
RESEARCH ARTICLE

A DNA algorithm for the job shop scheduling

problem based on the Adleman-Lipton model

Xiang TianID
1, Xiyu Liu1*, Hongyan Zhang1, Minghe Sun2, Yuzhen Zhao1

1 Business School, Shandong Normal University, Jinan, China, 2 College of Business, The University of

Texas at San Antonio, San Antonio, TX, United States of America

* xyliu@sdnu.edu.cn

Abstract

A DNA (DeoxyriboNucleic Acid) algorithm is proposed to solve the job shop scheduling

problem. An encoding scheme for the problem is developed and DNA computing operations

are proposed for the algorithm. After an initial solution is constructed, all possible solutions

are generated. DNA computing operations are then used to find an optimal schedule. The

DNA algorithm is proved to have an O(n2) complexity and the length of the final strand of the

optimal schedule is within appropriate range. Experiment with 58 benchmark instances

show that the proposed DNA algorithm outperforms other comparative heuristics.

1. Introduction

It is well known that the traditional silicon-based computers use serial algorithms, so that their

computing speed cannot qualitatively leap. It is also well known that optimal solutions of most

of the celebrated computationally intractable problems can only be found by an exhaustive

search through all possible solutions. However, the insurmountable difficulty lies in the fact

that such an exhaustive search is too vast to carry out using currently available computing

technology, so that numerous intractable problems cannot be solved effectively. Some vision-

ary remarks were made about new ways of solving such problems through possible miniaturi-

zations. Feynman’s view [1] was widely accepted, stating the possibility of establishing “sub-

microscopic” computers. Since then, although significant progresses have been made in rela-

tion to computer miniaturization, the goal of sub-microscopic computers has not yet been

achieved.

As a new interdisciplinary area, DNA computing has received increasing attentions. Mas-

sive parallelism and huge storage capacity are two significant advantages of DNA computing.

Parallelism means DNA computing can perform billions of operations simultaneously. Fur-

thermore, DNA computers can solve more intractable problems, such as non-deterministic

polynomial-time) (NP)-hard problems, in linear time, as compared with conventional elec-

tronic computers in exponential time. In addition, the high density of data stored in DNA

strands and the ease in duplicating them can make such exhaustive searches possible. Adle-

man’s experiment [2] solved the Hamiltonian Path Problem for a given directed graph, and

demonstrated the strong parallel computing power of DNA computing. Lipton’s DNA-based

solution of the satisfiability problem [3] used some of Adleman’s basic operations. Indeed, it

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Tian X, Liu X, Zhang H, Sun M, Zhao Y

(2020) A DNA algorithm for the job shop

scheduling problem based on the Adleman-Lipton

model. PLoS ONE 15(12): e0242083. https://doi.

org/10.1371/journal.pone.0242083

Editor: Shih-Wei Lin, Chang Gung University,

TAIWAN

Received: June 16, 2020

Accepted: October 27, 2020

Published: December 2, 2020

Copyright: © 2020 Tian et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was partly supported by the

National Natural Science Foundation of China (Nos.

61876101, 61802234, 61806114), the Social

Science Fund Project of Shandong (Nos.

11CGLJ22, 16BGLJ06), the Natural Science

Foundation of the Shandong Province (No.

ZR2019QF007), the Youth Fund for Humanities

and Social Sciences, Ministry of Education (No.

19YJCZH244), the China Postdoctoral Special

https://orcid.org/0000-0001-5507-8284
https://en.wikipedia.org/wiki/NP_(complexity
https://en.wikipedia.org/wiki/NP_(complexity
https://doi.org/10.1371/journal.pone.0242083
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242083&domain=pdf&date_stamp=2020-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242083&domain=pdf&date_stamp=2020-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242083&domain=pdf&date_stamp=2020-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242083&domain=pdf&date_stamp=2020-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242083&domain=pdf&date_stamp=2020-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242083&domain=pdf&date_stamp=2020-12-02
https://doi.org/10.1371/journal.pone.0242083
https://doi.org/10.1371/journal.pone.0242083
http://creativecommons.org/licenses/by/4.0/


used an exhaustive search that was made computationally feasible by the massive parallelism

of the DNA strands. Ouyang et al. [4] turned the maximal clique problem, another NP-com-

plete problem, into the maximum independent set problem, and solved the problem with six

vertices in the laboratory by using the parallel overlap assembly technology. Roweis et al. [5]

introduced a new DNA computing model, i.e., the sticker model, and used this model to solve

the minimal set cover problem and the data encryption problem. Furthermore, the self-assem-

bly model [6], the hairpin model [7] and the surface-based model [8, 9] had already been pro-

posed and built.

Among the many DNA computing models mentioned above, the Adleman-Lipton model

and the sticker model are most widely used in solving classical combinatorial optimization

problems. There are numerous publications in the literature addressing the combinatorial

optimization problems using the Adleman-Lipton model. For example, Xiao et al. [10] solved

maximum cut problems using the Adleman-Lipton model with O(n2) steps. Hsieh et al. [11]

solved the graph isomorphism problem with the Adleman-Lipton model with stickers using a

polynomial number of basic biological operations. Yang et al. [12] proposed a theoretical

DNA algorithm to solve the quadratic assignment problem using the Adleman-Lipton-sticker

model, which was executed with an O(kn4) complexity and could handle the medium-sized

cases. Nehi and Hamidi [13] corrected and further improved the DNA model proposed by

Yang et al. [12]. Wang et al. [14] solved a traveling salesman problem by a DNA algorithm

using the Adleman-Lipton model with an O(n) complexity. Based on the Adleman- Lipton

model, Wang et al. [15] proposed a new DNA computing algorithm to tackle the capacitated

vehicle routing problem with an O(n2) complexity.

In accordance with the processing order, the shop scheduling problem can typically be

divided into three categories: the flow shop scheduling problem (FSSP), the job shop schedul-

ing problem (JSSP) and the flexible job shop scheduling problem (FJSP). These three catego-

ries of problems are all about scheduling n jobs with varying processing times on m machines

with varying speeds and capacities. In a JSSP, each job to be processed contains multiple opera-

tions, each of which is processed on a specified machine, and each job has a different machin-

ing path. In a FSSP, all jobs have the same machining path, i.e., the same operation sequence,

without distinction between the operation and the machine. In a FJSP, the machining paths of

the jobs are not necessarily the same and a job is allowed to be processed by any machine in a

given set of machines. Many heuristic approaches have been developed to solve shop schedul-

ing problems, such as particle swarm optimization (PSO), genetic algorithms (GA), simulated

annealing (SA), tabu search (TS), artificial immune (AI), differential evolution algorithm

(DEA), and ant colony optimization (ACO), among others, as well as their hybrids [16].

Mohamed Kurdi [17] proposed an effective genetic algorithm with a critical-path-guided Gif-

fler and Thompson crossover operator (GA-CPG-GT) for JSSP. Zhou et al. [18] presented a

hybrid social-spider optimization algorithm with a differential mutation (SSO-DM) operator

to solve JSSP. Cruz-Chávez et al. [19] proposed a parallel algorithm that generated a set of par-

allel working threads, where each thread performed a simulated annealing process to solve

JSSP. For JSSP, Pongchairerks [20] proposed a new two-level meta-heuristic algorithm com-

posed of an upper-level algorithm and a lower-level algorithm.

However, due to the premature and local convergence of GA, its performance in dealing

with complex JSSP is limited [21]. The particle swarm optimization (PSO) algorithm cannot

effectively search the entire solution space, and may converge to a local optimal solution pre-

maturely, and thus cannot achieve a good exploration- exploitation balance [22]. The quality

of the optimal solution obtained by TS lies on the initial solution [23]. Due to the lack of mem-

ory function in SA, it may lead to repeated searches and easily fall into local optima, greatly

affecting the effectiveness of SA and causing excessive search time [23]. Due to the dependence

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 2 / 21

Funding Project (No. 2019T120607), and the China

Postdoctoral Science Foundation Funded Project

(Nos. 2017M612339, 2018M642695).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0242083


on random natural selection and recombination, the optimization results obtained by classical

evolutionary algorithm are still limited [24]. Also due to the stubborn nature of JSSP, a single

meta-heuristic method can no longer solve this problem well [18]. In addition, these heuristic

approaches do not traverse all possible solutions, and can only find relatively good solutions

through operations such as crossover, mutation and iteration. Even if a heuristic finds the opti-

mal solution, the heuristic itself cannot prove that the solution it found is the actual optimal

solution.

By contrast, DNA computing may be used to solve the JSSP. As long as appropriate encod-

ing and manipulation are used, all possible solutions to the problem can be produced in one

step. Deaton et al. [25] summarized three basic steps in using DNA computing to solve a prob-

lem: encoding, interaction and extraction. The first step is the basis of the other two steps, so

that the key and the difficult part of DNA computing is to transform the problem into an

equivalent DNA computing model by mapping.

Until now, there is not much reported research on solving JSSPs using DNA computing.

Yin et al. [26] solved a FSSP using DNA computing by transforming the FSSP problem into a

directed graph. Wang et al. [27] proposed a new parallel DNA algorithm to solve the task

scheduling problem based on the Adleman-Lipton model, with an enlightening idea.

In this work, an appropriate encoding strategy is developed first to generate all possible

solutions in parallel using DNA computing. The advantage of this encoding is that, once a

scheduling sequence is determined, the makespan corresponding to each schedule is also

determined. Theoretically efficient and parallel DNA algorithms based on Adleman-Lipton

model are then proposed for solving the JSSP which can be solved with an O(n2) complexity.

In the experiments, the DNA computing algorithms proposed in this work is simulated

through two tool libraries of Python. Simulation experiments with 58 benchmark instances

show that the proposed DNA algorithm outperforms other comparative heuristics.

The remainder of this paper is organized as follows. Section 2 describes the Adleman-Lip-

ton model and describes the JSSP. Section 3 proposes a DNA algorithm for the JSSP and pro-

vides a performance analysis of the proposed DNA algorithm. Section 4 reports the

experimental results of the proposed DNA algorithm and the comparison with several heuris-

tic algorithms on 58 benchmark instances. Section 5 concludes this work with a summary and

future research directions.

2. Preliminaries

This section is composed of two parts. The first part explains the Adleman-Lipton model, and

the second part gives a formal description of the JSSP.

2.1 The Adleman-Lipton model

DNA is a polymer which is strung together from monomers called deoxyribonucleotides [28].

A single strand DNA molecule consists of a sequence of nucleotides with four different bases,

i.e., adenine, guanine, cytosine and thymine, abbreviated as A, G, C and T, respectively. Every

strand, according to its chemical structure, has a 5’-3’ direction or a 3’-5’ direction, with the 5’-

end matching the 3’-end. In the double strand molecule, the two single strands have opposite

directions. Using the Watson-Crick complementarity, i.e., the A-T pairing and the G-C pair-

ing, without other possible pairings, a double strand DNA molecule can be formed under

appropriate conditions. For instance, the single strand 5'-ACGTTA-3' and its complement

3'-TGCAAT-5' can form a double strand, also referred to as a duplex. Assume the upper

strand runs from left to right in the 5’-3’ direction, and consequently the lower strand runs

from left to right in the 3’-5’ direction. The complement 3'-TGCAAT-5' of the strand 5'-

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 3 / 21

https://doi.org/10.1371/journal.pone.0242083


ACGTTA-3' is denoted by ACGTTA
�

. The length of a single strand DNA molecule is the num-

ber of nucleotides in the molecule. Thus a single strand consisting of 12 nucleotides is said to

be a 12 mer, i.e., a polymer consisting of 12 monomers.

The Adleman-Lipton model. A test tube is a set of molecules of DNA, i.e., a multi-set of

finite strings over the alphabets {A, G, C, T}. The following operations can be performed:

(1) Merge (N1,N2,. . .,Nk): given k test tubes N1,N2,. . .,Nk, this operation pours the DNA solu-

tion in each of the test tubes N2,. . .,Nk into test tube N1. The uniform mixed solution is

referred to as N1.

(2) Amplify(N1,N2,. . .,Nk): given a test tube N1, this operation creates copies of N1 and ampli-

fies them into test tubes N2,. . .,Nk.

(3) Separation (N1, X, N2): given a test tube N1 and a string X, this operation transfers all the

single strands containing string X in test tube N1 to test tube N2. The single DNA strands

removed from test tube N1 are no longer contained in test tube N1. If N1 does not contain

X, this operation does nothing.

(4) Selection (N1, L, N2): given a test tube N1 and an integer L, this operation filters all DNA

strands of length L in N1 and put them into test tube N2. Consequently, N1 no longer con-

tains these filtered DNA strands.

(5) Append-head(N,S): given a test tube N and a single strand S, this operation attaches

(pastes) S to the front of every strand in N.

(6) Append-tail (N,R): given a test tube N and a single strand R, this operation attaches (pastes)

R to the end of every strand in N.

(7) Annealing (N): given a test tube N with some single strands, this operation derives all pos-

sible double strands according to the Watson-Crick complementarity pairing principle,

leaves them in N, and removes the other single strands from N.

(8) Denaturation (N): given a test tube N, this operation separates every double-stranded

DNA molecule into two single strands by heating without breaking the phosphodiester

bond of each single strand. Briefly, the double-stranded DNA in N is separated as follows

EF

EF

" #

) ½EF�; ½EF�:

(9) Cutting (N, ω1ω2): given a test tube N and strings with ω1ω2, this operation divides every

strand containing [ω1ω2] in N to different strands as follows

½� � � ao1o2bo1o2g � � �� ) ½� � � ao1�; ½o2bo1�; ½o2g � � ��;

where ω1ω2 corresponds to the recognition site of the cutting operation.

(10) Discard (N): given a test tube N, this operation clears all strands in N, that is, emptying N.

(11) Read (N): given a test tube N, this operation obtains the precise DNA sequences of all

strands in N.

(12) Sort (N1,N2,N3): given a test tube N1 and two empty test tubes N2 and N3, this operation

chooses the shortest strands in N1 and puts them in N2, chooses the longest strands in N1

and puts them in N3, and keeps the rest of the strands in N1.

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 4 / 21

https://doi.org/10.1371/journal.pone.0242083


(13) Ligation (N): given a test tube N, this operation links all the DNA molecules (double

strands) in N together by enzymes called ligases.

(14) Detect (N): given a test tube N, this operation returns “true” if N contains at least one

DNA strand, and returns “false” otherwise.

(15) T: = B(N,ω): given a test tube N and a string ω, this operation produces the test tube T
consisting of all strands in N which begin with the string ω.

(16) L: = Length(N,ω,Ω): given a test tube N, this operation returns the length L of the specific

single strand beginning with the string ω and ending with the string Ω in N.

In actual biological experiments, the above operations are feasible and achievable. Take the

Sort(N1, N2, N3) operation as an example. In gel electrophoresis, the migration speed of DNA

strands is related to its own length. The longer the strand, the slower the migration speed.

Therefore, through gel electrophoresis experiments, the longest and shortest DNA strands in

the test tube can be obtained. Since all operations mentioned above can be performed in lab

within constant biological steps, it is reasonable to assume that the complexity of each opera-

tion is O(1). In previous works ([10–12, 14, 15, 27]), many researchers have used this same

approach to analyze the complexity of DNA computing algorithms. Therefore, the same

approach is used in this study.

2.2 The job shop scheduling problem

The JSSP is already known as a typical NP-hard problem [29]. An n ×m JSSP can be formally

described as follows [30]. There are n jobs and m machines denoted as J = (J1, J2, � � �,Jn) and M
= (M1, M2, � � �,Mm), respectively. Each job must be processed (or handled) through all m
machines to fulfil its processing tasks. The processing of a job is also called an operation. Each

job requires m operations. Only one machine is required for each operation, and only one oper-

ation can be handled on one of the m machines. Once started on a specified machine, an opera-

tion is not allowed to be interrupted until the processing of the job is completed, meaning that

each operation begins only when all its previous operations are finished, i.e., preemption is not

allowed. The processing time and the sequence of operations, i.e., the machining paths are

given in advance. The goal of a JSSP is to find the optimal schedule in order to minimize the

maximum makespan. A JSSP with n jobs and m machines has (n!)m possible solutions.

The notations used for the mathematical description of the JSSP are given below.

(1) n and m denote the numbers of jobs and machines, respectively.

(2) Oi,j represents the operation i of job j, where i 2 [1, m] and j 2 [1, n].

(3) ti,j represents the processing time of Oi,j.

(4) TJi,j represents the completion time of Oi,j, i.e., the cumulative completion time of job j up

to operation i.

(5) TMi,j represents the earliest start time of Oi,j, i.e., the cumulative time (not including ti,j) of

machine i before job j starts.

The mathematical programming model of the JSSP is given in the following.

MinðMax
1�j�n
ðTJm;jÞÞ ð1Þ

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 5 / 21

https://doi.org/10.1371/journal.pone.0242083


Subject to

TJi� 1;j þ ti;j � TJi;j; for i 2 ½1;m� and j 2 ½1; n� ð2Þ

TMi;j þ ti;j � TJi:j; for i 2 ½1;m� and j 2 ½1; n� ð3Þ

TJij � 0; TMij � 0; for i 2 ½1;m� and j 2 ½1; n�: ð4Þ

The objective function minimizes the makespan, i.e., the maximum completion time. Con-

straint (2) represents precedence relationship between the operations. Constraint (3) means

that preemption is not allowed. Constraint (4) gives the domains of the variables.

Example 1. Table 1 shows a n ×m = 4 × 2 FSSP example with 4 jobs J1, J2, J3 and J4 and 2

machines M1M1 and M2. The jobs have the same operation sequence, i.e., the same machining

path, where they first pass through machine 1 (M1) and then pass through machine 2 (M2).

The time needed by each job on each machine is shown in the table.

Example 2. Table 2 shows a n ×m = 3 × 3 JSSP example with 3 jobs J1, J2 and J3, each with

a different machining path, processed on 3 machines, M1, M2 and M3. The machines required

are shown in the column Mi and the time needed by each job on each machine is shown in the

column ti,j. For instance, the 1st operation of job 1 (J1), i.e., O1,1, is processed on machine 3

(M3) and the processing time corresponding to O1,1 is t1,1 = 7 units. The 2nd operation of job 1

(J1), i.e., O2,1, is processed on machine 1 (M1) and the processing time corresponding to this

operation is t2,1 = 4 units, and so on.

From the two examples above, it is intuitive that the JSSP is an extension of the FSSP. The

biggest difference between a JSSP and a FSSP lies in the machining paths of the jobs, as shown

in Tables 1 and 2. As compared with the FSSP as shown in Table 1, the machining paths of the

jobs are different from each other in a JSSP as shown in Table 2. If all the jobs have the same

machining path, i.e., each job needs the same operations, without distinction between the

operations and the machines, the JSSP becomes a FSSP.

As compared with FSSP, JSSP is much more complicated and closer to the practical prob-

lems in production. In a FSSP, only one time matrix is needed. However, in a JSSP, two matri-

ces are required, one represents the processing time and the other represents the machines

needed by the jobs. Therefore, this work focuses on the more practical and representative JSSP

for an in-depth study.

3. A DNA algorithm for the job shop scheduling problem

Encoding is the key and difficult part of solving the combinatorial optimization problem with

DNA computing. Therefore, this section starts with the coding scheme and then gives an over-

view of the proposed algorithm. The detailed algorithm is finally presented.

Table 1. A n ×m = 4 × 2 FSSP.

Machine Job

J1 J2 J3 J4

M1 15 8 6 12

M2 4 10 5 7

https://doi.org/10.1371/journal.pone.0242083.t001

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 6 / 21

https://doi.org/10.1371/journal.pone.0242083.t001
https://doi.org/10.1371/journal.pone.0242083


3.1 Encoding

A schedule, or scheduling sequence, of an n ×m JSSP can be denoted by OP1−OP2−� � �OPn×m,

where OPi2[1, n] indicates a job number. In this schedule, the ith appearance of job j indicates

operation i of job j, i.e., Oi,j. Each number OPi appears exactly m times.

Take a scheduling sequence 1-3-2-2-1-3-3-1-2 of a 3 × 3 JSSP as an example. The first num-

ber ‘1’ indicates operation 1 of job 1; the second number ‘3’ indicated operation 1 of job 3. The

fourth number ‘2’ (the 2nd appearance of job 2) indicates operation 2 of job 2. Similarly, the

seventh number ‘3’ (the 3rd appearance of job 3) indicates operation 3 of job 3. Obviously,

once a scheduling sequence is determined, the makespan corresponding to this schedule is

uniquely determined. For example, referring to the data in Table 2 in Example 2, the comple-

tion times or makespans of the 3 jobs can be easily calculated. The completion times of jobs 1,

2 and 3 are 13, 18 and 18, respectively. Consequently, the makespan (completion time) for this

schedule is 18. Fig 1 in the following shows this schedule as a Gantt chart.

Effective encoding needs to be used to reasonably map real problems to DNA molecular

computing models, and to generate all possible solutions in parallel in one step. In the follow-

ing, p, Ei, q, Fj are used to represent different DNA single strands with the same length, e.g., u
mer, with u as a positive integer. The notations p and q are used for DNA ligation, as defined

in Section 2.2, and Ei and Fj represent the single strands for operation i and job j, respectively.

The single strand pEiqFj can be used to indicate operation i of job j, i.e., Oi,j. In this way, all

ðn!Þ
m

possible solutions can be easily generated.

Example 3. Table 3 shows a n ×m = 5 × 6 JSSP example with 5 jobs, each with a different

machining path, processed on 6 machines. Data for each job are shown in two columns in the

table. The first column shows the corresponding machine number and the second column

shows the time needed by the job on each machine.

Fig 2 in the following is an optimal scheduling sequence of this 5×6 JSSP. It means that the

jobs are processed in the order of 5-4-2-1-3 for the 1st operation, in the order of 5-2-1-4-3 for

the 2nd operation, and so on, where the number ‘0’ in the middle represents a separator. The

same job processed by different machines are identified with the same color. A DNA encoding

method based on scheduling sequences is proposed below.

In accordance with Algorithm 1, the DNA strands {pE1qF5pE1qF4pE1q- F2pE1qF1pE1qF3}

will be generated to denote that the jobs are processed in the order of 5-4-2-1-3 in the 1st

Table 2. A n ×m = 3 × 3 JSSP.

i J1 J2 J3

Mi ti,1 Mi ti,2 Mi ti,3
1 3 7 2 5 2 4

2 1 4 3 6 1 2

3 2 2 1 3 3 3

https://doi.org/10.1371/journal.pone.0242083.t002

Fig 1. A Gantt chart for the schedule 1-3-2-2-1-3-3-1-2 of Example 2.

https://doi.org/10.1371/journal.pone.0242083.g001

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 7 / 21

https://doi.org/10.1371/journal.pone.0242083.t002
https://doi.org/10.1371/journal.pone.0242083.g001
https://doi.org/10.1371/journal.pone.0242083


operation. In this way, DNA strands can be obtained to denote all n jobs in every operation. By

encoding the jobs in this manner, all (n!)m possible schedules will be obtained.

Fig 3 in the following is the optimal schedule presented as a Gantt chart corresponding

to the optimal scheduling sequence given above in Fig 2, where the maximum completion

time, i.e., the makespan, of this schedule is 45. The result 45 is calculated using the data in

Table 3.

In JSSP, different jobs may require the same machine in some operations, so that some

jobs may have to wait for others to finish before being processed and machines may

become idle while having to wait for jobs to come. Different schedules have different job

and machine waiting times and might have different makespans. The advantage of this

encoding is that, once a scheduling sequence, i.e., a schedule, is determined, the make-

span corresponding to this schedule is also uniquely determined. However, it should be

noted that the makespan is, but the corresponding scheduling sequences may not be,

unique.

3.2 An outline of the algorithm

The basic idea of this DNA algorithm for solving the JSSP is to find an optimal solution by

checking all possible solution candidates. This brute force approach is realized through DNA

computing. Specifically, this proposed algorithm consists of four steps.

(1) Generate the initial solution space in test tube N0 for the JSSP;

(2) Screen the DNA strands representing the feasible schedules and discard the ones repre-

senting infeasible schedules;

(3) Append time information strands at the end of the strands representing feasible schedules

and calculate the completion time of each feasible schedule;

(4) Select the strands corresponding to the optimal schedule that minimizes the maximum

completion time, i.e., the makespan.

The flowchart of the algorithm is shown in Fig 4 as follows.

Table 3. A n ×m = 5 × 6 JSSP.

i J1 J2 J3 J4 J5

Mi ti,1 Mi ti,2 Mi ti,3 Mi ti,4 Mi ti,5
1 3 3 2 6 3 1 4 7 5 6

2 1 10 3 8 4 5 1 4 2 10

3 2 9 5 1 6 5 3 4 3 7

4 4 5 6 5 1 5 2 3 6 8

5 6 3 1 3 2 9 5 1 1 5

6 5 10 4 3 5 1 6 3 4 4

https://doi.org/10.1371/journal.pone.0242083.t003

Fig 2. An optimal schedule of the 5×6 JSSP in Example 3.

https://doi.org/10.1371/journal.pone.0242083.g002

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0242083.t003
https://doi.org/10.1371/journal.pone.0242083.g002
https://doi.org/10.1371/journal.pone.0242083


3.3 Detailed algorithm

3.3.1 Initialization of the sequence of the n jobs for each operation. Initial test tube:

Ni ¼ fpEiqg for 1 � i � m

Q ¼ fF1; F2; � � � ; Fn; qF1 ; qF2 ; � � � ; qFn ; qF1p; qF2p; � � � ; qFnpg

Algorithm 1. Initialization of the sequence of the n jobs for each operation

Begin
1: for i = 1 to m do
2: Merge(Ni, Q);
3: Annealing(Ni);
4: Ligation(Ni);
5: Denaturation(Ni);
6: Selection(Ni, 4nu, Vi);
7: Discard(Ni);
8: Vi: = B(Ti, pEiq);
9: for j = 1 to j = n do
10: Separation(Vi, qFjp, Ui);
11: Discard(Vi);
12: Amplify(Ui, Vi);
13: Discard(Ui);
14: end for
15: Amplify(Vi, Ni);
16: Discard(Vi);

Fig 3. Gantt chart of an optimal schedule of the 5×6 JSSP in Example 3.

https://doi.org/10.1371/journal.pone.0242083.g003

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 9 / 21

https://doi.org/10.1371/journal.pone.0242083.g003
https://doi.org/10.1371/journal.pone.0242083


17: Append-tail(Ni, ai2S);
18: Append-head(Ni, ai1);
19: end for
End

Algorithm 1 produces DNA strands representing all n jobs for every possible operation, for

instance,

fa11pE1qF2pE1qF4pE1qF5pE1qF1pE1qF3a12Sg

and fa21pE2qF2pE2qF1pE2qF5pE2qF4pE2qF3a22Sg;

and so on. The lengths of the single strands ai,j and S are also u mer. The strands ai,j and S are

used for connection in the following algorithm.

3.3.2 Generation of all possible strands for the JSSP. Initial test tube N0:

N0 ¼ fa12Sa21 ; a22Sa31 ; a32Sa41 ; � � � ; am� 1;2Sam1g

Algorithm 2. Generation of all possible strands for the JSSP

Begin
1: Merge (N0, N1, N2,. . ., Nm);
2: Annealing (N0);
3: Denaturation (N0);
4: N0: = B (N0, a11pE1q);
5: Selection (N, (4n+3)mu, N0);
6: for i = 1 to i = m do
7: Separation (N0, ai2S, N1);
8: Discard (N0);

Fig 4. Algorithm flow chart.

https://doi.org/10.1371/journal.pone.0242083.g004

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 10 / 21

https://doi.org/10.1371/journal.pone.0242083.g004
https://doi.org/10.1371/journal.pone.0242083


9: Amplify (N1, N0);
10: Discard (N1);
11: end for
End

After executing Algorithm 2, all possible DNA strands representing all possible solutions of

the JSSP can be obtained as shown below

fa11pE1qFj1 � � � pE1qFjk � � � pE1qFjna12Sa21pE2qFj1 � � � pE2qFjk � � � pE2qFjna22S � � �g;

where the subscript jk of Fjk is uniquely determined by the value of k for 1� k� n, and

Fjk 2 fF1; F2; � � � ; Fng, i.e., the sequence j1, . . .,jk, . . .,jn is an arbitrary out-of-order combina-

tion of the sequence 1,. . .,n.

3.3.3 Computation of the final completion time of each job for every strand. In Algo-

rithm 3, as explained in Section 2.2, TJi;jk denotes the completion time of job jk in opera-

tion i, TMi;jk
is the cumulative time (not including ti;jk) of the required machine

corresponding to job jk in operation i, and ti;jk is the corresponding processing time of job

jk in operation i. The value of jk is also uniquely determined by the value of k for 1 � k �
n, where jk 2{1,2,� � �,n}. The final completion time of the n jobs are stored separately in n
test tubes. The single strand C, also with a length of u mer, in Algorithm 3 denotes one

unit of time.

Algorithm 3. Computation of the final completion time of each job for

every strand

Begin
1: Amplify (N0,N1,N2, . . .,Nn);
2: Discard (N0);
3: for i = 1 to m do
4: for k = 1 to n do
5: if i>1 then
6: Separation (Njk

,Sω, Ujk
);

7: Discard (Njk
);

8: Cutting (Ujk
,Sω);

9: Njk
: = B (Ujk

,a11pE1q);
10: Discard (Ujk

);
11: else
12: Continue
13: if TJi� 1;jk

> TMi;jk
(when i = 1, both initial values are 0) then

14: Append-tail (Njk
, o
|{z}
CC���CC

TJi� 1;jk
þti;jk

O);

15: else
16: Append-tail (Njk

, o
|{z}
CC���CC

TMi;jk
þti;jk

O);

17: TJi;jk: = Length(Njk
, ω, Ω);

18: TMi;jk
: = Length(Njk

, ω, Ω);
19: end for
20: end for
End

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 11 / 21

https://doi.org/10.1371/journal.pone.0242083


3.3.4 DNA optimization. This algorithm finds the optimal schedule that minimizes the

maximum completion time, i.e., the makespan,

MinðMax
1�j�n
ðTJm;jÞÞ;

where TJm,j is the final completion time of job j in the last operation.

Algorithm 4. DNA optimization

Begin
1: for i = 1 to n do
2: Sort (Ni, V1, V2);
3: end for
4: Sort (V2, V0, V3);
5: Cutting (V0, Sω);
6: T0: = B (V0, a11pE1q);
7: Read (V0)
End

Theorem in the following is obtained by inspecting Algorithms 1–4 line by line.

Theorem. Without loss of generality, n�m is assumed. The solutions of a n×m JSSP has an
O(n2) complexity using DNA computing.

Proof. The total complexity of the four algorithms is as follows

OðAlgorithm 1Þ ¼ Oðmð7þ 4nþ 4ÞÞ � Oð4n2 þ 11nÞ ¼ Oðn2Þ;

OðAlgorithm 2Þ ¼ Oð5þ 4mÞ � Oð4nþ 5Þ ¼ OðnÞ;

OðAlgorithm 3Þ ¼ Oð10mnþ 2Þ � Oð10n2 þ 2Þ ¼ Oð10n2Þ ¼ Oðn2Þ;

OðAlgorithm 4Þ ¼ Oðnþ 4Þ ¼ OðnÞ;

O ¼ OðAlgorithm 1Þ þ OðAlgorithm 2Þ þ OðAlgorithm 3Þ þ OðAlgorithm 4Þ

¼ Oðn2Þ þ OðnÞ þ Oðn2Þ þ OðnÞ ¼ Oðn2Þ

In conclusion, the optimal schedule of a JSSP can be found with an O(n2) complexity.

Summary. The solution of the JSSP can be represented by a strand with a polynomial

length.

Explanation. Suppose the length of the different strands is

jjEijj ¼ jjFjjj ¼ jjaijjj ¼ jjSjj ¼ jjCjj ¼ jjOjj ¼ jjojj ¼ jjpjj ¼ jjqjj ¼ u mer; for i

2 ½1; m� and j 2 ½1; n�:

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 12 / 21

https://doi.org/10.1371/journal.pone.0242083


Let l = SStij, and also assume m� n. The length of DNA strand L corresponding to the

optimal schedule in Algorithm 4 is as follows.

jjLjj ¼ n
Xm

i¼1

jjEijj þm
Xn

j¼1

jjFjjj þmnðjjpjj þ jjqjjÞ þ jjOjj þ jjojj

þ|{z}
jjC jjþ���þ jjC jj

MinðMax1�j�nðTJm;jÞÞ<<l

þ
Xm

i¼1

ðjjai1jj þ jjai2jjÞ þmjjSjj

< mnuþmnuþmn2uþ luþ 2muþmu

< n2uþ n2uþ 2n2uþ luþ 2nuþ nu

¼ ð4n2 þ 3nþ lÞu

The final solution strand in Algorithm 4 is within appropriate length. The optimal solution

can then be found and determined.

4. Experiment and comparison

The algorithm proposed in this study is simulated in Python. Two important tool libraries, i.e.,

Biopython and DOcplex, are used to simulate and implement the four algorithms, as compo-

nents of the proposed algorithm, in this work. Biopython, a Python tool for computational

molecular biology, is used to encode problems and construct solution spaces. DOcplex, a

Python tool library for solving constraint programming problems, is used to simulate the con-

straints in Algorithm 3 and the objective function in Algorithm 4. The computer used for com-

putation has an i5-4210H processor with a 2.90GHz clock speed and 12G of RAM.

The algorithm is first compared with four state-of-the-art heuristics on 43 JSSP benchmark

instances (see Table 4). The results show that, except for instance LA29, the proposed algo-

rithm found the best known solutions for the remaining 42 instances, and has the same or bet-

ter performance than the four comparative heuristics.

The 43 JSSP benchmark instances are selected from the OR Library [31], which contains 3

instances (FT06, FT10, FT20) designed by Fisher and Thompson [32] and 40 instances

(LA01~LA40) designed by Lawrence [33]. The four comparative heuristics used for compari-

son are MAGATS [21], NIMGA [34], aLSGA [35] and WW [36].

Table 4 shows the results obtained by the proposed algorithm and the four comparative

heuristics for the 43 instances. These results include the names of the instances, the sizes of the

instances represented by n×m, the best known solutions (BKS) and the best solutions obtained

by the proposed algorithm and the four comparative heuristics. Results of the comparative

heuristics are from the original respective publications [21, 34–36].

In order to visualize the scheduling results of the proposed algorithm, the Gantt charts of

the optimal schedules of the instances FT20, LA20 and LA36 are presented in Figs 5–7, respec-

tively. Figs 5–7 show that the optimal makepans of instances FT20, LA20 and LA36 are 1165,

902 and 1268 units of time, respectively. Not all four comparative heuristics could find the best

known solution for instance FT20 and none of these heuristics could find the best known solu-

tions for instances LA20 and LA36.

Table 5 shows a comparative analysis with four more heuristics on four instances of differ-

ent sizes. The four heuristics are PSO [37], IGA [38], DE [39] and SSO-DM [18]. The table

gives the statistical results, i.e., the best, worst, mean and standard deviation (Std.), of 20 inde-

pendent runs. Except for instance YN4, the proposed algorithm found the best known

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 13 / 21

https://doi.org/10.1371/journal.pone.0242083


solutions for the remaining three instances. The results of the comparative heuristics are from

Zhou et al. [18]. Figs 8–11 show the box plots of these five algorithms on the four instances.

Table 4. Results obtained by the proposed algorithm and four comparative heuristics for the 43 instances.

Instances Size BKS Proposed MAGATS NIMGA aLSGA WW

FT06 6×6 55 55 55 55 55 55

FT10 10×10 930 930 930 930 930 930

FT20 20×5 1165 1165 1165 1173 1165 1165

LA01 10×5 666 666 666 666 666 666

LA02 10×5 655 655 655 655 655 655

LA03 10×5 597 597 597 597 606 597

LA04 10×5 590 590 590 590 593 590

LA05 10×5 593 593 593 593 593 593

LA06 15×5 926 926 926 926 926 926

LA07 15×5 890 890 890 890 890 890

LA08 15×5 863 863 863 863 863 863

LA09 15×5 951 951 951 951 951 951

LA10 15×5 958 958 958 958 958 958

LA11 20×5 1222 1222 1222 1222 1222 1222

LA12 20×5 1039 1039 1039 1039 1039 1039

LA13 20×5 1150 1150 1150 1150 1150 1150

LA14 20×5 1292 1292 1292 1292 1292 1292

LA15 20×5 1207 1207 1207 1207 1207 1207

LA16 10×10 945 945 945 945 946 945

LA17 10×10 784 784 784 784 784 784

LA18 10×10 848 848 848 848 848 848

LA19 10×10 842 842 842 842 852 842

LA20 10×10 902 902 907 907 907 907

LA21 15×10 1046 1046 1046 1058 1068 1046

LA22 15×10 927 927 927 937 956 935

LA23 15×10 1032 1032 1032 1032 1032 1032

LA24 15×10 935 935 935 947 966 937

LA25 15×10 977 977 977 989 1002 977

LA26 20×10 1218 1218 1218 1218 1223 1218

LA27 20×10 1235 1235 1235 1269 1281 1236

LA28 20×10 1216 1216 1216 1247 1245 1216

LA29 20×10 1152 1176 1164 1241 1230 1160

LA30 20×10 1355 1355 1355 1355 1355 1355

LA31 30×10 1784 1784 1784 1784 1784 1784

LA32 30×10 1850 1850 1850 1850 1850 1850

LA33 30×10 1719 1719 1719 1719 1719 1719

LA34 30×10 1721 1721 1721 1721 1721 1721

LA35 30×10 1888 1888 1888 1888 1888 1888

LA36 15×15 1268 1268 1281 1293 – 1279

LA37 15×15 1397 1397 1397 1432 – 1407

LA38 15×15 1196 1196 1198 1222 – 1196

LA39 15×15 1233 1233 1233 1251 – 1242

LA40 15×15 1222 1222 1228 1246 – 1229

https://doi.org/10.1371/journal.pone.0242083.t004

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 14 / 21

https://doi.org/10.1371/journal.pone.0242083.t004
https://doi.org/10.1371/journal.pone.0242083


Fig 5. Gantt chart of an optimal schedule of instance FT20.

https://doi.org/10.1371/journal.pone.0242083.g005

Fig 6. Gantt chart of an optimal schedule of instance LA20.

https://doi.org/10.1371/journal.pone.0242083.g006

Fig 7. Gantt chart of an optimal schedule of instance LA36.

https://doi.org/10.1371/journal.pone.0242083.g007

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 15 / 21

https://doi.org/10.1371/journal.pone.0242083.g005
https://doi.org/10.1371/journal.pone.0242083.g006
https://doi.org/10.1371/journal.pone.0242083.g007
https://doi.org/10.1371/journal.pone.0242083


Table 6 shows the experimental results of the proposed algorithm on the instances of

Yamada and Nakano [40] (YN1~YN4) and Storer et al. [41] (SWV01~SWV10). In the experi-

ment, the running time limit of the algorithm is set to 2000 seconds (Sec.), and the relative

Table 5. Statistical results of five algorithms on four instances.

Instances Size BKS Algorithm Best Worst Mean Std.

FT20 20×5 1165 PSO 1374.00 1521.00 1442.50 42.02

IGA 1744.00 2527.00 2025.50 198.95

DE 1456.00 1554.00 1506.00 27.64

SSO-DM 1374.00 1374.00 1374.00 0

Proposed 1165.00 1165.00 1165.00 0

LA40 15×15 1222 PSO 1498.00 1732.00 1576.05 59.79

IGA 2154.00 2803.00 2340.25 155.90

DE 1691.00 1824.00 1767.05 36.46

SSO-DM 1528.00 1528.00 1528.00 0

Proposed 1222.00 1222.00 1222.00 0

ORB10 10×10 944 PSO 1039.00 1263.00 1150.05 48.84

IGA 1431.00 2121.00 1761.25 158.12

DE 1190.00 1293.00 1244.40 25.04

SSO-DM 1114.00 1114.00 1114.00 0

Proposed 944.00 944.00 944.00 0

YN4 20×20 968 PSO 1340.00 1607.00 1425.15 64.84

IGA 1826.00 2192.00 1997.90 116.48

DE 1486.00 1601.00 1570.75 26.15

SSO-DM 1492.00 1492.00 1492.00 0

Proposed 979.00 996.00 987.43 6.04

https://doi.org/10.1371/journal.pone.0242083.t005

Fig 8. The box plot for FT20.

https://doi.org/10.1371/journal.pone.0242083.g008

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 16 / 21

https://doi.org/10.1371/journal.pone.0242083.t005
https://doi.org/10.1371/journal.pone.0242083.g008
https://doi.org/10.1371/journal.pone.0242083


error (RE), i.e., the error between the obtained and the best know solutions defined as a per-

centage of the best known solution, is introduced as a criterion. The third column BKS/UB in

the table represents the best known solutions (BKS) or the known upper bounds (UB) when

the BKS is unknown. The last column t shows the running time taken by the algorithm in

Fig 9. The box plot for LA40.

https://doi.org/10.1371/journal.pone.0242083.g009

Fig 10. The box plot for ORB10.

https://doi.org/10.1371/journal.pone.0242083.g010

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 17 / 21

https://doi.org/10.1371/journal.pone.0242083.g009
https://doi.org/10.1371/journal.pone.0242083.g010
https://doi.org/10.1371/journal.pone.0242083


seconds. The results show that the proposed algorithm can find the best known solutions for

the three instances SWV01~SWV03 in a short time, but cannot find the best known solutions

for the remaining 11 instances within the running time limit of 2000 seconds. The maximum

RE value for these instances do not exceed 6%.

5. Conclusions

Based on the DNA operations of the Adleman-Lipton model, an appropriate encoding strategy

is developed first to generate all possible solutions in parallel using DNA computing in one

Fig 11. The box plot for YN4.

https://doi.org/10.1371/journal.pone.0242083.g011

Table 6. Simulation test on examples YN01~YN04 and SWV01~SWV10.

Instances Size BKS/UB Best RE(%) t (Sec.)

SWV01 20×10 1407 1407 0 1021.06

SWV02 20×10 1475 1475 0 468.86

SWV03 20×10 1398 1398 0 612.78

SWV04 20×10 1474 1505 2.10 2000.00

SWV05 20×10 1424 1506 5.75 2000.00

SWV06 20×15 1678 1746 4.05 2000.00

SWV07 20×15 1600 1630 1.86 2000.00

SWV08 20×15 1763 1798 1.99 2000.00

SWV09 20×15 1661 1724 3.79 2000.00

SWV10 20×15 1767 1795 1.58 2000.00

YN1 20×20 885 896 1.24 2000.00

YN2 20×20 909 912 0.30 2000.00

YN3 20×20 892 905 1.46 2000.00

YN4 20×20 968 979 1.14 2000.00

https://doi.org/10.1371/journal.pone.0242083.t006

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 18 / 21

https://doi.org/10.1371/journal.pone.0242083.g011
https://doi.org/10.1371/journal.pone.0242083.t006
https://doi.org/10.1371/journal.pone.0242083


step. Then four highly efficient and parallel DNA algorithms as components of the proposed

algorithm are proposed for JSSP. The proposed algorithm is simulated and compared with sev-

eral heuristics using 58 JSSP benchmark instances from the literature, and the proposed algo-

rithm found the best known solutions for 46 instances. The results show that the proposed

algorithm performs better than the comparative heuristics.

One direction of future works is to explore the possibility of solving the FJSP by using viable

biological computational models including the sticker model among others. In addition, for

larger-scale benchmarks such as the SWVs and the YNs, multi-threaded computing will be

considered for simulation implementation in the future.

Supporting information

S1 File. Code, 58 benchmark instances and their data descriptions, solution results and

operations guides (Readme.doc file) related to the python source program.

(ZIP)

Author Contributions

Conceptualization: Xiang Tian, Xiyu Liu.

Formal analysis: Hongyan Zhang.

Funding acquisition: Xiyu Liu.

Investigation: Xiang Tian.

Methodology: Xiang Tian, Xiyu Liu, Hongyan Zhang.

Software: Xiang Tian.

Supervision: Xiyu Liu, Minghe Sun.

Validation: Hongyan Zhang, Minghe Sun, Yuzhen Zhao.

Visualization: Xiang Tian.

Writing – original draft: Xiang Tian.

Writing – review & editing: Xiang Tian, Minghe Sun, Yuzhen Zhao.

References
1. Feynman R, Gilbert D. Miniaturization. Reinhold, New York. 1961: 282–96.

2. Adleman LM. Molecular computation of solutions to combinatorial problems. Science. 1994; 266:

1021–4. https://doi.org/10.1126/science.7973651 PMID: 7973651

3. Lipton RJ. DNA solution of HARD computational problems. Science.1995; 268: 542–5. https://doi.org/

10.1126/science.7725098 PMID: 7725098

4. Ouyang Q, Kaplan PD, Liu S, Libchaber A. DNA solution of the maximal clique problem. Science. 1997;

278(5337): 446–9. https://doi.org/10.1126/science.278.5337.446 PMID: 9334300

5. Roweis S, Winfree E, Burgoyne R, Chelyapov NV, Goodman MF, Rothemund PW, et al. A sticker-

based model for DNA computation. Journal of Computational Biology. 1998; 5(4): 615–29. https://doi.

org/10.1089/cmb.1998.5.615 PMID: 10072080

6. Winfree E, Liu F, Wenzler LA, Seeman NC. Design and self-assembly of two-dimensional DNA crystals.

Nature. 1998; 394(6693): 539–44. https://doi.org/10.1038/28998 PMID: 9707114

7. Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, Yokomori T, et al. Molecular computation by

DNA hairpin formation. Science. 2000; 288(5469): 1223–6. https://doi.org/10.1126/science.288.5469.

1223 PMID: 10817993

8. Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, Smith LM. DNA computing on surfaces. Nature.

2000; 403(6766): 175–9. https://doi.org/10.1038/35003155 PMID: 10646598

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 19 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242083.s001
https://doi.org/10.1126/science.7973651
http://www.ncbi.nlm.nih.gov/pubmed/7973651
https://doi.org/10.1126/science.7725098
https://doi.org/10.1126/science.7725098
http://www.ncbi.nlm.nih.gov/pubmed/7725098
https://doi.org/10.1126/science.278.5337.446
http://www.ncbi.nlm.nih.gov/pubmed/9334300
https://doi.org/10.1089/cmb.1998.5.615
https://doi.org/10.1089/cmb.1998.5.615
http://www.ncbi.nlm.nih.gov/pubmed/10072080
https://doi.org/10.1038/28998
http://www.ncbi.nlm.nih.gov/pubmed/9707114
https://doi.org/10.1126/science.288.5469.1223
https://doi.org/10.1126/science.288.5469.1223
http://www.ncbi.nlm.nih.gov/pubmed/10817993
https://doi.org/10.1038/35003155
http://www.ncbi.nlm.nih.gov/pubmed/10646598
https://doi.org/10.1371/journal.pone.0242083


9. Smith LM, Corn RM, Condon AE, Lagally MG, Frutos AG, Liu Q, et al. A surface-based approach to

DNA computation. Journal of computational biology. 1998; 5(2): 255–67. https://doi.org/10.1089/cmb.

1998.5.255 PMID: 9672831

10. Xiao D, Li W, Zhang Z, He L. Solving maximum cut problems in the Adleman- Lipton model. Biosys-

tems. 2005; 82(3): 203–7. https://doi.org/10.1016/j.biosystems.2005.06.009 PMID: 16236426

11. Hsieh SY, Chen MY. A DNA-based solution to the graph isomorphism problem using Adleman–Lipton

model with stickers. Applied Mathematics and Computation. 2008; 197(2): 672–86.

12. Yang X, Lu Q, Li C, Liao X. Biological computation of the solution to the quadratic assignment problem.

Applied Mathematics and Computation. 2008; 200(1): 369–77.

13. Nehi HM, Hamidi F. A comment on "Biological computation of the solution to the quadratic assignment

problem’’. Applied Mathematics and Computation. 2012; 218(21): 10759–61.

14. Wang Z, Zhang Y, Zhou W, Liu H. Solving traveling salesman problem in the Adleman–Lipton model.

Applied Mathematics and Computation. 2012; 219(4): 2267–70.

15. Wang Z, Ren X, Ji Z, Huang W, Wu T. A novel bio-heuristic computing algorithm to solve the capaci-

tated vehicle routing problem based on Adleman–Lipton model. Biosystems. 2019; 184:103997.

https://doi.org/10.1016/j.biosystems.2019.103997 PMID: 31369836

16. Pellerin R, Perrier N, Berthaut F. A survey of hybrid meta-heuristics for the resource constrained project

scheduling problem. European Journal of Operational Research. 2020; 280(2): 395–416.

17. Kurdi M, An effective genetic algorithm with a critical-path-guided Giffler and Thompson crossover oper-

ator for job shop scheduling problem. International Journal of Intelligent Systems and Applications in

Engineering, 2019; 7(1): 13–18.

18. Zhou G, Zhou Y, Zhao R, Hybrid social spider optimization algorithm with differential mutation operator for

the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2019; 13(5): 1–16.

19. Cruz-Chávez MA, Peralta-Abarca JdC, Cruz-Rosales MH, Cooperative threads with effective-address

in simulated annealing algorithm to job shop scheduling problems. Applied Sciences, 2019; 9(16):

3360.

20. Pongchairerks P A two-level meta-heuristic algorithm for the job-shop scheduling problem. Complexity,

2019; 1–11.

21. Peng C, Wu G, Liao TW, Wang H. Research on multi-agent genetic algorithm based on tabu search for

the job shop scheduling problem. PLoS One. 2019; 14(9): e0223182. https://doi.org/10.1371/journal.

pone.0223182 PMID: 31560722

22. Abdel-Kader RF, An improved PSO algorithm with genetic and neighborhood-based diversity operators

for the job shop scheduling problem. Applied Artificial Intelligence, 2018; 32(5): 433–462.

23. Zhang CY, Li P, Rao Y, Guan Z, A very fast TS/SA algorithm for the job shop scheduling problem. Com-

puters & Operations Research, 2008; 35(1): 282–294.

24. Xing LN, Chen YW, Wang P, Zhao QS, Xiong J, A knowledge-based ant colony optimization for flexible

job shop scheduling problems. Applied Soft Computing, 2010; 10(3): 888–896.

25. Deaton R, Garzon M, Rose J, Franceschetti D, Stevens S Jr. DNA computing: A review. Fundamenta

Informaticae. 1997; 30: 23–41.

26. Zhixiang Y, Jianzhong C, Yan Y, Ying M. Job shop scheduling problem based on DNA computing. Jour-

nal of Systems Engineering and Electronics. 2006; 17(3): 654–9.

27. Wang Z, Ji Z, Wang X, Wu T, Huang W. A new parallel DNA algorithm to solve the task scheduling prob-

lem based on inspired computational model. Biosystems. 2017; 162: 59–65. https://doi.org/10.1016/j.

biosystems.2017.09.001 PMID: 28890344

28. Păun G, Rozenberg G, Salomaa A. DNA computing: new computing paradigms: Springer; 1998.

29. Mohan J, Lanka K, Rao AN. A review of dynamic job shop scheduling techniques. Procedia Manufactur-

ing. 2019; 30: 34–9.

30. Wang SJ, Tsai CW, Chiang MC. A high performance search algorithm for job-shop scheduling problem.

Procedia Computer Science. 2018; 141: 119–26.

31. Beasley J. E. O-L. Distributing test problems by electronic mail. Journal of the Operational Research

Society. 1990; 41(11): 1069–72.

32. Fisher H, Thompson GL. Probabilistic learning combinations of local job-shop scheduling rules. Indus-

trial Scheduling. 1963; 225–51.

33. Lawrence S. Supplement to resource constrained project scheduling: An experimental investigation of

heuristic scheduling techniques. Graduate School of Industrial Administration. 1984; 4(7): 4411–7.

34. Kurdi M. An effective new island model genetic algorithm for job shop scheduling problem. Comput

Oper Res. 2016; 67:132–42.

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 20 / 21

https://doi.org/10.1089/cmb.1998.5.255
https://doi.org/10.1089/cmb.1998.5.255
http://www.ncbi.nlm.nih.gov/pubmed/9672831
https://doi.org/10.1016/j.biosystems.2005.06.009
http://www.ncbi.nlm.nih.gov/pubmed/16236426
https://doi.org/10.1016/j.biosystems.2019.103997
http://www.ncbi.nlm.nih.gov/pubmed/31369836
https://doi.org/10.1371/journal.pone.0223182
https://doi.org/10.1371/journal.pone.0223182
http://www.ncbi.nlm.nih.gov/pubmed/31560722
https://doi.org/10.1016/j.biosystems.2017.09.001
https://doi.org/10.1016/j.biosystems.2017.09.001
http://www.ncbi.nlm.nih.gov/pubmed/28890344
https://doi.org/10.1371/journal.pone.0242083


35. Asadzadeh L. A local search genetic algorithm for the job shop scheduling problem with intelligent

agents. Comput Ind Eng. 2015; 85: 376–83.

36. Cheng L, Zhang QZ, Tao F, Ni K, Cheng Y. A novel search algorithm based on waterweeds reproduc-

tion principle for job shop scheduling problem. Int J Adv Manuf Tech. 2016; 84(1–4): 405–24.

37. Lin TL, Horng SJ, Kao TW, Chen YH, Run RS, Chen RJ, et al., An efficient job shop scheduling algo-

rithm based on particle swarm optimization. Expert Systems with Applications, 2010; 37(3): 2629–

2636.

38. Kurdi M, A new hybrid island model genetic algorithm for job shop scheduling problem. Computers &

Industrial Engineering, 2015; 88: 273–283.

39. Zobolas GI, Tarantilis CD, Ioannou G, A hybrid evolutionary algorithm for the job shop scheduling prob-

lem. Journal of the Operational Research Society, 2009; 60(2): 221–235.

40. Yamada T, Nakano R. A genetic algorithm applicable to large-scale job shop problems. In: Manner R,

Manderick B, editors. Proceedings of the second international workshop on parallel problem solving

from nature (PPSN’2). Belgium; 1992; 281–90.

41. Storer RH, Wu SD, Vaccari R. New search spaces for sequencing problems with applications to job-

shop scheduling. Management Science, 1992; 38(10): 1495–509.

PLOS ONE A DNA algorithm for the job shop scheduling problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0242083 December 2, 2020 21 / 21

https://doi.org/10.1371/journal.pone.0242083

