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Abstract: In this paper, an impulsive fractional-like system of differential equations is introduced.
The notions of practical stability and boundedness with respect to h-manifolds for fractional-like
differential equations are generalized to the impulsive case. For the first time in the literature,
Lyapunov-like functions and their derivatives with respect to impulsive fractional-like systems
are defined. As an application, an impulsive fractional-like system of Lotka–Volterra equations is
considered and new criteria for practical exponential stability are proposed. In addition, the uncertain
case is also investigated.
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1. Introduction

Fractional differential systems have attracted the attention of many researchers, due to their
generalizations and wide range of applications in science and technologies. See, for example,
the books [1–3] for basic results of systems with fractional derivatives of Riemann–Liouville and
Caputo types. Parallel to the development of the theory of fractional systems, numerous definitions
of fractional derivatives have been introduced, such as an Atangana–Baleanu fractional derivative,
Hadamard-type fractional derivative, Riesz–Miller derivative, and Chen–Machado derivative, just
to mention a few [4–13]. The papers [14–16] offered a comprehensive overview and classifications of
different types of fractional derivatives.

The notion of “conformable fractional derivative” has been introduced recently in [17]. The new
defined derivative has been applied by some authors and interesting results about systems of equations
involving such derivatives have been published [18–24].

In [25], the notion of “fractional-like derivative” (FLD) has been proposed as more natural and
reflects the essence of the new definition of a fractional derivative. The paper [26] presents important
notes about the newly introduced derivatives. The key advantages of the new notions are related
to facilitating the evaluation of FLDs of compositions of functions. These advantages coupled with
some opportunities for applications lead to the necessity of development of this new direction of
research [27]. This task has been addressed by several researchers. For example, results on integral
estimates as well as practical stability results have been published in [28,29].
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Indeed, the practical stability concept is of great importance in investigating the dynamic of
systems contained within particular bounds during a fixed time interval when a state of the system is
possible to be even unstable in the classical Lyapunov’s sense, but its performance may be sufficient
for the practical point of view. There are numerous problems in engineering, chemistry, and science,
in general, for the study of which this concept is essential [30–35].

However, the practical stability analysis of systems with FLDs is still in the initial stage. There
are many open problems, and this is the main aim of our research. For example, in [29], impulsive
perturbations are not considered. It is well known that impulses can significantly affect the stability
behavior of a system, and, therefore, considering impulses into systems of differential equations is
a very worthwhile research project with potential applications [34,36,37]. Impulsive systems with
conformable derivatives have been considered only in [38,39], where some oscillation criteria and
inequalities are proposed. However, the above papers did not offer stability results.

More presently, some results on practical stability theory for impulsive fractional differential
systems with Caputo fractional derivatives have been presented in [40,41]. However, the mentioned
studies do not consider FLDs.

On the other hand, the stability with respect to sets or the manifold concept generalizes the
idea of stability of a system [42–45]. To the best of our knowledge, practical stability results
with respect to manifolds have not been established for fractional-like differential systems under
impulsive perturbations.

The above observations motivated us to study practical stability problems for an impulsive system
of fractional-like differential equations. In the present paper, we will apply the Lyapunov technique
and extend the practical stability results for differential equations with FLDs to the impulsive case.
To this end, we elaborate the definition of FLDs of piecewise continuous Lyapunov-type functions.
In addition, we extend the practical stability notion and consider practical stability with respect to
manifolds defined by functions. Boundedness criteria are also offered. As an application, an impulsive
fractional-like Lotka–Volterra system is investigated. Since considering uncertain values of parameters
is very important for applications [46–48], but uncertain fractional-like systems have not been studied,
we propose stability results for an uncertain impulsive fractional-like Lotka–Volterra model.

The significance of our paper relative to the existing works is in three aspects:
1. FLDs of piecewise continuous Lyapunov-type functions are defined in this paper.
2. Practical stability and boundedness results with respect to a manifold defined by a specific

function for a fractional-like impulsive system are proposed. Thus, our research is a starting step
in the development of the stability theory of fractional-like impulsive systems. Indeed, considering
impulsive perturbations in systems with FLDs is an important issue for the theory and applications.

3. The obtained results are applied to an impulsive fractional-like Lotka–Volterra model.
The advantages of considering fractional-like notions will significantly simplify the computational
work in the study of such models of population biology. The effect of uncertain parameters on the
practical stability behavior of fractional-like Lotka–Volterra models is also investigated.

2. Preliminaries

Let R+ = [0, ∞), Rn be the n-dimensional Euclidean space with a norm || . ||, and let t0 ∈ R+.
According to [17,25], for any q ∈ (0, 1], we consider the qth-order FLD Dq

t0
x(t) of a continuous function

x(t) : [t0, ∞)→ R given as

Dq
t0

x(t) = lim
{

x(t + θ(t− t0)
1−q)− x(t)

θ
, θ → 0

}
.

If t0 = 0, then Dq
t0
(x(t)) has the form [20],

Dq
0x(t) = lim

{
x(t + θt1−q)− x(t)

θ
, θ → 0

}
.
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In this research, we will study a system of fractional-like differential equations defined as
Dq

tk
x(t) = f (t, x(t)), t 6= tk, k = 0, 1, 2, . . . ,

∆x(tk) = x(t+k )− x(tk) = Ik(x(tk)), k = 1, 2, . . . ,
(1)

where x ∈ Rn, f ∈ C(R+ × Rn,Rn), t0 < t1 < t2 · · · < tk < tk+1 < . . . , lim
k→∞

tk = ∞, x(t+k ) =

lim
h→0+

x(tk + h), x(t−k ) = x(tk), Ik ∈ C(Rn,Rn), k = 1, 2, . . . .

To establish the symbol Dq
tk

x(t) and the system (1), we introduce the next definitions [38,39]:

Definition 1. For given t̃ ∈ R+ and 0 < q ≤ 1, the qth-order fractional-like derivative Dq
t̃ x(t) for a function

x : [t̃, ∞)→ Rn is defined as

Dq
t̃ x(t) = lim

{
x(t + θ(t− t̃)1−q)− x(t)

θ
, θ → 0

}
, t > t̃.

By definition,
Dq

tk
x(tk) = lim

t→t+k
Dq

tk
x(t).

If the fractional-like derivative Dq
t̃ x(t) of order q of a continuous function x(t) exists at any point

of an open interval of the type (t̃, b) for some b > t̃, t > t̃, t̃ ∈ R+, then we will say that the function
x(t) is q-differentiable on (t̃, b).

Definition 2. System (1) is said to be a system of fractional-like impulsive differential equations.

Let x0 ∈ Rn. We will denote the solution of the fractional-like impulsive system (1) that satisfies
the initial condition

x(t0) = x0. (2)

by x(t) = x(t; t0, x0).
Note that, according to the second (impulsive) condition in (1) [36,37], the solutions x(t) of type

(1) systems are piecewise continuous functions that have points of discontinuity of the first kind tk and
are left continuous at these moments. For such functions, the following identities are satisfied:

x(t−k ) = x(tk), x(t+k ) = x(tk) + Ik(x(tk)).

We will also extend the notion of a fractional-like integral [25], and introduce a fractional-like
integral of order 0 < q ≤ 1 with a lower limit t̃, t̃ ≥ 0, of a function x : [t̃, ∞)→ Rn as

Iq
t̃ x(t) =

t∫
t̃

(s− t̃)q−1x(s)ds.

As an example, we will consider the next scalar fractional-like impulsive differential equation
Dq

tk
x(t) = −κx(t), t 6= tk, k = 0, 1, 2, . . . ,

∆x(tk) = µkx(tk), k = 1, 2, . . . ,
(3)

where κ > 0, µk ∈ R, k = 1, 2, . . . .
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By direct calculations, using the definition of fractional-like integrals for t ∈ (tk, tk+1], we have
that the solution of Label (3) satisfies

x(t) = x(t0)Eq(−κ, t− tk)
k

∏
l=1

(1 + µl)Eq(−κ, tl − tl−1), t0 ∈ R+,

where Eq(ν, s) is the fractional-like exponential function given by [17,23]

Eq(ν, s) = exp
(

ν
sq

q

)
, ν ∈ R, s ∈ R+.

We will further assume that, for (t0, x0) ∈ int(R+ × Rn), the solution x(t; t0, x0) of the initial
value problem (IVP) (1)–(2) exists on [t0, ∞). In addition, it is assumed that f (t, 0) = 0, Ik(0) = 0 for
all t ≥ t0, k = 1, 2, . . . .

The following properties of the generalized FLDs Dq
t̃ x(t), t > t̃ for some t̃ ∈ R+ can be proved

in the same way as the corresponding properties for the FLD Dq
t0

x(t), t > t0 for t0 ∈ R+ given
in [17,21,22].

Lemma 1. Let l(y(t)) : (t̃, ∞)→ R. If l(·) is differentiable with respect to y(t) and y(t) is q-differentiable on
(t̃, ∞), where 0 < q ≤ 1, then for any t ∈ R+, t 6= t̃ and y(t) 6= 0

Dq
t̃ l(y(t)) = l′(y(t))Dq

t̃ y(t),

where l′ is a partial derivative of l(·).

Lemma 2. Let the function x(t) : (t̃, ∞)→ R be q-differentiable for 0 < q ≤ 1. Then, for all t > t̃,

Iq
t̃ (D

q
t̃ x(t)) = x(t)− x(t̃).

Remark 1. For t̃ = t0, the definitions of the FLDs and integrals above will be reduced to the definitions in [25].
For more properties of FLDs, we refer the reader to [17–24,26–29].

Let h : [t0, ∞)×Rn → R be a continuous function. The next sets will be called h− mani f olds
defined by the function h:

Mt(λ) = {x ∈ Rn : |h(t, x)| < λ, t ∈ [t0, ∞)}, λ > 0,

Mt(λ̄) = {x ∈ Rn : |h(t, x)| ≤ λ, t ∈ [t0, ∞)}.

In the future considerations, we will also assume that the set Mt(λ) is an (n− 1)-dimensional
manifold in Rn.

We will use the following definitions for practical stability of the system (1) with respect to
manifolds defined by the function h given in [29].

Definition 3. The fractional-like impulsive system (1) is:
(a) practically stable with respect to the function h, if given (λ, A) with 0 < λ < A, for any x0 ∈ Mt0(λ)

it follows x(t; t0, x0) ∈ Mt(A), t ≥ t0 for some t0 ∈ R+;
(b) uniformly practically stable with respect to the function h, if (a) holds for every t0 ∈ R+;
(c) practically exponentially stable with respect to the function h, if given (λ, A) with 0 < λ < A for any

x0 ∈ Mt0(λ), we have

x(t; t0, x0) ∈ Mt(A + γ|h(t0, x0)|Eq(−κ, t− t0)), t ≥ t0, for some t0 ∈ R+,
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where 0 < q < 1, γ, κ > 0.

Let Gk = (tk−1, tk)×Rn, k = 1, 2, . . . , G =
∞⋃

k=1

Gk and Br = {x ∈ Rn : ||x|| < r}, r > 0.

Next, for any tk ∈ R+, k = 0, 1, 2, . . . , we will introduce the class Vq
tk

of piecewise continuous
auxiliary Lyapunov-type functions that will be used in our research (see, for example, [36,41] and the
references therein).

Definition 4. The function V ∈ Vq
tk

, if:

1. V is defined on G, V has nonnegative values and V(t, 0) = 0 for t ≥ tk;
2. V is continuous in G, q—differentiable in t and locally Lipschitz continuous with respect to its second

argument on each of the sets Gk;
3. For each k = 0, 1, 2, . . . and x ∈ Rn, there exist the finite limits

V(t−k , x) = lim
t→tk
t<tk

V(t, x), V(t+k , x) = lim
t→tk
t>tk

V(t, x),

and V(t−k , x) = V(tk, x).

For a function V ∈ Vq
tk

, t > tk, we define the expressions:

+Dq
tk

V(t, x)

= lim sup
{

V(t + θ(t− tk)
1−q, x(t + θ(t− tk)

1−q; t, x))−V(t, x)
θ

, θ → 0+
}

, (4)

as the upper right fractional-like derivative of the Lyapunov-type function,

+Dq
tk

V(t, x)

= lim inf
{

V(t + θ(t− tk)
1−q, x(t + θ(t− tk)

1−q; t, x))−V(t, x)
θ

, θ → 0+
}

,

as the lower right fractional-like derivative of the Lyapunov-type function,

−Dq
tk

V(t, x)

= lim sup
{

V(t + θ(t− tk)
1−q, x(t + θ(t− tk)

1−q; t, x))−V(t, x)
θ

, θ → 0−
}

,

as the upper left fractional-like derivative of the Lyapunov-type function,

−Dq
tk

V(t, x)

= lim inf
{

V(t + θ(t− tk)
1−q, x(t + θ(t− tk)

1−q; t, x))−V(t, x)
θ

, θ → 0−
}

,

as the lower left fractional-like derivative of the Lyapunov-type function.
Let x(t; t0, x0) be the solution of the IVP (1)–(2), which exists and is defined on R+ × Br.

Then, Ref. [25], the fractional-like derivative of the function V(t, x) with respect to the solution
x(t; t0, x0), is defined by

+Dq
tk

V(t, x)

= lim sup
{

V(t + θ(t− tk)
1−q, x + θ(t− tk)

1−q f (t, x))−V(t, x)
θ

, θ → 0+
}

. (5)
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If V(t, x(t)) = V(x(t)), 0 < q ≤ 1, V is differentiable on x, and x(t) is q-differentiable on t for
t > tk, then

+Dq
tk

V(t, x) = V′(x(t)) Dq
tk

x(t),

where V′ is a partial derivative of the function V.
From Labels (3) and (5), it follows:

+Dq
tk

V(t, x(t; t0, x0)) =
+Dq

tk
V(t, x) |(1),

t > tk, k = 0, 1, 2, . . . .
Furthermore, we will use a comparison result [29,36], and, for this reason together with (1), we

consider the comparison equation:{
Dq

tk
y(t) = F(t, y), t 6= tk, k = 0, 1, 2, . . . ,

∆y(tk) = y(t+k )− y(tk) = Jk(y(tk)), k = 1, 2, . . . ,
(6)

where F : [t0, ∞)×R+ → R+, Jk : R+ → R+, k = 1, 2, . . . .
Let y0 ∈ R+ and y+(t) = y+(t; t0, y0) be the maximal solution [29,36] of Equation (6), which

satisfies the initial condition y(t+0 ) = y0.
In what follows, we will consider only nonnegative solutions y(t) of the comparison Equation (6).

Definition 5. Equation (6) is said to be:
(a) practically stable with respect to (λ, A), if given (λ, A) with 0 < λ < A for any y0 < λ it follows

y+(t; t0, y0) < A, t ≥ t0 for some t0 ∈ R+;
(b) uniformly practically stable with respect to (λ, A), if (a) holds for every t0 ∈ R+;
(c) practically exponentially stable with respect to (λ, A), if given (λ, A) with 0 < λ < A for any y0 < λ,

we have
y+(t; t0, y0) < A + γy0Eq(−κ, t− t0)

for some t0 ∈ R+, where 0 < q < 1, γ, κ > 0.

The proof of the next comparison lemma is similar to the proof of Theorem 5.1 in [25], and we
omit it.

Lemma 3. Assume that:
1. The function F : [t0, ∞)×R+ → R+ is continuous in each of the sets (tk−1, tk]×R+, tk > t0 and,

for ξ ∈ R+, there exists the finite limit
lim

(t,y)→(t,ξ)
t>tk

F(t, y).

2. The functions Jk are continuous in R+ and ψk(y) = y + Jk(y) ≥ 0, k = 1, 2, . . . , are non-decreasing
in R+.

3. The maximal solution y+(t; t0, y0) of (6) is defined on [t0, ∞) and

y+(t+k ; t0, y0) ∈ R+ f or all tk > t0.

4. The function V : [t0, ∞)× Br → R+, V ∈ Vq
tk

is such that, for t ∈ [t0, ∞), x ∈ Br,

V(t+, x + Ik(x)) ≤ ψk(V(t, x)), t = tk, k = 1, 2, . . . ,

+Dq
tk

V(t, x) ≤ F(t, V(t, x)), t 6= tk, k = 0, 1, 2, . . . .
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Then, V(t+0 , x0) ≤ y0 implies

V(t, x(t; t0, x0)) ≤ y+(t; t0, y0), t ∈ [t0, ∞).

In the next section, we will need the following lemma whose proof is similar to the proofs of
corollaries 5.3 and 5.4 in [25] using the generalized definition for FLDs. Similar results for equations
with fractional Caputo-type derivatives are given in [36].

Lemma 4. Assume that the function V ∈ Vq
tk

is such that for t ∈ [t0, ∞), x ∈ Br,

V(t+k , x) ≤ V(tk, x), k = 1, 2, . . . ,

+Dq
tk

V(t, x) ≤ −κV(t, x) + g(t), t 6= tk, k = 0, 1, 2, . . . ,

where κ = const > 0, g : R→ R+ is continuous.
Then,

V(t, x(t)) ≤ V(t+0 , x0)Eq(−κ, t− t0) +
∫ t

tk

Wq(t− tk, s− tk)g(s)
(s− tk)

1−q ds

+
k

∑
j=1

k

∏
l=k−j+1

Eq(−κ, tl − tl−1)
∫ tk−j+1

tk−j

Wq(t− tk, s− tk−j)g(s)
(s− tkj

)1−q ds, t ≥ t0,

where Wq(t− tk, s− tk) = Eq(−κ, t− tk)Eq(κ, s− tk).

In addition, we will need the Hahn classes of functions K = {a ∈ C[R+,R+] : a(u) is strictly
increasing and a(0) = 0} and CK = {a ∈ C[R2

+,R+] : a(t, u) ∈ K for each t ∈ R+ and a(t, u)→ ∞ as
u→ ∞}.

3. Main Results

In this section, we will state our main practical stability and boundedness criteria for impulsive
systems with FLDs. These results extend and generalize the results in [29,31–34,36,40,41] for different
classes of differential, functional differential and fractional differential equations, and are first
contributions to the stability theory of impulsive equations with FLDs.

3.1. Practical Stability Criteria

Theorem 1. Assume that 0 < λ < A are given, and:
1. Conditions of Lemma 3 are met, and F(t, 0) = 0, Jk(0) = 0 for t ∈ [t0, ∞), k = 1, 2, . . . .
2. For the function V(t, x) ∈ Vq

tk
, the following condition holds

a(|h(t, x)|) ≤ V(t, x) ≤ η(t)b(|h(t, x)|), (t, x) ∈ [t0, ∞)×Rn, (7)

where a, b ∈ K and the function η(t) ≥ 1 is defined and continuous for t ∈ [t0, ∞).
3. η(t0)b(λ) < a(A).
Then:
(a) If (6) is practically stable with respect to (η(t0)b(λ), a(A)), then the system (1) is practically stable

with respect to the function h.
(b) If (6) is uniformly practically stable with respect to (η(t0)b(λ), a(A)), then the system (1) is uniform

practically stable with respect to the function h.

Proof. (a) From the practical stability of (6) with respect to (η(t0)b(λ), a(A)) = (λ∗, A∗) and condition
3 of Theorem 1, we have

y0 < λ∗ implies y+(t; t0, y0) < A∗, t ≥ t0 (8)
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for some given t0 ∈ R+.
Let x0 ∈ Mt0(λ). Then, we have

η(t0)b(|h(t0, x0)|) < λ∗,

and, from (7), we get
V(t0, x0) ≤ η(t0)b(|h(t0, x0)|) < λ∗.

Hence, using (8), we obtain
y+(t; t0, V(t0, x0)) < A∗ (9)

for t ≥ t0.
From Lemma 3, for the solution of the IVP (1), (2) x(t) = x(t; t0, x0), we get

V(t, x(t; t0, x0)) ≤ y+(t; t0, V(t0, x0)), t ∈ [t0, ∞). (10)

From (7), (9) and (10), there follow the inequalities:

a(|h(t, x(t; t0, x0))|) ≤ V(t, x(t; t0, x0)) ≤ y+(t; t0, V(t0, x0)) < a(A), t ≥ t0.

Hence, |h(t, x(t; t0, x0))| < A for t ≥ t0, which proves the practical stability of (1) with respect to
the function h.

(b) The proof of this section can be conducted analogous to the proof of section (a). In this case, it
is possible to choose λ and λ∗ that do not depend on t0.

The proof of Theorem 1 is complete.

The proof of the next theorem can be obtained via arguments analogous to the ones in Theorem 1.
To study the uniform practical stability properties of the impulsive fractional-like system (1), we apply
functions from the class CK.

Theorem 2. Assume that 0 < λ < A are given, and:
1. Condition 1 of Theorem 1 holds.
2. There exist functions V(t, x) ∈ Vq

tk
, a ∈ K and b ∈ CK such that

a(|h(t, x)|) ≤ V(t, x) ≤ b(t, |h(t, x)|), (t, x) ∈ [t0, ∞)×Rn.

3. b(t0, λ) < a(A).
Then, the uniform practical stability with respect to (b(t0, λ), a(A)) of (6) implies uniform practical

stability of the system (1) with respect to the function h.

Theorem 3. If in Theorem 1, instead of condition (7), we have

|h(t, x)| ≤ V(t, x) ≤ b(t, |h(t, x)|), (t, x) ∈ [t0, ∞)×Rn, (11)

where b ∈ CK, and b(t0, λ) < |h(t0, x0)|, then the practical exponential stability of (6) with respect to (λ, A)

implies the practical exponential stability of the system (1) with respect to the function h.

Proof. Let 0 < λ < A. If (6) is practically exponentially stable with respect to (λ, A), then, for any
y0 < λ, we have

y+(t; t0, y0) < A + γy0Eq(−κ, t− t0), t ≥ t0

for some t0 ∈ R+, where γ > 0, κ > 0.
Let x0 ∈ Mt0(λ). From Lemma 3, for the solution of the IVP (1), (2) x(t) = x(t; t0, x0) for

y0 = V(t0, x0), we get (10).
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From (11) and (10), we obtain

|h(t, x(t; t0, x0))| ≤ V(t, x(t; t0, x0)) ≤ y+(t; t0, V(t0, x0))

< A + γb(t0, λ)Eq(−κ, t− t0), t ≥ t0.

Therefore,
x(t; t0, x0) ∈ Mt(A + γ|h(t0, x0)|Eq(−κ, t− t0))

for t ≥ t0, 0 < q ≤ 1, which proves the practical exponential stability of (1) with respect to the
function h.

Corollary 1. Assume that 0 < λ < A are given, and:
1. Conditions of Lemma 4 hold for g(t) ≡ 0, t ∈ [t0, ∞).
2. For the function V(t, x) ∈ Vq

tk
, the following condition holds

|h(t, x)| − A < V(t, x) ≤ Λ(r)|h(t, x)|, (t, x) ∈ [t0, ∞)×Rn, (12)

where the function Λ(r) ≥ 1 is defined and continuous for any 0 < r ≤ ∞.
Then, system (1) is practically exponentially stable with respect to the function h.

Proof. Let t0 ∈ R+. For the function V(t, x) and any values of 0 < q ≤ 1, we deduce from Lemma 4

V(t, x(t)) ≤ V(t0, x0)Eq(−κ, t− t0), t ≥ t0. (13)

From (12) and (13), we have

|h(t, x(t; t0, x0))| − A < V(t, x(t; t0, x0)) ≤ V(t0, x0)Eq(−κ, t− t0)

≤ Λ(r)|h(t0, x0)|Eq(−κ, t− t0), t ≥ t0.

Therefore,
x(t; t0, x0) ∈ Mt(A + γ1|h(t0, x0)|Eq(−κ, t− t0)),

where γ1 = const > Λ(r) for any 0 < r ≤ ∞. Then, (1) is practically exponentially stable with respect
to the function h.

3.2. Boundedness Results

In this section, we will state our boundedness results for systems of differential equations of
the type (1) with fractional-like derivatives. Note that boundedness results for fractional differential
equations are very rare [49] in the existing literature. To the best of our knowledge, there has not been
any work so far dedicated to investigation of the boundedness properties of a system of differential
equations with FLDs.

We shall use the following boundedness definitions [29].

Definition 6. We say that the solutions of system (1) are:
(a) equi-bounded with respect to the function h, if

(∀t0 ∈ R+)(∀α > 0)(∃β = β(t0, α) > 0)(∀x0 ∈ Mt0(ᾱ))

(∀t ≥ t0) : x(t; t0, x0) ∈ Mt(β);

(b) uniformly bounded with respect to the function h, if the number β in (a) is independent of t0 ∈ R+;
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(c) ultimately bounded with respect to the function h for bound N, if

(∃N > 0)(∀t0 ∈ R+)(∀α > 0)(∃T = T(t0, α) > 0)(∀x0 ∈ Mt0(ᾱ))

(∀t ≥ t0 + T) : x(t; t0, x0) ∈ Mt(N);

(d) uniformly ultimately bounded with respect to the function h for bound N, if the number T from (c) does
not depend on t0 ∈ R+.

In the next, boundedness properties of the positive solutions of (6) are defined as follows.

Definition 7. We say that the solutions of (6) are:
(a) equi-bounded, if

(∀t0 ∈ R+)(∀α > 0)(∃β = β(t0, α) > 0)(∀y0 ∈ R+ : y0 ≤ α)

(∀t ≥ t0) : y+(t; t0, y0) < β;

(b) uniformly bounded, if the number β in (a) is independent of t0 ∈ R+;
(c) ultimately bounded for bound N, if

(∃N > 0)(∀t0 ∈ R+)(∀α > 0)(∃T = T(t0, α) > 0)(∀y0 ∈ R+ : y0 ≤ α)

(∀t ≥ t0 + T) : y+(t; t0, y0) < N;

(d) uniformly ultimately bounded for bound N, if the number T from (c) does not depend on t0 ∈ R+.

Theorem 4. Assume that conditions of Theorem 1 hold and a(u)→ ∞ as u→ ∞. Then,
(a) If the solutions of (6) are equi-bounded, then the solutions of system (1) are equi-bounded with respect

to the function h.
(b) If the solutions of (6) are ultimately bounded for a bound N, then the zero solution of system (1) are

ultimately bounded for the bound a−1(N) with respect to the function h.

Proof. (a) Let t0 ∈ R+ and α > 0 be given. Set α∗ = η(t0)b(α). Then, a(u) → ∞ as u → ∞, implies
α→ ∞ as α∗ → ∞.

The equi-boundedness of the solutions of (6) implies the existense of a β1 = β1(t0, α) such that,
for any y0 ∈ R+ with y0 ≤ α∗, we have

y+(t; t0, y0) < β1, t ≥ t0.

We denote
β = β(t0, α) = a−1(β1(t0, α)).

Let x0 ∈ Mt0(ᾱ). Then, η(t0)b(|h(t0, x0)|) ≤ α∗ and, since

V(t0, x0) ≤ η(t0)b(|h(t0, x0)|),

we have
V(t0, x0) ≤ α∗.

Hence,
y+(t; t0, V(t0, x0)) < β1, t ≥ t0. (14)

From (7), (10) and (14), for the solution x(t) = x(t; t0, x0) of the IVP (1), (2), we obtain

a(|h(t, x(t; t0, x0))|) ≤ V(t, x(t; t0, x0)) ≤ y+(t; t0, V(t0, x0)) < β1, t ≥ t0.
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Therefore, |h(t, x(t; t0, x0))| < a−1(β1) = β for t ≥ t0, which proves the equi-boundedness of the
solutions of (1) with respect to the function h.

(b) Let t0 ∈ R+, N > 0 and A > 0 be given. Set again α∗ = η(t0)b(α). From the ultimate
boundedness of the solutions of (6) for a bound N, it follows the existence of T = T(t0, α) > 0 such
that y0 ∈ R+ and y0 ≤ α∗ imply

y+(t; t0, y0) < N, t ≥ t0 + T.

Let x0 ∈ Mt0(ᾱ). Then, we have that

η(t0)b(|h(t0, x0)|) ≤ α∗

and, since
V(t0, x0) ≤ η(t0)b(|h(t0, x0)|),

we obtain
V(t0, x0) ≤ α∗.

Hence,
y+(t; t0, V(t0, x0)) < N, t ≥ t0 + T. (15)

Form (7), (10) and (15), for the solution x(t) = x(t; t0, x0) of the IVP (1), (2), we have

a(|h(t, x(t; t0, x0))|) ≤ V(t, x(t; t0, x0)) ≤ y+(t; t0, V(t0, x0)) < N, t ≥ t0.

Therefore, |h(t, x(t; t0, x0))| < a−1(N) for t ≥ t0 + T, which proves the ultimate boundedness of
the solutions of (1) with respect to the function h.

Theorem 5. Assume that conditions of Theorem 2 hold and a(u)→ ∞ as u→ ∞.
Then:
(a) The uniform boundedness of the solutions of (6) implies uniform boundedness of the solutions of system

(1) with respect to the function h.
(b) The ultimate uniform boundedness of the solutions of (6) implies ultimate uniform boundedness for the

bound a−1(N) of the solutions of system (1) with respect to the function h.

The proof of Theorem 5 can be done by making use of identical reasonings as the ones seen in the
proof of Theorem 4. In this case, we can choose β and T to be independent of t0.

4. Applications

The main goal of the application section is to investigate in the light of practical stability of
h-manifolds the following system of Lotka–Volterra impulsive fractional-like differential equations:

Dq
tk

ui(t) = ui(t)

[
ri(t)−

n

∑
j=1

aij(t)uj(t)

]
, t 6= tk, k = 0, 1, 2, . . . ,

ui(t+k ) = ui(tk) + Pik(ui(tk)), k = 1, 2, . . . ,

ui0 = ui(t0),

(16)

where t0 ∈ R+, n ≥ 2 is the number of the species, the system’s parameters ri, aij are positive and
continuous on R+, and the impulsive functions Pik are continuous on R+, i, j = 1, 2, . . . , n, k = 1, 2, . . . .

Indeed, due to the great opportunities for applications, Lotka–Volterra and related systems have
been largely investigated in the literature [50–52], including impulsive models of Lotka–Volterra



Fractal Fract. 2019, 3, 50 12 of 16

type [50,53–55], as well as fractional Lotka–Volterra models involving Caputo fractional
derivatives [56,57]. However, to the best of our knowledge, results on fractional-like systems of
Lotka–Volterra type do not exist in the literature.

We note that [34,36,37,57] the solutions u(t) = (u1(t), u2(t), . . . , un(t))T of the problem (16) are,
in general, piecewise continuous functions with points of discontinuity at the moments tk, k = 1, 2, . . . .

In addition, we assume that the solutions of (16) are nonnegative, and, if ui0 > 0 for some i, then
ui(t) > 0 for all t ≥ t0. If, moreover, ui(tk) > 0, then ui(tk) + Pik(ui(tk)) > 0 for all i = 1, 2, . . . ,N and
k = 1, 2, . . . . Note that these assumptions are natural from the applicability point of view. It follows
then [50–52] that, for any closed interval contained in (tk, tk+1], k = 0, 1, 2, . . . , there exist positive
numbers R1 and R2 such that R1 ≤ ui(t) ≤ R2 for i = 1, 2, . . . , n.

We will prove the next theorem.

Theorem 6. Assume that 0 < λ < A are given, and:
1. For t ∈ [t0, ∞) for the functions aij, there exists a positive number κ∗ such that

κ∗ <
R1(1 + R1)

1 + R2

n

∑
j=1

aji(t), i = 1, 2, . . . , n,

and the system’s parameters satisfy

G(t) =
n

∑
i=1

∫ ∞

t0

Wq(t− tk, s− tk)

(s− t0)1−q r̄i(s)ds

+
k

∑
j=1

k

∏
l=k−j+1

Eq(−κ, tl − tl−1)
n

∑
i=1

∫ tk−j+1

tk−j

Wq(t− tk, s− tk−j)

(s− tkj
)1−q r̄i(s)ds < ∞,

where r̄i =
R2

1+R1
ri, i = 1, 2, . . . , n.

2. The functions Pik are such that

Pik(ui(tk)) = −γikui(tk), 0 < γik < 1, i = 1, 2, . . . n, k = 1, 2, . . . .

3. There exists a function h(t, u) such that

|h(t, u)| − A <
n

∑
i=1

ln(1 + ui(t)) ≤ Λ(r)|h(t, u)|, t ∈ [t0, ∞),

where Λ(r) ≥ 1 exists for any 0 < r ≤ ∞.
Then, (16) is practically exponentially stable with respect to the function h.

Proof. Let we suppose, without loss generality, 1 < λ < G(t) < A and let

u(t) = (u1(t), u2(t), . . . , un(t))T

be any solution of (16).
We define a Lyapunov function

V(u(t)) =
n

∑
i=1

ln(1 + ui(t)).
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Obviously, V ∈ Vq
tk

and, for tk > t0 ≥ 0, k = 1, 2, . . . , from condition 2 of the theorem, we get

V(u(t+k )) =
n

∑
i=1

ln(1 + ui(t+k )) =
n

∑
i=1

ln[1 + (1− γik)ui(tk)] ≤ V(u(tk)). (17)

On the other hand, for t ∈ (tk, tk+1], k = 0, 1, 2, . . . , along (16), we get

+Dq
tk

V(u(t)) ≤
n

∑
i=1

1
1 + ui(t)

Dq
tk

ui(t) ≤
R2

1 + R1

n

∑
i=1

ri(t)−
R1

1 + R2

n

∑
i=1

n

∑
j=1

aij(t)uj(t)

≤ −κ∗
n

∑
j=1

ln(1 + uj(t)) +
n

∑
i=1

r̄i(t) = −κ∗V(u(t)) +
n

∑
i=1

r̄i(t).

The last inequality, (17) and Lemma 4 give us

V(u(t)) ≤ V(u(t+0 ))Eq(−κ∗, t− t0) +
n

∑
i=1

∫ t

tk

Wq(t− tk, s− tk)

(s− tk)
1−q r̄i(s)ds

+
k

∑
j=1

k

∏
l=k−j+1

Eq(−κ, tl − tl−1)
n

∑
i=1

∫ tk−j+1

tk−j

Wq(t− tk, s− tk−j)

(s− tkj
)1−q r̄i(s)ds. (18)

Let now |h(t0, u0)| < λ. Then, from (18) and condition 3 of the theorem, we get

|h(t, u(t; t0, u0))| − A < V(u(t; t0, u0)) ≤ Λ(r)|h(t0, u0)|Eq(−κ∗, t− t0), t ≥ t0.

Hence,
u(t; t0, u0) ∈ Mt

(
A + Λ(r)|h(t0, u0)|Eq(−κ∗, t− t0)

)
for t ≥ t0, i.e., system (16) is practically exponentially stable with respect to the function h.

Remark 2. Theorem 6 offers sufficient conditions for practical exponential stability with respect to a function
for a fractional-like Lotka–Volterra model. Thus, we extend and improve the existing theory and previous works
on Lotka–Volterra and related models in population biology to the fractional-like case. Indeed, the recent studies
and experiments on fractional systems indicated that fractional models are more effective than integer-order
models in numerous applications mainly because of their nonlocal properties [1–13]. In addition, the FLDs
have important advantages in computational aspects than classical fractional derivatives, such as Caputo or
Riemann–Liouville types [17–29], which make them more appropriate for applications.

Now, we will consider the corresponding to the (16) uncertain case, i.e., we will consider an
impulsive system of differential equations with FLDs and uncertain parameters given by

Dq
tk

ui(t) = ui(t)

[
ri(t) + r̃i(t)−

n

∑
j=1

(
aij(t) + ãij(t)

)
uj(t)

]
, t 6= tk, k = 0, 1, 2, . . . ,

ui(t+k ) = ui(tk)− γikui(tk)− γ̃ikui(tk), k = 1, 2, . . . ,

(19)

where the functions r̃i, ãij ∈ C[R+,R+], i, j = 1, . . . , n, k = 1, 2, . . . and constants γ̃ik, i, j =

1, 2, . . . , n, k = 1, 2, . . . , represent the uncertainty of the system. In the case when all of these uncertain
functions and constants are zeros, then we will receive the “nominal system” (16) [46,48].

Definition 8. System (16) is called practically robustly exponentially stable with respect to the function h if
for t0 ∈ R+, u0 ∈ Mt0(λ) and for any r̃i, ãij, γ̃ik, i, j = 1, . . . , n the system (19) is practically exponentially
stable with respect to the function h.
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The proof of the next theorem follows directly from Theorem 6.

Theorem 7. Assume that:
1. The conditions of Theorem 6 hold.
2. The functions r̃i(t), ãij(t) are bounded,

κ∗ <
R1(1 + R1)

1 + R2

n

∑
j=1

(aji(t) + ãji(t)), i = 1, 2, . . . , n,

and

G̃(t) =
n

∑
i=1

∫ ∞

t0

Wq(t− tk, s− tk)

(s− t0)1−q (r̄i(s) + ¯̃ri(s))ds

+
k

∑
j=1

k

∏
l=k−j+1

Eq(−κ, tl − tl−1)
n

∑
i=1

∫ tk−j+1

tk−j

Wq(t− tk, s− tk−j)

(s− tkj
)1−q (r̄i(s) + ¯̃ri(s))ds < ∞,

¯̃ri =
R2

1+R1
r̃i, i = 1, 2, . . . , n.

3. The unknown constants γ̃ik are such that 0 < γ̃ik < 1− γik, i = 1, 2, . . . , n, k = 1, 2, . . . .
Then, system (16) is practically robustly exponentially stable with respect to the function h.

5. Conclusions

The FLDs have been proposed in order to overcome some difficulties in evaluating fractional
derivatives of some classes of functions. With this research, we contribute to the development of the
theory of equations with FLDs. In this paper, we extend the concept of fractional-like derivatives of
Lyapunov-type functions for the impulsive case. Using the extended concept, a practical stability
analysis with respect to manifolds is conducted for impulsive fractional-like systems. The important
novelty of our paper is that it offers the first practical stability and boundedness results for such systems.
In addition, the obtained results are applied to a fractional-like impulsive system of Lotka–Volterra
type. The effects of uncertain terms are also studied. The proposed technique can be applied in the
investigation of other fractional-like impulsive models of diverse interest.
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