Terahertz Metasurfaces Optimized for Biomolecular Detection




Naranjo, Guillermo A.

Journal Title

Journal ISSN

Volume Title



In the last decade, there has been an increase in the use of metasurfaces to detect biological compounds at terahertz frequencies. This increased interest has been fueled by the fact that various biomolecules have rotational and vibrational modes at THz frequencies. The metasurface's resonant units can be considered as inductive-capacitive circuits therefore the detection mechanism is the change in dielectric constant in the capacitive region due to the presence of an analyte. In this project we utilized a facing split ring resonator design with three different tip geometries defining the capacitive region; square, triangular and round tips. We also utilized complementary facing split ring resonators, which present a larger capacitive region that their positive counterparts, with the same three tip geometries. In addition, we added micro wells in the capacitive region of the resonators where they serve to infiltrate the analyte into the substrate and increases their interaction with the electric field. The samples were then fabricated using photolithography, electron beam lithography and reactive ion etching to define the micro wells. They were characterized by obtaining the terahertz transmission spectra using terahertz time domain spectroscopy with and without an overlayer of Ara-h-2 or Ara-h-6. Results show that the metasurfaces can detect the presence of the allergens, and present a different response for Ara-h-2 than for Ara-h-6. The results indicate that utilizing complementary metasurfaces and/ or the addition of micro wells in the capacitive region are promising avenues to develop a sensitive terahertz metasurface based biosensor.


This item is available only to currently enrolled UTSA students, faculty or staff. To download, navigate to Log In in the top right-hand corner of this screen, then select Log in with my UTSA ID.


Ara h 2, Ara h 6, Metamaterials, Metasurfaces, Spectroscopy, Terahertz



Physics and Astronomy