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Simple Summary: Accurate prediction of breast cancer metastasis risks using gene expression data
and machine learning can help improve cancer treatment and overall survival. However, breast
cancer can be categorized into multiple subtypes, and a single predictive model may not work well
for all patients. In this work, we propose a computational method to construct personalized models,
where the key is to select a group of patients to train a different model for each testing patient.
Experimental results on multiple datasets showed that the proposed method, termed Personalized
Classifier with Multiple Thresholds (PCMT), achieved significantly better prediction accuracy than
existing algorithms that train classifiers using all available patients or using patients belonging to
a predefined subtype. In addition, the top features identified by PCMT are robust across different
datasets, and include genes that are well known to be associated with subtype-specific metastasis.

Abstract: Accurate prediction of breast cancer metastasis in the early stages of cancer diagnosis
is crucial to reduce cancer-related deaths. With the availability of gene expression datasets, many
machine-learning models have been proposed to predict breast cancer metastasis using thousands of
genes simultaneously. However, the prediction accuracy of the models using gene expression often
suffers from the diverse molecular characteristics across different datasets. Additionally, breast cancer
is known to have many subtypes, which hinders the performance of the models aimed at all subtypes.
To overcome the heterogeneous nature of breast cancer, we propose a method to obtain personalized
classifiers that are trained on subsets of patients selected using the similarities between training
and testing patients. Results on multiple independent datasets showed that our proposed approach
significantly improved prediction accuracy compared to the models trained on the complete training
dataset and models trained on specific cancer subtypes. Our results also showed that personalized
classifiers trained on positively and negatively correlated patients outperformed classifiers trained
only on positively correlated patients, highlighting the importance of selecting proper patient subsets
for constructing personalized classifiers. Additionally, our proposed approach obtained more robust
features than the other models and identified different features for different patients, making it a
promising tool for designing personalized medicine for cancer patients.

Keywords: cancer metastasis; personalized classifier; gene expression; biomarker discovery

1. Introduction

Breast cancer is a leading cause of cancer-related death in women, while the majority
of breast cancer patients have a good prognosis after therapy, about 30% of early-stage
breast cancer patients will experience distant metastases, and 90% of patient deaths are
because of complications from metastases [1]. High-throughput gene expression profiling
by microarray or next-generation sequencing has played a significant role in identifying
biomarkers to predict metastasis [2–4]. Additionally, integration of gene expression data
with network information such as protein–protein interaction network, metabolic net-
work, gene-gene co-expression network, and molecular pathways have resulted in more
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accurate prediction models, stable and biologically interpretable features, or both [5–15].
The accuracy of these prediction models is often comparable to or better than conventional
histological grading-based methods [16–18].

It is well established that cancer is a heterogeneous disease, which hinders the overall
performance of metastasis prediction models. Breast cancer can be commonly divided into
five subtypes (i.e., basal, HER2, luminal-A, luminal-B, and normal-like), each categorized
by different molecular characteristics and prognosis [17,19–23]. However, the subtype
definition can vary, depending on the gene signatures used. Importantly, the molecular
profile for patients within the same subtype can still show significant diversity. To address
the heterogeneity issue, Jahid et al. proposed an ensemble-based method, a personalized
committee classifier, for metastasis prediction [24], which achieved better performance than
other ensemble approaches. The basic idea is to generate a vast pool of classifiers using
different groups of patients as training data and select an appropriate subset of classifiers
from the pool for each patient to be predicted. However, the algorithm depends on several
critical parameters for model selection, which is hard to tune and does not scale well to
larger datasets because of the large number of classifiers to be generated. In addition, due
to its complexity, the prediction model for each patient is hard to interpret.

In this paper, we propose a novel method, termed personalized classifier with multiple
thresholds (PCMT), to address the issues mentioned above. To predict the metastasis risk
for a target patient, the algorithm first selects a group of training patients whose similarities
to the target patient are the highest or lowest, and then train a classifier using only these
selected patients to make a prediction for the target patient. Our results showed that
PCMT achieved significantly better prediction accuracy compared to logistic regression
and random forest models trained on the whole dataset in several cross-validation schemes
using multiple independent datasets. Additionally, PCMT outperformed subtype-specific
models trained only on patients of the same subtype. Our analysis also revealed that in-
cluding the most similar and the least similar patients in training the personalized classifier
improved the prediction accuracy of PCMT compared to classifiers trained only on the
most similar patients. Finally, we showed that personalized classifiers improved robustness
in identifying top features compared to the base models and that the personalized classifier
was able to generate different top genes for different subtypes, which was not possible by
using the base models.

2. Methods
2.1. ACES Dataset

For model training and testing, the gene expression dataset is collected from the Ams-
terdam Classification Evaluation Suite (ACES) [25]. This dataset is compiled from twelve
separate breast cancer cohorts from NCBI’s Gene Expression omnibus. Only the Affymetrix
HG-U133a microarray platform was used in this compiled dataset, and duplicated samples
with the same GEO id were excluded from multiple cohorts. Details and preprocessing
steps are given in [25]. Briefly, sample array quality control was checked for all the pa-
tients from the same study using R’s arrayQualityMetrics; outlier samples were excluded
from further consideration using RLE (Relative Log Expression) or NUSE (Normalized
Unscaled Standard Error Plot) analysis; data is then normalized by justRMA method from
R, followed by log normalization and mean centered normalization. Finally, R’s combat
method was used to remove batch effects from the final cohort. The final dataset contains
the expression levels of 12,750 genes for 1616 patients. A patient is recognized as having a
good/negative/non-metastatic outcome if the patient is free from relapse within five years;
otherwise, the patient is recognized as having a poor/positive/metastatic outcome. In the
overall ACES dataset, there were 455 metastatic outcomes. Details for each cohort are given
in Table 1.
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Table 1. specification of the studies in ACES.

Dataset Geo Accession No. No. of Poor No. of Good Total Patient

Desmedt 7390 56 127 183
Hatzis 25,066 102 48 150
Ivshina 4922 30 72 102

Loi 6532 24 33 57
Pawitan 1456 33 114 147
Miller 3494 21 68 89
Minn 2603 21 44 65

Schmidt 11,121 24 145 169
Symmans 17,705 37 187 224

WangY 5327 10 42 52
WangYE 2034 88 169 257
Zhang 12,093 9 112 121
ACES 455 1161 1616

2.2. NKI Dataset

To further evaluate the feasibility of our proposed algorithm, we used another dataset
independent from the ACES dataset. The NKI gene expression dataset was obtained using
the Affymetrix HG-U133a platform and contains 11,658 genes and 295 patients [2]. There
are 10,398 common genes between the ACES and NKI datasets. The expression data of
these common genes from the two datasets are quantile normalized together so that data
from the two sources have the same distribution. Among the 295 patients in the NKI
dataset, 78 developed metastasis within five years of initial diagnosis and are labelled as
having poor outcomes, while the others are labelled as having good outcomes.

2.3. TCGA Dataset

To assess whether the classifiers built using microarray data can be used to make predic-
tions on newer data generated with the RNAseq technology, we downloaded TCGA prognostic
dataset [26]. We considered only primary solid tumors (sample_type_id = 01). The prognostic
dataset includes the PFI.time attribute, which indicates the progression-free interval of the pa-
tient, alongside a boolean event status attribute, which indicates if an actual progression-related
event has occurred and the patient simply stopped following up with the care providers. We
define our prognostic outcome label as a function of these two attributes as follows:

outcome(PFI.time, event) =


good, if PFI.time > 5 years
poor, if PFI.time ≤ 5 years and event = 1
undecided, otherwise

For this study, we only considered patients with either “good” or “poor” outcomes.
After applying these criteria, the final dataset had 225 patients with good outcomes and
123 with poor outcomes.

The TCGA gene expression dataset consisted of a total of 13,494 protein-coding genes,
of which 9874 are common in the ACES dataset. The TCGA log2(norm + 1) data was first
mean centered, and quantile normalization was applied to the combined TCGA and ACES
dataset containing only the common genes.

2.4. Personalized Classifier with Multiple Thresholds (PCMT)

Cancer is a heterogeneous disease, meaning many different subtypes exist within the
dataset. However, the patients with the same subtype are similar in molecular character-
istics. Therefore, we define Personalized Classifier (PC) for a sample as a classifier built
on a subset of the training samples selected according to their similarity with that specific
sample. Patients with the highest similarity tend to have the same label, which may reduce
the generalizability of the learned model. In addition, these patients may have distinct
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distributions in some feature values, and the resulting model may be sensitive to outliers in
the test patient. We included the most similar and most dissimilar patients from the training
data to solve this problem. Similarity is measured using the Pearson Correlation Coefficient
(PCC) between two feature vectors, where each feature vector contains the expression levels
of 12,750 genes for one patient. Other similarity measures may be used, depending on
the dataset’s characteristics. To build a PC for a patient, we first calculate the PCCs for
the entire training dataset. Then we filtered the similar and dissimilar patients based on a
PCC threshold, estimated from the average number of samples in each training data subset
resulting from the threshold. Next, the positively and negatively correlated patients whose
absolute PCCs are greater than the PCC threshold are selected. Then a Logistic Regression
(LR) model has trained on the filtered training patients using the expression levels of the
12,750 genes as independent variables and metastasis status as dependent variables. Finally,
the testing patient is classified by the trained LR model. Details are given in Algorithm 1.

To build Personalized Classifier with Multiple Thresholds (PCMT), a set of PCC thresh-
olds are used to cover a wide range of training data sizes, reflecting the uncertainty in
subtype population size for each testing patient. The PCC thresholds in this paper have
been chosen such that for different thresholds, sufficiently different training datasets can be
selected. The complete ACES dataset has ∼1600 patients, which can be further grouped into
five subtypes with sizes ranging from ∼100 to ∼600. Therefore, we chose six PCC thresholds
from 0.15 to 0.275 with a 0.025 increase, which resulted in median training dataset sizes from
71 (PCC = 0.275) to 504 (PCC = 0.15). A smaller (less stringent) threshold would increase the
training dataset size and may result in too many training patients and defeat the purpose of
personalized classifiers. In contrast, a larger (more stringent) threshold would reduce the
training dataset size and cause overfitting.

After the classifiers from different PCC thresholds are generated, the testing patient
is classified by each of the trained PC classifiers, which generate predicted probabilities.
The predicted probabilities from the multiple PC classifiers are averaged to obtain the
predicted probability of PCMT for the testing patient. The algorithm details are given in
Algorithm 2.

Algorithm 1 Personalized Classifier.

Require: X_train, X_test, pcc_threshold
PCCs are calculated for each patient in X_train for X_test
Identify the patients in X_train whose absolute PCC is greater than pcc_threshold
Trained a logistic regression (LR) model using the identified patients
Return the trained LR model

Algorithm 2 Personalized Classifier with Multiple Thresholds (PCMT).

Require: X_train, X_test, a set of pcc_thresholds
Get Personalized Classifiers for each of the pcc_threshold in the pcc_thresholds for
X_train and X_test (i.e., Personalized Classifier(X_train, X_test, pcc_threshold))
Obtain predicted probabilities from each of the PC classifiers for X_test
Average the predicted probabilities of the PC classifiers
Return predicted probability for the X_test

2.5. Prediction Performance Comparison

To compare the prediction accuracy improvement of PCMT with the base classifiers,
two models (i.e., Logistic Regression (LR) and Random Forest (RF)) implemented in the
python scikit-learn package were considered. Default parameters were used in all experi-
ments, except that for LR, the L1 penalty was set to true to achieve sparse solutions due
to a large number of gene features present in the dataset. Previous studies in the same
dataset and similar datasets have shown that RF has consistently outperformed other
classifiers in predicting breast cancer metastasis, and its performance is robust concerning
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parameter variations, making it a preferred choice for benchmarking [24,27]. The area
under the receiver-operating characteristics curve (AUC) score was used to determine
the prediction accuracy of the prediction models. Performance measure using area under
the precision-recall curve (AUPRC) had similar results and was not shown in the paper
for clarity. Three types of cross-validation (CV) schemes were performed. First, 5-fold
cross-validation (5-FCV) was repeated eight times, providing 40 AUC scores. Second, leave-
one-study-out cross-validation (LOSO-CV) was performed, where one study was kept as a
test set, and the other 11 studies were kept as the training dataset. LOSO-CV is used here
to evaluate the algorithm’s performance in addressing the heterogeneity between different
patient cohorts. Additionally, leave-one-out cross-validation (LOOCV) was performed to
capture the prediction accuracy over the whole dataset. Finally, paired t-test was performed
in 5-FCV and LOSO-CV, comparing PCMT with the individual PC classifiers and the base
LR and base RF models.

To further evaluate the performance of PCMT and other classifiers, we used the
ACES dataset as the training data, and the TCGA or NKI dataset as the testing data,
while the experiment is similar to the LOSO-CV evaluation, here only a minimum cross-
dataset normalization was performed between the training and testing data. In addition,
the TCGA dataset was obtained using the RNAseq technology, while the ACES dataset
was obtained using the microarray technology. Therefore, this experiment is expected to
be more challenging than the LOSO-CV evaluation on ACES dataset, and may represent a
more realistic clinical setting. We note that cross-dataset compatibility is itself a difficult
challenge and therefore additional effort will be needed to further improve the cross-dataset
normalization procedures in future studies.

2.6. Prediction Accuracy of Subtype-Specific Models

Another experiment we did was to measure the prediction accuracy for each pre-
defined subtype of breast cancer. Patient in the ACES dataset are classified into
five subtypes, i.e., basal, HER2, luminal-A, luminal-B, and normal-like, based on the
expression patterns of pre-defined gene markers [25]. To evaluate subtype-specific clas-
sifiers, leave-one-out cross-validation (LOOCV) was performed with patients from each
subtype using base LR and base RF models. In this way, each model had 5 AUC scores
for the five pre-defined subtypes. On the other hand, to capture the AUC score of PCMT,
leave-one-out cross-validation (LOOCV) was performed on the ACES dataset to generate
the predicted probabilities for each patient belonging to the ACES dataset. Then, predicted
probabilities for a subtype were taken into account, and the AUC score was calculated only
using those predicted probabilities for that specific subtype.

2.7. Prediction Accuracy Improvement Using Negatively Correlated Patients

We performed an additional experiment to show the impact of including the negatively
correlated patients in the PC classifier. As the baseline experiment, the results obtained from
Section 2.5 were used, where both the positively and negatively correlated patients passing
the PCC thresholds were included in the PC classifiers. An additional experiment was
done for PCMT using only the positively correlated patients. Paired t-test was performed
in 5-FCV and LOSO-CV to compare the PC classifiers trained on positively and negatively
correlated patients with the PC classifiers trained on only the positively correlated patients
for different thresholds of PC classifiers and PCMT.

2.8. Robustness Analysis of PC Classifier

The whole ACES dataset was randomly partitioned into two disjoint sub-samples.
Then top x features were taken from both the sub-samples for robustness analysis. Finally,
the robustness measure was defined as the ratio between the observed number of common
top features from the two sub-samples and the expected number of common features
by chance [28]. Since the expected number of overlaps between two lists of features is
calculated as
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expected_#_of_overlaps =
(#_of_selected_top_features)2

(total_#_of_features)

The number of selected top features is determined by [28]:

X =
√

total_#_of_features × expected_#_of_overlaps (1)

Splitting ACES into two sub-samples was repeated 20 times so that a vector of 20 overlap
ratios was obtained for each model for a specific value of the expected number of overlaps.
The number of expected overlaps was kept as 5, 10, 20, 30, and 50, so the top features chosen
were 252, 357, 504, 618, and 798 from each model.

A single personalized classifier (PC) with a PCC threshold of 0.175 was used for the
robustness evaluation. For a single partition of sub-samples, leave-one-out cross-validation
(LOOCV) was performed for this specific PCC threshold. Then the learned coefficients
were generated for each sample belonging to that partition. The average of the absolute
coefficients was calculated to obtain a feature importance score from PC classifiers. The exact
process was repeated for the other disjoint partition of sub-samples. This way, features with
the highest average coefficient were selected from two disjoint sub-samples. The robustness
measure was calculated by taking the ratio between the number of common top features and
the number of expected overlaps. As a random control, another version of the personalized
classifier was created using random neighbors while keeping the same number of patients
as the actual personalized classifier with a PCC threshold set to 0.175. For base LR and base
RF, two different models were trained on two disjoint sub-samples, and top features were
selected from the model’s feature importance score. Random Forest inherently provides
feature importance scores for the features. For LR, the absolute values of the learned
coefficients were used for selecting the top features.

2.9. Top Gene Analysis from Personalized Classifiers

Model coefficients were generated from personalized classifiers using LOOCV, in which
the threshold was set to 0.2. The coefficients of the patients belonging to a subtype are taken
into consideration. Then feature ranking was generated by averaging the absolute coeffi-
cient. This way, 20 top genes were selected for five subtypes from a personalized classifier.
Similarly, coefficients were generated by base LR using LOOCV. Finally, feature ranking
was generated by taking the average of absolute coefficient for base LR. Top 20 genes were
selected from base LR.

3. Results and Discussion
3.1. Prediction Accuracy of Personalized Classifier with Multiple Thresholds (PCMT)

To determine the effectiveness of PCMT in predicting metastasis, three different cross-
validation schemes were employed. In 5-FCV settings, PCMT outperformed base LR and
base RF as well as each of the single personalized classifiers considerably, shown in Figure 1.
The mean AUC differences are statistically significant (paired t-test). In leave-one-study-out
cross-validation (LOSO-CV), PCMT outperformed the base LR and RF models, and the
differences are statistically significant. PCMT also achieved better performance than each
PCs with limited statistical significance (Figure 1). In general, cross-dataset validation
is a hard task due to dataset-specific characteristics that cannot be easily removed even
with cross-dataset normalization. In addition, these datasets differ significantly in terms
of dataset size and class distribution (Table 1), as well as subtype distribution (data not
shown). When a relatively larger dataset is held out, there may not be enough number
of similar patients in the training data to build an accurate predictive model. The results
from LOOCV are very similar to that from 5 to FCV. In addition, we also measured
the performance using Area Under Precision-Recall Curve in the LOOCV experiments,
and the trend is almost identical to the results measured by Area Under ROC Curve (data
not shown).
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(a) 5-FCV

(b) LOSO-CV

(c) LOOCV
Figure 1. AUC comparison of personalized classifiers for different thresholds in (a) 5-FCV, (b) LOSO-CV
and (c) LOOCV. Bar denotes the average AUC. Value on top of the bar denotes the −log10(p_value) of
the paired t-test between PCMT and that corresponding bar.
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While PCMT and all the single PCs used LR as its base classifier, building a single
classifier for all patients using LR performed much worse in all three validation schemes.
This indicates that a single model for the whole dataset cannot capture the heterogeneity
within the dataset.

For single personalized classifiers, the prediction accuracy is the highest for PCC
threshold = 0.2 and much lower for PCC = 0.15 and PCC = 0.275, suggesting that a balance
between training dataset size and heterogeneity in training data is needed for accurate
prediction models. From Figure 2, it can be seen that the selected number of patients
decreases as the PCC threshold increases. The median number of patients is around 70
for the PCC threshold of 0.275, which may be too small to build a good prediction model
without overfitting. On the other hand, if the PCC threshold is too small, the number of
training patients in each classifier may be too large, and the system will become similar
to a single classifier for all patients. It will result in lower prediction performance as the
heterogeneity of patient subtype characteristics is lost.

0.15 0.175 0.2 0.225 0.25 0.275

Personalized Classifier Thresholds
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Figure 2. Number of patients used in training personalized classifiers for each patient for specific
personalized classifier threshold.

In another experiment, models trained on the ACES dataset were evaluated using
the TCGA and NKI datasets. The results are shown in Figure 3. The NKI dataset was
produced with the same microarray platform as the ACES dataset, but the pre-processing
steps are slightly different. The overall performance on the NKI dataset is similar to the
LOSO-CV results on ACES. However, the relative performance of the single personalized
classifiers with different thresholds shows a somewhat different trend than in the ACES
dataset, suggesting a different patient composition in the NKI dataset. Regardless, PCMT
achieved near optimal results without the burden of choosing the best threshold value.

On the TCGA data, PCMT achieved much higher prediction performance compared
to the base LR, base RF and single personalized classifiers. On the other hand, the overall
performance is much lower in all models compared to the performance on the ACES dataset.
This is not surprising given that the TCGA data was generated with RNAseq technology,
and improving the compatibility between microarray data and RNAseq data is itself a
daunting challenge [29]. Nevertheless, the performance gain of PCMT mainly comes from
its advantage in selecting relevant patients to train classifiers that are appropriate for the
test patient’s molecular characteristics, which is relatively less affected by cross-dataset
differences. Additional effort will be needed in future studies to improve the prediction
performance in cross-dataset and cross-platform testing in a realistic clinical setting.
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(a) NKI

(b) TCGA
Figure 3. Models are train on ACES dataste only. Then mdoels were evaluted on two independent
dataset TCGA and NKI breast cancer dataset.

3.2. Running Time Comparison

One potential disadvantage of PCMT is that it needs to calculate the Pearson cor-
relation coefficient between each testing sample and all the training samples, and train
multiple classifiers for each testing sample. To evaluate its efficiency, we took note of
the running time while performing leave-one-out cross-validation (LOOCV) for LR, RF,
and PCMT. The total running time to complete the LOOCV is 17,697 s for LR, 8546 s for RF,
and 6353 s for PCMT. As there are 1616 patients, this translates to about 11 s for LR and
5.3 s for RF to build a single model. The time taken to make predictions with LR and RF
models is negligible. For PCMT, there are no pre-trained models. The average running time
is 4 s per testing instance, which is spent on identifying training samples and constructing
multiple LR classifiers with smaller training datasets than in LR or RF. In practice, as testing
samples usually do not come in large batches, the increased running time in testing for
PCMT should not be a major concern.

3.3. Prediction Accuracy Improvement by Including Negatively Correlated Patients in the
Personalized Classifier

We hypothesize that including negatively correlated patients in the training data
increases diversity within the training data, which enables the personalized classifier to
classify the testing patient better. Figure 4 shows correlation coefficients between patients
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within the same or different breast cancer intrinsic subtypes. It can be seen that the patients
have a positive correlation among the patients of a specific subtype but have a low or
negative correlation with the patients from different subtypes, which leads to the idea of
including the negatively correlated patients in the personalized classifier. To show the
effectiveness of including negatively correlated patients in the personalized classifiers,
prediction accuracy was measured using the personalized classifiers built with only the
positively correlated patients and including both positive and negatively correlated patients.
The results are given in Figure 5. It can be observed that the personalized classifiers, both
the single PCs and PCMT, trained on positively and negatively correlated patients achieved
higher prediction accuracy than the classifiers trained on only positively correlated patients
for all three cross-validation schemes.

Figure 4. Patient to patient Pearson correlation coefficient of gene expression organized by breast
cancer intrinsic subtypes.
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Figure 5. AUC comparison between personalized classifiers trained on positively and negatively
correlated samples and personalized classifiers trained on only positively correlated samples.

As shown in Figure 6, the ratio of positively and negatively correlated samples in-
creases as the PCC threshold increases. In fact, when PCC = 0.275, not many negatively
correlated samples can be found for the personalized classifiers. This explains why the
AUC difference for PCC threshold 0.275 is very small between the personalized classifiers
trained on positively and negatively correlated samples and personalized classifiers trained
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on only positively correlated samples. In other words, for PCC = 0.275, the personalized
classifiers using positively and negatively correlated samples are almost identical to the
personalized classifiers using only positively correlated samples, with very few negatively
correlated samples remaining for that stringent PCC threshold. Taken together, it is evident
that increasing patient diversity within the training data by including some negatively
correlated samples has resulted in better prediction accuracy for the personalized classifiers.
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Figure 6. Boxplot of the ratio of positively and negatively correlated samples for each patient for
each personalized classifier thresholds.

3.4. Prediction Performance of Subtype Specific Classifiers

In this analysis, we examined how personalized classifiers compare to subtype-specific
models built using patients belonging to a specific subtype. The prediction accuracy of
PCMT, subtype-specific LR and subtype-specific RF classifiers are given in Figure 7. It
can be observed that PCMT outperforms subtype-specific models in every subtype except
HER2, where subtype-specific LR and PCMT achieved similar accuracy.

Basal Her2 Luminal A Luminal B Normal-like
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
U

C

PCMT Base LR Base RF

Figure 7. Prediction accuracy of subtype specific classifiers for PCMT, base LR and base RF models.

The relatively mediocre prediction accuracy of PCMT in HER2 is likely because the
personalized classifiers included much more negatively correlated samples than positively
correlated samples (data not shown), hampered the prediction accuracy of PCMT in the
HER2 subtype. It is also observable that the patients in the HER2 subtype have lower
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correlations within themselves and have much higher negative correlations with the patients
of different subtypes (Figure 4). In general, the training data for each personalized classifier
included not only samples from the same subtype but also patients from different subtypes
(Figure 8). For lower PCC thresholds, many patients have a similar ratio of the same/different
subtypes in their classifiers, which helped improve prediction accuracy in these subtypes.
It is important to note that subtype-specific LR and RF classifiers achieved poor prediction
accuracy compared to PCMT in the normal-like subtype. This is likely because of two reasons.
First, the number of patients in the normal-like subtype is smaller than in other subtypes.
Secondly, the normal-like subtype is relatively less well-defined. PCMT achieved better
prediction accuracy in the normal-like subtype with the help of including patients not strictly
falling into the predefined normal-like subtype. It is worth noting that base LR outperforms
base RF significantly in HER2, luminal A, and normal-like subtypes. Subtype-specific patients
are much more similar to each other, so it has lower diversity within the dataset, potentially
enabling base LR to obtain better prediction accuracy than base RF.

0.15 0.175 0.2 0.225 0.25 0.275

Personalized Classifier Thresholds

-4

-2

0

2

4

lo
g
(s

a
m

e
 /
 d

if
fe

re
n
t 
s
u
b
ty

p
e
)

Figure 8. Boxplot of the ratio of patient subtype and other subtypes for each patient for each
personalized classifier thresholds.

3.5. Robustness of Personalized Classifier

To evaluate whether the features selected by the classifiers are robust, we partitioned
the dataset into two disjoint groups, applied different classification algorithms to each
partition to select a given number of top features, and counted the number of common top
features shared between the two partitions. Model robustness is then defined as the ratio
between the observed number of common features and the expected number of common
features (see Methods).

Figure 9 shows the robustness measure of the personalized classifier (PC) constructed
with Pearson correlation threshold 0.175 (results with other thresholds are similar). It can
be seen that the features obtained from PC are much more robust than that from the LR and
RF classifiers. (Note that every classifier tested here has identified robust features, and the
overlap is statistically significant in every classifier, with p-value < 10−17, Fisher’s exact
test). Interestingly, when neighbors were selected randomly (PC-random, Figure 9), PC still
showed better robustness than LR and RF, although at a much lower level compared to the
real PC. This shows that the robustness achieved by PC is not simply because the feature
scores from PC are based on an average of many classifiers (one for each patient).

The robustness of the PC can be attributed to the fact that each component classifier of
the PC is learned from a group of generally very similar patients, and therefore, the feature
scores are concentrated on relatively fewer features. As a result, the feature score distribu-
tion is skewed, with the important features scored much higher than the rest of the features,
and feature ranking is robust between the two disjoint patient partitions. In contrast, when
the classifier is learned from all patients (as in base LR), due to the high heterogeneity of the
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training samples, the decision boundary tends to be complex, and many more features are
needed to construct a good model. Therefore, the feature scores tend to spread out to many
features, which causes the feature ranking to be more sensitive to a small perturbation
in the training data. To further explore this possibility, we computed the percent of total
unsigned feature scores accounted for by the top 5% features. (Results on top 1% or 10%
features are qualitatively similar.) For an LR model learned from all patients, the top 5% of
features accounted for 16.9% of total feature weights. In comparison, for PC, the top 5% of
features accounted for 19.6% of feature weights on average (minimum: 18.1%, maximum:
22.9%), significantly higher than in the base LR (Figure 10). Importantly, when the feature
scores from the different patients were averaged, the same pattern remained: the top 5% of
features accounted for 19.5% of feature weights. Together, these results support that the fea-
tures identified by PC are likely true metastasis-related biomarkers for individual patients,
which can be explored further to understand the molecular mechanism of metastasis and
identify personalized druggable targets.

Figure 9. Robustness measure (y-axis) for Personalized LR, Base LR and Base RF at different numbers
of top features (x-axis).
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Figure 10. Percent of total feature scores accounted for by the top 5% features in PC vs. base LR.

3.6. Top Genes Selected by Personalized Classifier

A key advantage of our algorithm is its ability to identify patient-specific features that
are important for predicting individual metastasis events. For a more concise analysis, here
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we report the most significant features for each subtype by averaging the feature coefficient
vectors belonging to patients in the same subtype. Table 2 shows the top 20 genes identified
for each subtype by personalized classifiers and the top 20 features identified by LR from
the whole dataset, while many genes have a clear association with cancer or metastasis,
for a relatively fair comparison, we performed a PubMed query using the gene symbol,
which is limited to title only, and the word “metastasis” or “metastatic”, which can appear
in title or abstract, as keywords. The number of PubMed hits was recorded to indicate the
extent of evidence for the gene’s association with metastasis.

Table 2. Top 20 genes from each breast cancer subtype are given in the table for personalized classifier
from LOOCV (PCC threshold = 0.2). The top 20 genes from Base LR are also given. Hits indicate that
with that gene symbol, the number of PubMed hits occurred with the keyword metastasis/metastatic
in the title/abstract of articles within the PubMed database. Genes are sorted by PubMed hits.

Top Genes from Personalized Classifier for Each Subtype
Top Genes from LR

Basal HER2 Luminal A Luminal B Normal-like

Gene Hits Gene Hits Gene Hits Gene Hits Gene Hits Gene Hits

CXCL8 55 MMP1 280 AGR2 44 MMP1 280 MMP1 280 KIT 393
CXCL13 25 CDH1 172 ALB 39 AGR2 44 CD24 236 ALB 39
UCHL1 22 AGR2 44 OLFM4 14 ALB 39 ESR1 138 NTS 22

PTX3 13 ALB 39 GJA1 10 TFF1 25 AGR2 44 PTX3 13
NTRK2 7 TFF1 25 HOXC10 5 GJA1 10 ALB 39 DLX2 3

SEMA3C 6 TFF3 20 TSPYL5 3 DUSP4 4 OLFM4 14 PBX3 3
DUSP4 4 OLFM4 14 HLA-DQB1 3 CST1 4 STC1 13 HMGCS2 2
CST1 4 AZGP1 8 TMPRSS3 2 TSPYL5 3 GJA1 10 COL4A6 2

TSPYL5 3 CST1 4 HOPX 2 HLA-DQB1 3 KRT7 7 HOXB2 1
DLX2 3 TSPYL5 3 CPB1 1 HMGCS2 2 CLCA2 3 SPON1 1
ZIC1 2 HLA-DQB1 3 NPY1R 1 CPB1 1 HMGCS2 2 TMEM47 1

TMPRSS3 2 HMGCS2 2 SLC1A1 1 NPY1R 1 CPB1 1 ANK3 1
CPB1 1 CPB1 1 DDIT4 1 TFAP2B 1 SCGB2A1 1 MYO6 1

NPY1R 1 DDIT4 1 SCGB2A1 1 DHRS2 1 UGT2B4 1 ZDHHC11 0
SLC1A1 1 TFAP2B 1 GRIA2 1 DDIT4 1 DDIT4 1 CRISP2 0
TMEM47 1 SCGB1D2 1 SCGB1D2 1 SCGB1D2 1 TFAP2B 1 QDPR 0
GPRC5B 1 DHRS2 1 MSMB 1 SLC1A1 1 GRIA2 1 MNDA 0
MYBPC1 0 VGLL1 1 TFAP2B 1 CSN3 0 PDZK1 1 GSTT2 0
CHPT1 0 CYP4B1 0 TCN1 0 KRT15 0 TCN1 0 MREG 0
FMO3 0 TCN1 0 MYBPC1 0 PGGHG 0 UGT2B28 0 C3orf14 0

From Table 2, it can be seen that overall, the personalized classifiers identified more
known metastasis-associated genes than the base LR classifier (17–18 for personalized
classifiers vs. 13 for LR). In addition, it appears that some of the top genes identified by
LR may be associated with the metastasis of different subtypes. For example, ALB is a top
feature in four other subtypes but not Basal. On the other hand, NTS, PTX3, and DLX2 are
specific to the Basal subtype. In addition, the personalized classifiers identified many more
markers that are not ranked high in LR. For example, CXCL8 is a well-known chemokine to
modulate tumor proliferation, invasion, and migration [30], and has recently been identified
as a biomarker for triple-negative (basal/basal-like) breast cancer [31,32]. Similar roles
have also been identified for CXCL13 and UCHL1. Several well-known genes, such as
MMP1, ALB, and AGR2, have been identified as among the top features for all subtypes
except basal but were all missed by LR. CDH1, TFF1, and TFF3 have been found to be
associated specifically with the HER2 subtype. GJA1, a key component in gap junction
transmembrane channel, is a top feature in Luminal A, Luminal B, and normal-like subtype,
consistent with a recent finding [33].

3.7. Potential Challenges and Limitations for Applications to Other Cancer Types

Since most types of cancer are heterogeneous in nature, and have multiple subtypes
that have different molecular and/or clinical characteristics [34], we believe the general
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idea proposed in this paper may have the potential to be applied to other cancer types for
predicting metastasis or other clinical endpoints. However, some of the design principles
in our method implicitly utilize key insight from breast cancer subtypes, for example,
the approximate subtype distributions, which can vary between different cancer types.
Therefore, some fine tuning of the parameters may be necessary and may depend on cancer-
specific characteristics. In addition, to learn personalized models requires a relatively larger
number of training samples to perform sample selection. We found that newer dataset,
such as the expression data collected by The Cancer Genome Atlas [26], do not yet have
enough labelled patients to train personalized models, as the cancer outcomes for many
patients are censored. Therefore, we plan to evaluate the effectiveness of the method on
other cancer types in a future study.

4. Conclusions

Improving the prediction of metastasis is crucial to reduce the death risk of breast
cancer patients. In this paper, we proposed training personalized classifiers using only
a subset of training samples whose gene expression levels are highly correlated with
the test patient. Results show that the personalized classifier obtained better prediction
accuracy than the base models trained on the complete training dataset as well as models
trained with patient in the same intrinsic subtype. Our results also revealed that including
negatively correlated patients in the personalized classifier improves the diversity within
the model, leading to more accurate predictions when compared to classifiers trained
on only positively correlated patients. The top features identified by the personalized
models were shown to be more robust than those identified by the base models. Moreover,
the personalized models identified different top features for different subtypes, some of
which were already shown to be associated with subtype-specific metastasis. It is worth
noting that these results are based on one of the largest datasets for breast cancer metastasis
prediction consisting of 12 patient cohorts, as well as two additional datasets that have
been processed separately. In particular, the cross-dataset evaluation based on TCGA breast
cancer data is challenging, as the models were trained on microarray data and tested on
RNAseq data. Therefore, the results support that our method has achieved genuine, robust
performance gain compared to traditional methods in predicting breast cancer metastasis.
We believe that, with sufficient training data and further parameter tuning, the idea of
personalized classifiers may be generalized to other applications, such as predicting clinical
endpoints for other cancer types and designing personalized medicine for cancer patients.
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