Behavior of engineered nanoparticles in aqueous solutions and porous media: Connecting experimentation to probabilistic analysis

Date

2011

Authors

Contreras, Carolina

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Engineered nanoparticles have enhanced products and services in the fields of medicine, energy, engineering, communications, personal care, environmental treatment, and many others. The increased use of engineered nanoparticles in consumer products will lead to these materials in natural systems, inevitably becoming a potential source of pollution. The study of the stability and mobility of these materials is fundamental to understand their behavior in natural systems and predict possible health and environmental implications. In addition, the use of probabilistic methods such as sensitivity analysis applied to the parameters controlling their behavior is useful in providing support in performing a risk assessment.

This research investigated the stability and mobility of two types of metal oxide nanoparticles (aluminum oxide and titanium dioxide). The stability studies tested the effect of sand, pH 4, 7, and 10, and the NaCl in concentrations of 10mM, 25mM, 50mM, and 75mM. The mobility was tested using saturated quartz sand columns and nanoparticles suspension at pH 4 and 7 and in the presence of NaCl and CaCl2 in concentrations of 0.1mM, 1mM, and 10mM. Additionally, this work performed a sensitivity analysis of physical parameters used in mobility experiment performed for titanium dioxide and in mobility experiments taken from the literature for zero valent iron nanoparticles and fluorescent colloids to determine their effect on the value C/Co of by applying qualitative and quantitative methods.

The results from the stability studies showed that titanium dioxide nanoparticles (TiO2) could remain suspended in solution for up to seven days at pH 10 and pH 7 even after settling of the sand; while for pH 4 solutions titanium settled along with the sand and after seven days no particles were observed in suspension. Other stability studies showed that nanoparticle aluminum oxide (Al2O3) and titanium dioxide (TiO2) size increased with increasing ionic strength (10 to 75 mM NaCl). The results from the mobility experiments showed that ionic strength has more effect on aluminum oxide nanoparticles mobility than on titanium oxide nanoparticles mobility. For Al2O3 25% of the initial concentration was obtained in the effluent whereas for TiO2 less than the 10% of the initial concentration was observed. In general, when the ionic strength was increased the effluent of nanoparticles decreased. Collision efficiencies calculated base on the colloid filtration theory were consistent with the mobility experiments. Results from sensitivity analysis showed that for zero valent iron nanoparticles and fluorescent colloids porous medium diameter and porosity were the parameters that most influenced the variability of C/Co whereas for titanium dioxide nanoparticles C/Co was more sensitive to column length and pore water velocity.

Description

This item is available only to currently enrolled UTSA students, faculty or staff. To download, navigate to Log In in the top right-hand corner of this screen, then select Log in with my UTSA ID.

Keywords

Nanoparticles Mobility, Nanoparticles Stability, Nanotechnology, Sensitivity Analysis

Citation

Department

Civil and Environmental Engineering