [21]
to estimate Chl-a concentrations in turbid water of the Fremont Lakes State Recreation
Area in Nebraska, USA. Gower [22] and Gower [23] studied the global algal blooms from
MERIS data using the maximum Chl-a Index (MCI).

Cannizzaro [24] used SeaWifs and MODIS data for the detection of the toxic dinoflag-
ellate, Karenia brevis, in the Gulf of Mexico. Hu [25] used the Floating Algae Index (FAI) to
characterize the cyanobacteria (Microcystis aeruginosa) blooms primarily in Taihu Lake,
China, using MODIS time series of nine years (2000 to 2008). Anderson [26] demonstrated
the combined use of the empirical harmful algal blooms (HABs) models, MODIS/Aqua
data, and a regional ocean model for the prediction of the toxic Pseudo-nitzschia bloom
events in the Santa Barbara Channel.

SST is one of the main factors that affects the growth of phytoplankton in oceans,
especially at an optimum temperature when the correlation is significantly high [27].
However, as Nurdin [28] reported, an excessive increase in SST would hinder the growth
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of phytoplankton. Another factor that affects the growth of phytoplankton is the amount
of nutrients loaded with the freshwater from river discharges. Jutla [29] found a positive
correlation between seasonal river discharges, SST, and Chl-a and vice versa in the coastal
Bay of Bengal region. Seawater current is also one of the main factors that drive the Chl-a
concentration in the water bodies. Kouketsu [30] and Chu [31] suggest that in the Kuroshio
Extension the cyclonic eddies are related to high area-averaged Chl-a concentration and
anti-cyclonic eddies are often related to low area-averaged Chl-a.

The existence of large spatial and temporal gaps in in situ measurements hamper the
complete understanding of Chl-a behavior. Our work utilizes satellite data that provide
regular long-term temporal and spatial continuity to comprehend the pattern and change
of Chl-a characteristics in both space and time. The main goal of this study is to examine
the spatiotemporal variability of Chl-a and other oceanography variables over the AG and
GO for the period span between 2003 and 2019. The spatiotemporal analysis elucidates
the impact of the SST on the growth of phytoplankton over the region. Additionally, we
investigated the variability of both SST and Chl-a over the coastal areas of the UAE using
the empirical orthogonal function (EOF). The objectives of this research are to (i) conduct
frequency analysis of the mode of the variability in SST and Chl-a and their relationship
with regional wind circulations, and (ii) investigate the presence of trends in both variables
and their seasonal decomposition.

2. Study Area and Dataset
2.1. Study Area

The study area is shown in Figure 1. The area covers the AG and GO along the UAE
coasts (1318 km). The AG is located in the Middle East between latitude 24.0◦ N and
30.0◦ N and longitude 48.0◦ E and 56.5◦ E. The AG is separated from the northern Indian
Ocean by the Strait of Hormuz and the GO [3,6]. The AG is 990 km long with a maximum
width of 338 km and an average depth of 36 m for much of the Arabian coast and 60 m
depth along the Iranian coast [32,33]. The GO is situated between 22.0◦ N to 26.0◦ N and
56.5◦ E to 61.7◦ E. The GO is 320 km wide between Ra’s Al-
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add in Oman and Gwādar Bay
on the Pakistan–Iran border. It is 560 km long and connects with AG through the Strait of
Hormuz [34]. Although the AG is located entirely north of the Tropic of Cancer, its climate
is tropical in the summer and temperate in the winter (Reynolds, 1993). The climate of the
AG has two main seasons: winter (December to March) and summer (June to September),
and two transition periods, fall (October to November), and spring (April to May) [35].
In the summer, the air temperature reaches up to 51◦C with an average of 41 ◦C, while
in winter the air temperature drops to as low as 15 ◦C [33]. Due to the surrounding arid
climate, evaporation surpasses the combination of precipitation and runoff resulting in
hypersaline water mass production [36]. The climate of the GO and the northern Arabian
Sea is significantly influenced by the summer and winter monsoons driven by land–sea
latent heat differences. The summer monsoon occurs from July to September and the
winter monsoon from November to April [5,7]. The SST is a considerably variable in both
Gulfs due to the effects of the surrounding landmass and air temperatures [37].

2.2. Dataset
2.2.1. Chl-a Data

To characterize the spatial and temporal distribution of algal blooms along the coast
of the UAE, daily remotely sensed Chl-a concentration and SST were obtained for the
period between 2003 and 2019. Level 2 product with a spatial resolution of 1 × 1 km2

of the Chl-a concentration from MODIS onboard Aqua satellite were downloaded from
the NASA MODIS standard products at https://oceancolor.gsfc.nasa.gov/cgi/browse.pl.
These data are in the netCDF-4 format (.nc), which contains multi-object files [38]. The
Band Select of Data Conversion tool from Sentinel Application Platform (SNAP) was used
to extract the products of both Chl-a and SST and mosaicked using the Geospatial Data
Abstraction Library (GDAL) merge tool by pyQGIS. The Chl-a data contain gaps mainly

https://oceancolor.gsfc.nasa.gov/cgi/browse.pl
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due to the inability of the sensors to perpetrate through clouds. From the study period
(1 January 2003 to 31 December 2019), out of 6208 days, 6149 daily imageries were available
in the archive. Out of the available daily images, 217 images were found to be covered
by clouds for more than 75% of the study area. The temporal distribution showed that
the daily images were missing around 5% of the study area every day before January
2018 (Figure 2B). The spatial distribution suggested that the area that failed to be covered
consistently was the northwestern tip (Figure 2A). The areal coverage drops to below
75% during only a few days for a small number of months. Due to a lack of sufficient
data, the areas with a dataset that are missing more than 75% (~5% of the study area) of
their observations were masked out before the analysis was conducted. The areal average
amount of missing data over the entire Arabian Sea was recorded as 16.3%. The month of
July had most of the missing data, including on seven occasions wherein the daily images
failed to cover more than 25% of the study area. Moradi [39] also suggested that the data
of July included the highest missing values in the region followed by August and June.
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Figure 1. Map of the study area with bathymetric data of the Arabian and Oman Gulfs and the location of the three sections
(UAE Arabian Gulf (AG) Coast, UAE Gulf of Oman (GO), and Strait of Hormuz) that were used for the empirical orthogonal
function (EOF) analysis.

2.2.2. SST Data

Level 2 product with a spatial resolution of 1 × 1 km2 of the SST from MODIS
onboard Aqua satellite was downloaded from the NASA MODIS standard products at
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl. For the MODIS data, thermal channels
31 (10.780 to 11.280 µm) and 32 (11.770 to 12.270 µm) are particularly suited to estimate
the surface temperature [40]. The MODIS sea surface temperature data have been widely
validated for open waters and therefore are widely accepted as accurate [37,41–45].

https://oceancolor.gsfc.nasa.gov/cgi/browse.pl
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl
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Figure 2. (A) Spatial distribution of the missing data of the Chl-a concentration across the study
area. (B) Temporal distribution of the missing data of the Chl-a concentration (black line represents a
daily fraction of missing area and the blue line represents the number of days in a month with data
coverage fraction greater than 75%).

The SST data have relatively better coverage than the Chl-a data described above.
The study spanned for a period (1 January 2003 to 31 December 2019) of 6208 days, out
of which 6144 daily images were available in the archive. The notable missing data from
the archive is that only 10 days of data were available for the months of November and
December 2014. However, only 19 daily images out of the available 6144 imageries had
a missing area of more than 75% of the study area (mainly due to clouds). The temporal
distribution of the missing data shows that the cloud coverage is much higher in the winter
months (from November to April), as shown in Figure 3B. The areal coverage drops to
below 75% during only a few days for a small number of months. The spatial distribution
of the missing data indicates that the northwestern tip of the study area is the area with
the most missing data (~6%). The areal average of missing data was 2.4%. The amount
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of missing data decreases as you move from the northwestern to the southeastern corner
(Figure 3A). Interestingly, from January 2018 to December 2019, there was no significant
missing data (images covered more than 98% of the study area). That is likely due to an
enhancement of the product processing algorithm.
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2.2.3. Bathymetry Data

The bathymetric data, the Global Relief Model referred to as ETOPO1, which is an
improved model of the ETOPO2v2 Global Relief Model, were used in the study. The data
are developed by the National Geophysical Data Center (NGDC) of the National Oceanic
and Atmospheric Administration (NOAA). The ETOPO1 has two versions—Ice Surface
and Bedrock. The Ice Surface version includes the top of the ice sheets (Antarctica and
Greenland), while the Bedrock version depicts the base of the ice sheets [46]. For this study,
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the Bedrock version was used. The vertical datum is referenced from the mean sea level
and the World Geodetic System of 1984 (WGS 84) datum was used as a horizontal datum.
The spatial resolution of the data is one arcminute with global coverage. The bathymetry
of the study area shows a shallow AG and a much deeper GO (Figure 1).

3. Methodology
3.1. Filling Missing Data

Cloud cover significantly obscures surface information; therefore, it is very important
to retrieve the Chl-a and SST under overcast skies. The biggest challenge in retrieving the
Chl-a and SST is to eliminate cloud contamination. Figure 4 presents how the missing data
values and gaps of Chl-a and SST are filled. To fill the missing values of Chl-a, the daily
Chl-a data for the study period (2003 to 2019) are used to develop the monthly composites
of each Julian day. Then, the missing data values and gaps of the daily data are filled with
the corresponding monthly composite values. MODIS cloud-free data composite image
(SST, monthly composite product) was employed to fill in these missing pixels’ values
of SST. This method was used because the amount of missing data is not as significant
relative to the other regions of the world where cloud cover is a major issue. For example,
Li [47] found that only 2872 daily snapshots were useful out of 3653 imageries in the Gulf
of Maine. However, in this study, only 217 days of Chl-a had missing data covering more
than 75% of the study area out of 6149 obtained daily images. The northwestern part of the
study area was found to have significant gaps in the data. For this reason, the area which
covers ~5% of the total study area was masked from the analysis. The average missing data
across the study period for Chl-a was around 10%. Conversely, the average missing data of
SST is ~2% of the study area after excluding the northwestern part of the study area.
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3.2. Empirical Orthogonal Function (EOF) Analysis

The primary application of EOF is that it helps in understanding the spatial patterns
of variability in spatiotemporal data by examining the EOF coefficient maps. Secondly, it
can be used to reduce the dimension of the components by using the optimal number of
components that explain the majority of the variability in the spatiotemporal dataset [48,49].
The EOFs analysis was conducted over the coastal areas of the UAE, the AG Coast, Strait
of Hormuz, and GO Coast (Figure 1) to examine the spatial variability of the SST and
Chl-a concentration.

The raw data matrix F is arranged in a matrix format M × N, where M is the time
series dimension and N is the space dimension. The covariance matrix R is calculated
using Equation (1). Then, the eigenvalues are solved with Equation (2), which provides the
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information about the amount of variability explained by each component [48]. The highest
three components were selected for this study as they explain more than three-quarters of
the variability in both Chl-a and SST.

R = FtF (1)

RC = C∆ (2)

∆ is a diagonal matrix containing eigenvalues λi of R where i is the length of the time
series ranges from 1 to p (size of M). The column vectors of C are the eigenvectors of R that
corresponds to the eigenvalues λi which contain information about the spatial distribution
of the eigenvalues.

The raw data can be reconstructed from the EOFs and the eigenvectors using
the following:

F =
p

∑
i=1

→
c i(EOFi) (3)

The amount of variability explained by one EOFs component a can be estimated as a
fraction of the total variability using Equation (4).

σa =
λa

∑
p
i=1 λi

(4)

3.3. Correlation Analysis

The Pearson correlation coefficient (PCC) statistical tool was used to evaluate the
impact of SST on Chl-a concentration. If the value approaches 1/−1, it indicates that the
relationship is strongly positive/negative, and if the coefficient is closer to 0, it indicates
that the relationship between the variables is weak. Cross-correlation was conducted
to assess the possible lag time of the impact of the SST over the formation of the Chl-a
concentration. The mathematical formula used is obtained from Pearson [50]:

r =
1

n− 1

n

∑
i=1

[(
xi − x

Sx

)(
yi − y

Sy

)]
(5)

where n is the sample size, xi and yi are records of the variables (SST and Chl-a in this case),
x and y are the average values of the variables, and Sx and Sy are the standard deviations
of the variables.

3.4. Correlated Seasonal Mann–Kendal Trend Test

The corrected seasonal Mann–Kendal trend test was used to investigate the presence
of a significant trend in the data. This test was a modified version of the original Mann–
Kendal test to accommodate seasonally correlated data. The adjustment was used by
Hirsch [51] and Libiseller [52] to reduce the seasonal autocorrelation in the dataset. The
Mann–Kendall scores are first computed for each month separately as follows:

Si =
ni−1

∑
k=1

ni

∑
j=k+1

sgn
(
xij − xik

)
(6)

where sgn() is a sign function obtaining the sign of real number, xij and xik are monthly
series values for the periods k and j, respectively, and i represent the month. The variance
for each month is given by:

Var(Si) =
ni(ni − 1)(2ni + 5)−∑

gi
p=1 tip

(
tip − 1

)(
2tip + 5

)
18

(7)
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where gi is the number of tied groups for the ith month and tip is the number of observations
in the pth group for the ith month. Then, the Mann–Kendall score and variance for the
entire series are computed as follows:

S′ =
m

∑
i=1

Si (8)

Var
(
S′
)
=

m

∑
i=1

Var(Si) (9)

where Si is the Mann–Kendall score of an individual month and m, the number of months
in this study, is 12. Similarly, Var(S′) is the variance of individual months. The seasonal
adjusted Mann–Kendall test statistics for the series (ZSK) is given by:

ZMK =


S′−1√
VAR(S′)

if S′ > 0

0 if S′ = 0
S′+1√
VAR(S′)

if S′ < 0
(10)

Finally, for the areas with a significant trend, the magnitude of the trend was computed
using a linear model (y = α + βx). Moreover, trend analysis was conducted over the summer
and winter months separately to assess the influence of seasonality.

4. Results and Discussion
4.1. Spatiotemporal Distribution of Chl-a and SST

The spatial distribution of the long-term average of Chl-a concentration was unevenly
distributed across the Arabian Sea. The Chl-a concentration was high in the coastal
areas and the Strait of Hormuz (Figure 5A). The coastal hotspots of Chl-a concentration
are usually created due to the loading of nutrients with the discharge from the Wadis
and artificial loading of nutrients from agricultural and aquaculture activities around
the shores [3,5]. The areal average concentration of Chl-a in the Strait of Hurmuz was
2.8 mg m−3, whereas the areal average concentration across the entire study area was
1.7 mg m−3. The seasonal distribution shows that February and March are the months with
the highest Chl-a concentration, especially in the Strait of Hormuz and GO (Appendix A).
The main reasons for such a high concentration of Chl-a in the Strait of Hormuz are seasonal
upwelling, mixing of the AG and GO, and the high concentration of pollutants and river
discharge from the northern coast [53]. Over the study period of 17 years, 2008 and 2009
showed peak concentration of Chl-a with an average concentration of 2.4 mg m−3 and
2.1 mg m−3, respectively (Appendix C). This period includes the red tide events that were
reported by Richlen [54]. Moreover, the seasonal mean distribution showed a distinct
pattern between winter and summer. The winter had a higher concentration of Chl-a,
which was clearly observed in the Strait of Hormuz (Figure 5C). However, in summer, the
coastal areas exhibited a relatively high concentration of Chl-a (Figure 5E).

Unlike Chl-a concentration, the spatial distribution of the average SST for the period
2003 to 2019 shows a uniform linear increase in the west–east direction, as shown in
Figure 5B. The GO experienced an average SST of about 26 ◦C, which makes it the hottest
region in the study area. The areal average SST over the entire study area was around
25 ◦C. A difference of ~3 ◦C was observed between the hottest region (GO) and the coldest
region (northwestern AG) in the long-term average of SST. The monthly distribution of SST
showed very little spatial variability (Appendix B). The annual average suggests that the
hottest years were 2018 and 2019 with an average SST of 26. 3 ◦C and 26. 4 ◦C, respectively
(Appendix D). The AG and GO experience different winter and summer temperature
patterns. The southern AG was warmer than GO in the summer (Figure 5F), whereas the
GO was warmer than AG in the winter (Figure 5D).
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Arabian Sea (Arabian and Oman Gulfs) during the study period (1 January 2003 to 31 December 2019).

The temporal distribution of the Chl-a concentration suggests that different parts of
the Arabian Sea express different seasonal variability. The shape of the seasonal cycle
appears to be a smooth sinusoidal curve with relatively smaller amplitude in the case of the
AG coast of UAE and a more pointed shape with a higher variability for both the Strait of
Hormuz and the GO. The UAE’s coast across the AG experiences small seasonal variability
with the peak concentration seen in November and the lowest concentration observed
in May (Figure 6A). The highest variability is seen in the time series of the GO with the
peak concentration observed in February and the lowest reported in May (Figure 6C).
In the summer of 2012 (April, May, and June), the entire region experienced the lowest
concentration of Chl-a (Figure 6). After that point, the Chl-a concentration was above
normal in winter and below normal in the summer, especially in the Strait of Hormuz and
the GO.
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The temporal distribution of SST reveals different behaviors among the three sample
regions. The UAE’s AG coast showed a smooth sinusoidal seasonal cycle with the highest
variability between winter and summer (Figure 7). The SST ranges from 19 ◦C in January to
as high as 31 ◦C in September. The GO showed a bimodal seasonal cycle with peaks in June
(30 ◦C) and September (30 ◦C) and February as the coldest month with 21 ◦C (Figure 7).
This bimodal cycle is due to the decrease of the temperature during the southwest monsoon
that occurs from June to September [55]. The time series showed that the Arabian Sea, in
general, experienced cooler than usual winters between 2005 and 2008. Towards the end of
the study period (2014 to 2019), the summers became hotter than the typical summer. The
northeast monsoon is the main reason for cool SST across the entire AG and the GO from
November to March [56].

4.2. Variability in Chl-a and SST

The best way to display the EOFs components as meaningful indicators is to represent
them as homogeneous correlation maps. The homogenous correlation map of the EOFs’
first component is the correlation of the raw data with the expansion coefficient of the first
component of EOFs [57]. With regard to the mode of variability of the Chl-a concentration,
the first three components captured 74% of the variability on average. The first component,
which explains 42% of the variability, had a strong relationship in the Strait of Hormuz and
GO, as shown in Figure 8A. The first component is related to the northeast monsoon winds
that move heat from the surface of the Arabian Sea, which occurs from early November to
March. Lower solar radiation and increased salinity create convective mixing that drives
upward transport of nutrients [2]. The availability of nutrients with optimal atmospheric
conditions results in excessive growth of phytoplankton biomass. The second component,
with an average variability of 24%, had the reverse impact of the first component with the
western coast of the UAE affected significantly more than the rest of the area (Figure 8B).
The spikes of Chl-a concentration over the coast of UAE (AG) at the end of 2004, 2007,
and 2018 to 2019 were related to the second component (Figure 8D). The third component,
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responsible for 8% of the variability, was highly related to the Strait of Hormuz, which
captured the peaks in Chl-a concentration observed in 2008 to 2009 (Figure 8D). The 2008
to 2009 algal blooms were catastrophic to the infrastructure of the countries in the AG,
especially in the water supply system and tourism industry. The blooms dissipated in
August 2009 about nine months after they first appeared on the coast [54].
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The first three EOFs modes of SST captured more than 96% of the variability in the
dataset. The first EOF component, which represents the annual seasonal component of
SST, accounts for more than 94% of the variability, as shown in Figure 9A. The entire study
area showed a strong homogeneous correlation coefficient of more than 0.9. This means
that the EOF first component is highly influenced by the annual periodicity that reaches its
peak in summer and its lowest in winter. The spatial variability is very small, indicating
that the seasonal variability is uniform across the entire area. This shows that the annual
variability of the SST (that represents 95% of the total variability) showed a very small
spatial variability across the coasts of the UAE. This is evident in the fact that the entire
UAE coast demonstrates an interquartile range of only 0.7 ◦C in the long-term average SST.
However, the second EOF component of SST, accounting for 1.07% of the total variance,
showed a significant spatial variability (Figure 9B). The UAE’s AG coast is positively
correlated, whereas the GO coast is negatively correlated. The second component seems
to capture the impact of the southwest monsoon with a spatial variability that is oriented
in the east–west direction. The southwest monsoon decreases the temperature of the GO,
causing a bimodal cycle. The southwest monsoon does not have a significant impact on the
SST of the AG; on the contrary, SST increases during that period. This result is in line with
the findings of Nandkeolyar [56]. The third component of SST also revealed a significant
spatial variability, whereas the Strait of Hormuz is negatively correlated and the rest of
the coasts are positively correlated. The spatial variability is oriented in the north–south
direction (Figure 9C).



Remote Sens. 2021, 13, 2447 13 of 25
Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 29 
 

 
Figure 8. Spatial distribution of the homogenous correlation map of the first three EOFs components of the Chl-a concen-

tration ((A–C), respectively), and their time-series component (D). 

The first three EOFs modes of SST captured more than 96% of the variability in the 

dataset. The first EOF component, which represents the annual seasonal component of 

SST, accounts for more than 94% of the variability, as shown in Figure 9A. The entire study 

area showed a strong homogeneous correlation coefficient of more than 0.9. This means 

that the EOF first component is highly influenced by the annual periodicity that reaches 

its peak in summer and its lowest in winter. The spatial variability is very small, indicating 

that the seasonal variability is uniform across the entire area. This shows that the annual 

variability of the SST (that represents 95% of the total variability) showed a very small 

spatial variability across the coasts of the UAE. This is evident in the fact that the entire 

UAE coast demonstrates an interquartile range of only 0.7 °C in the long-term average 

SST. However, the second EOF component of SST, accounting for 1.07% of the total vari-

ance, showed a significant spatial variability (Figure 9B). The UAE’s AG coast is positively 

correlated, whereas the GO coast is negatively correlated. The second component seems 

to capture the impact of the southwest monsoon with a spatial variability that is oriented 

in the east–west direction. The southwest monsoon decreases the temperature of the GO, 

causing a bimodal cycle. The southwest monsoon does not have a significant impact on 

the SST of the AG; on the contrary, SST increases during that period. This result is in line 

with the findings of Nandkeolyar [56]. The third component of SST also revealed a signif-

icant spatial variability, whereas the Strait of Hormuz is negatively correlated and the rest 

of the coasts are positively correlated. The spatial variability is oriented in the north–south 

direction (Figure 9C). 

Figure 8. Spatial distribution of the homogenous correlation map of the first three EOFs components of the Chl-a concentra-
tion ((A–C), respectively), and their time-series component (D).

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 29 
 

 

Figure 9. Spatial distribution of the homogenous correlation map of the first three EOFs components of the SST ((A–C), 

respectively), and their time-series component (D). 

4.3. Correlation of Chl-a and SST 

The correlation coefficient of Chl-a and SST indicates that around 75% of the study 

area exhibits significant correlation as shown in Figure 10A. The coastal area of western 

UAE showed a significant positive correlation which suggests that the SST affects the con-

centration of Chl-a. However, more than half of the study area indicated that SST nega-

tively influenced the Chl-a concentration in the AG and GO, whereas more than a quarter 

of the area showed a positive relationship. The southern coast of the AG showed a signif-

icant positive correlation coefficient of 0.44 on average and standard deviation (SD) of 

0.15. The areas with positive correlation had an average Chl-a of 1.36 mg m−3 (SD of 0.51 

mg m−3) and an average SST of 25.39 °C (SD of 0.61 °C). On the other hand, the negatively 

correlated areas had an average correlation coefficient of −0.33 (SD of 0.09). The negatively 

correlated areas have shown a compact distribution of the correlation coefficient despite 

covering an area almost twice the size of the positively correlated areas. This shows that 

the variability in the negatively correlated areas is small relative to the positively corre-

lated places. The average Chl-a of the negatively correlated areas was 1.66 mg m−3 (SD of 

0.66 mg m−3) and the average SST was 25.18 °C (SD of 0.77 °C). Additionally, cross-corre-

lation analysis revealed that the best correlation between Chl-a and SST was found with-

out any lag, i.e. the largest area with a significant correlation coefficient (Figure 10B). 

Figure 9. Spatial distribution of the homogenous correlation map of the first three EOFs components of the SST ((A–C),
respectively), and their time-series component (D).



Remote Sens. 2021, 13, 2447 14 of 25

4.3. Correlation of Chl-a and SST

The correlation coefficient of Chl-a and SST indicates that around 75% of the study
area exhibits significant correlation as shown in Figure 10A. The coastal area of western
UAE showed a significant positive correlation which suggests that the SST affects the
concentration of Chl-a. However, more than half of the study area indicated that SST
negatively influenced the Chl-a concentration in the AG and GO, whereas more than a
quarter of the area showed a positive relationship. The southern coast of the AG showed a
significant positive correlation coefficient of 0.44 on average and standard deviation (SD)
of 0.15. The areas with positive correlation had an average Chl-a of 1.36 mg m−3 (SD
of 0.51 mg m−3) and an average SST of 25.39 ◦C (SD of 0.61 ◦C). On the other hand, the
negatively correlated areas had an average correlation coefficient of −0.33 (SD of 0.09). The
negatively correlated areas have shown a compact distribution of the correlation coefficient
despite covering an area almost twice the size of the positively correlated areas. This shows
that the variability in the negatively correlated areas is small relative to the positively
correlated places. The average Chl-a of the negatively correlated areas was 1.66 mg m−3

(SD of 0.66 mg m−3) and the average SST was 25.18 ◦C (SD of 0.77 ◦C). Additionally, cross-
correlation analysis revealed that the best correlation between Chl-a and SST was found
without any lag, i.e. the largest area with a significant correlation coefficient (Figure 10B).
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The spatial distribution of the correlation indicates that the UAE’s AG coast showed
a positive correlation between the Chl-a concentration and the SST and especially coasts
near the Abu Al Abyad and Sir Baniyas islands. However, the northeastern coast of the
UAE (from Dubai northward) showed a significant negative correlation covering around
one-third of the study area. Along the coasts of the GO and the Strait of Hormuz, the
correlation was almost uniform, with more than 80% of the area showing a negative
correlation. Detailed summary statistics of the correlation in the three regions are shown in
Table 1.

Moreover, the relationship between the Chl-a concentration and the SST was highly
dependent on the bathymetry of the seawaters. This relationship is due to the difference
in gaining the solar heat between the shallow (warmer) and deeper portions (colder) of
the sea. The deeper sea areas have greater thermal memory; in turn, they require a longer
time to heat and never reach the optimum temperature for algal blooms (Chl-a) growth.
Therefore, the surface water in the middle (deep) sea generally gains lower temperature
than the surface water near the shore [16]. All the areas that showed a significant positive
correlation were in the shallow coastal areas. On the contrary, the deeper areas seem
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to have an inverse relationship between Chl-a and SST (Figure 11). In the areas where
the depth of the sea is less than 20 m below sea level, the average correlation coefficient
between Chl-a concentration and SST was 0.43, whereas an average correlation of −0.34
was found in waters deeper than 40 m. Moreover, the areas that did not exhibit a significant
correlation have an average depth of 33 m and a median of 28 m below the sea level. This
means an increase in SST increases the concentration of Chl-a in shallow water with less
than 20 m depth, while an increase in SST tends to decrease the concentration of Chl-a in
the deeper waters below 40 m sea level. The full relationship between the bathymetry and
the correlation of the Chl-a and SST concentration is shown in Figure 11B.

Table 1. Basic statistics of the variables in the three main regions of interest.

UAE-Arabian Gulf Strait of Hormuz UAE-Gulf of Oman

Average Median Average Median Average Median

SST (◦C) 26.0 26.0 25.2 25.1 26.2 26.2

Chl-a (mg m−3) 2.00 1.8 2.8 2.6 2.3 2.0

Depth (m) −22.8 −20.0 −56.7 −60.0 −104.7 −96.0

Correlation Coefficient (CC) 0.09 0.27 −0.36 −0.36 −0.41 −0.42

Area with positive CC (%) 47.60 0.01 0.00

Area with negative CC (%) 30.77 80.68 81.85
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Figure 11. (A) Bathymetry of the Arabian Gulf and Gulf of Oman. (B) The relationship between the correlation coefficient
and the depth of the seawater.

The relationship between bathymetry, Chl-a, and SST follows a U-shaped curve with
the shallow and very deep seas having higher Chl-a and SST, respectively, as shown in
Figure 12. The shallow waters experienced the highest Chl-a concentration in terms of
average and median values. The deeper areas were observed to have the highest SST
(Figure 12). Eventually, as the depth increases, both Chl-a and SST start to decline rapidly
until 20 m below sea level. Then, the Chl-a concentration remains relatively stable while
SST decreases until it reaches 24.7 ◦C at a depth of 70 m. Then, the SST begins to increase,
reaching more than 26 ◦C at the depth of >95 m while the Chl-a also rises but at a lower
rate, reaching 1.8 mg m−3 from 1.4 mg m−3. The deepest region is the GO with the highest
SST was also one of the areas with a high concentration of Chl-a.
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Figure 12. The relationship between the Chl-a and SST with respect to the depth of the seawaters using (A) the long-term
average and (B) the long-term median of Chl-a and SST.

4.4. Trend Analysis

Mann–Kendal trend analysis was carried out to investigate the possibility of a signifi-
cant trend in both variables (Chl-a and SST) over the span of 17 years. The Chl-a showed
a decreasing trend in most areas, except on the coast of Abu Al Abyad Island, which is
located in the western part of the UAE. This is mainly due to nutrient leaching from the
orchards’ soil and aquafarming drainage that contains nutrients useful for algae growth.
Overall, 21% of the study area had a significant trend in Chl-a concentration. The majority
(95%) of this area experienced a decreasing trend in the concentration of the Chl-a with an
average of −0.28 mg m−3 per decade rate of decline (Figure 13A). The decreasing trend
appears to increase in areas with higher average Chl-a concentration (Figure 13B). This
suggests that the concentration of Chl-a is decreasing and at a higher rate in areas with
a relatively high concentration during the last two decades. However, the areas with
the highest concentration of Chl-a (Strait of Hormuz and the GO) did not experience a
significant trend. In the places where the trend was increasing (Abu Abyad Island), the
trend rate was increased as the average concentration increased. This is mainly due to
the agricultural and aquaculture activities involved in Abu Abyad Island and the results
suggest that the activities have increased over time (Figure 13B).
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The trend test indicated that 52% of the study area, mainly located in the northern
part, experienced a significant SST-positive trend (Figure 14). The average rate of increase
in these regions is estimated as 0.91 ◦C per decade. Most of the areas that showed an
increasing trend are places with relatively lower mean SST. As the long-term average SST
decreases, the rate of trend increases sharply, as shown in Figure 14B. This means that the
cooler regions of the AG are experiencing an increase in temperature at an alarming rate.
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for SST and (B) scatter plot of the estimated rate of trend versus the long-term average of SST (n = 85,693).

The trend in both the winter and summer seasons has been further analyzed to
investigate the seasonality of the trends. The time series is divided into two six-month
periods of summer and winter. Summer months (May to October) are categorized as very
hot and humid and the winter months (November to April) are characterized by relatively
cooler months (Appendix B). The seasonal trend analysis of the Chl-a indicated that 18%
and 13% of the study area have a significant trend for the months of summer and winter,
respectively. Less than 1% of the area with a significant trend showed a positive trend. The
Abu Abyad Island and its surroundings showed an increasing trend in both seasons. This
further supports the aforementioned reasoning that the higher concentration of Chl-a near
the island is not related to climatological phenomena but to activities on the island. The
spatial distribution showed that the trend in the winter is concentrated in the coastal area
located between Qatar and UAE, whereas in summer, the trend is experienced further from
the seashore (Figure 15A,B). The rate of decline was higher during summer with an average
rate of −0.41 mg m−3 compared to the average rate of −0.22 mg m−3 in winter. Similar to
the results of the trend analysis, the areas with higher average Chl-a concentration (Strait
of Hormuz and GO as shown in Figure 2B) did not show a significant trend in both seasons
over the last two decades.
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The seasonal trend analysis of the SST showed that the winter months had no signifi-
cant trend over the entire area (Figure 16A). On the contrary, the summer was the dominant
season of the trend. The summer months demonstrated an increasing trend in more than
two-thirds of the study area (Figure 16B). The results indicated that the summer months are
becoming hotter at a rate of higher than 1.0 ◦C per decade in half of the area. Around 20%
of the study area (almost all of them located in the northeastern tip) exhibits an increasing
trend rate higher than 1.5 ◦C per decade. The regions that are warming at a higher rate
are the areas with relatively lower average SST. Previous studies also reached a similar
conclusion, which indicates that the summer months are becoming hotter at a much higher
rate [56,58]. Piontkovski [58] showed that the trend of SST in June and July was more than
double the trend of average annual SST.
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5. Summary and Conclusions

The ecosystems of the Arabian seas (Arabian Gulf, Gulf of Oman, and Arabian Sea)
are fragile and susceptible to pollution. Among these pollutants are algal blooms. The most
effective approach for estimating the Chl-a concentration and assessing the spatiotemporal
distribution of algal blooms is the employment of remotely sensed data and remote sensing
techniques. This study analyzed the spatiotemporal variability of the Chl-a concentration
and SST in the Arabian Gulf and the Gulf of Oman along the UAE coasts. The correlation
between the Chl-a and SST is also investigated as it sheds light on the impact of the SST
on the growth of phytoplankton. The variability of both Chl-a and SST is also examined
using the empirical orthogonal function (EOF) analysis, which helps in understanding the
impact of major wind currents in the area.

The spatial distribution of the Chl-a concentration showed that the highest concen-
tration was observed in the Strait of Hormuz with an average of 2.8 mg m−3, which is
1.1 mg m−3 higher than the average for the entire study area. The Gulf of Oman was also
the hottest region with an average of 26 ◦C, which is one degree hotter than the average
of the total area. Moreover, SST showed a uniform gradient in the northwest to southeast
direction. The summer months (May to October) were the hottest months, with an average
of ~31 ◦C, whereas in the winter months (November to April), the SST reached as low
as ~19 ◦C.

The first EOF component of Chl-a is related to the northeast monsoon winds (Novem-
ber to March), which cools the sea surface. The Chl-a concentration increased in the Strait
of Hormuz and the Gulf of Oman due to the availability of nutrients in addition to the
optimal atmospheric conditions. The spikes in concentration over the coast of UAE (AG) at
the end of 2004, 2007, and 2018 to 2019 were related to the second component.

Three quarters of the study area experienced a significant correlation between the
Chl-a and SST. The coastal areas of western UAE and Qatar showed a significant positive
correlation, which suggests that the SST affects the concentration of Chl-a. However, more
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than half of the study area indicated that SST negatively influenced the Chl-a concentration
in the Arabian Gulf and the Gulf of Oman, especially areas in the deep sea. Furthermore,
the correlation coefficient and the bathymetry of the seas showed a strong relationship.
The shallow areas had a strong positive correlation between the SST and Chl-a, whereas
the deeper areas were inclined to have a negative correlation.

Lastly, trend analysis was carried out to investigate the presence of significant trends
using the correlated seasonal Mann–Kendal trend test. The Chl-a data showed the presence
of a trend in just 21% of the study area, of which 95% indicated a decreasing trend. Most of
the area with a decreasing trend is located in the southern region, which is closer to the
coasts of the UAE and Qatar. The rate at which the trend is decreasing is also related to the
average Chl-a concentration. Higher average values of Chl-a concentration are associated
with a higher rate of decline, and vice versa. The SST also showed the presence of a
significant trend in more than 52% of the study area. However, in this case, an increasing
trend is observed. Similarly, the rate of trend showed an inverse relationship with the
average SST, the higher the average SST, the smaller the rate of increase, and vice-versa.

The main limitations of the study are the missing data due to cloud cover and the
relatively short period of the dataset (2003 to 2019). Even though a mature technique
of filling the data was followed, a relatively large amount of missing data can cause
uncertainty in the results. The conclusions of this research were similar to previously
conducted studies. However, the authors feel that these limitations are worth mentioning.
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