Digital Filter Design for Force Signals from Eulerian–Lagrangian Analyses of Wave Impact on Bridges

Date

2022-11-14

Authors

Majlesi, Arsalan
Shahriar, Adnan
Nasouri, Reza
Khodadadi Koodiani, Hamid
Montoya, Arturo
Du, Ao
Matamoros, Adolfo

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Finite element (FE) models that simulate wave–superstructure interactions with the coupled Eulerian–Lagrangian (CEL) technique provide a viable and economical solution to estimate wave impact forces on bridge superstructures. One of the main drawbacks of CEL FE models is that they produce solutions distorted by numerical artifacts with very high frequencies that make it difficult to quantify the magnitude of hydrodynamic forces on superstructures. This paper investigated digital filter parameters for horizontal forces extracted from CEL FE models. The optimal filter configuration was evaluated by comparing unfiltered and filtered horizontal force signals with experimentally measured values from a reduced-scale superstructure specimen tested at the O.H. Hinsdale Wave Research Laboratory at Oregon State University. It was found that digital filters with cutoff frequencies below the fundamental frequency of the superstructure produced the best results and that optimizing Eulerian–Lagrangian surface interactions significantly improved the quality of the calculated force signals.

Description

Keywords

coastal bridges, wave–structure interaction, coupled Eulerian–Lagrangian analysis, finite element model, filtering

Citation

Journal of Marine Science and Engineering 10 (11): 1751 (2022)

Department

Mechanical Engineering
Civil and Environmental Engineering, and Construction Management